人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
分数乘法解决问题教学反思篇一
本课是在学生学习了分数乘法单元中简单的求一个数的几分之几是多少的分数乘法应用题的基础上教学的。这一类实际问题比基本的求一个数的几分之几是多少的应用题的数量关系稍复杂,题目所求的数量不是已知的分率所对应的数量,而是与这个分率有关的另一个数量,所以它是基本的分数乘法解决问题的发展。因此在教学中就要引导学生抓住关键句,找出解题的数量关系式。
从观察线段图入手,让学生说说从图上可以知道些什么,再让他们通过比较,选出有用的条件自己编题、解答。在这一过程中,训练了学生观察和分析线段图的'能力,同时,通过选择有用的条件进行编题,不仅使学生的思维能力得到强化,也让他们在数学学习上获得一种满足感,调动学习的积极性。再通过分析自己的算式,说出题目中的单位“1”和算式所运用的数量关系,使学生的知识得以巩固,也为后面学习例1作了很好的铺垫。
“学校花坛里有84棵花,其中1/6是月季花,月季花有多少棵?”这一类问题由于可以直接利用一个数乘分数的意义来进行列式,学生比较容易掌握。但是形如“一种毛衣,原价56元,现在的价钱降低了2/7。降低了多少元?”这样的问题,就其表述形式而言与一个数乘分数的意义有一定的距离,学生理解时有一定的困难。因此在本课的练习中我加强了语言的转换练习,让学生用“谁是谁的几分之几”的句式来表述“皮球的个数比足球多2/5、实际用水量比计划节约1/9、实际产量增加2/7、梨树的棵数比桃树少1/4”这一些句子,学生在表述的过程中自然体会到了各个分数的意义,对于单位“1”的理解愈加到位,对分率与分率的对应量理解到位。从课的实施来看,效果还是挺不错的。
有关分数实际问题的解答,我觉得理解已知条件中分数的意义(也就是我们通常说的关键句),在此基础上写出数量关系式应该是解决这一类问题的关键所在。怎样突出这一关键点,我想安排一节补充课时,让学生根据关键句画图,通过物的操作活动透彻理解分数的意义,并写出多个数量关系我认为很有必要。这也是整个有关分数的实际问题解答的奠基工程,应该在我们的教学中得到足够的重视,并应在平时的教学中反复练习,我想这对于后续的教学大有裨益。
在教学新课的过程中,先让学生通过比较,找出例题与复习题的相同与不同之处,接着再自己尝试解答。学生解答的时候,感觉做起来很得心应手,三下两下就做好了,而且有些学生用75+75×4/5做,也有一些用75×(1+4/5)做。此时,我先让同桌间相互交流想法说说自己为什么要这么做,每一步表示的是什么意思……仔细观察一下学生,发现他们都很愿意把自己的想法告诉同桌,有些同桌做的方法一样,俩人都争着要先讲;有些用的方法不一样,俩人就一起在研究、比较。在初步的交流后,再进行全班反馈。
由于刚才练习过,学生说起来还算流畅,如分析75×表示的是什么?后面为什么还要用75+75×4/5,运用的是哪个数量关系?第二种解法中1+4/5又表示什么?为什么要先求1+4/5,最后为什么要用乘法来算时,学生基本能答到点上。这一过程让学生感受到解答应用题,不仅要会解答,更要会分析。
分数乘法解决问题教学反思篇二
《分数乘法》教学反思最近学习了分数乘法这一章,目前学习的是分数乘整数的意义以及计算法则,还有分数乘分数的意义和计算法则,以及分数乘法的简便运算,还有小数乘分数。在最近的学习中,存在些许问题。
一是计算练习不够。这一单元主要是让学生在理解算理的基础上掌握计算方法,能熟练的计算。一个数乘分数的教学中,对于算理没有突出,只是让学生机械的记住了求一个数的几分之几是多少可以用这个数乘几分之几表示。每天的计算量不够,导致部分学生对于法则遗忘较快,特别是在后期学习小数乘以分数时,学生转化成分数乘分数以后,不会计算了。
二是重要的概念方法没有强调。例如,求一个数的几分之几是多少可以用这个数乘几分之几表示。很多学生不能完整流畅的说出这句话,数学语言缺乏。在以后的教学中,像这样的.重点语句一定让学生一字一句的抄写下来,熟记。
三是没有重视板书和格式。教师上新课时,一定要事先设计好板书,哪些是重点,哪些是重要格式,需要学生模仿的,这些内容一定要突出。注重课堂辅导,重点照顾那些有学习障碍的后进生,争取把问题在课堂上解决。
分数乘法解决问题教学反思篇三
时间过得很快,转眼间一个月的时间又过去了,第一单元的教学也基本上完成了。回顾分数乘法这一单元的教学,在备课时一直被如何处理分数乘法意义困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。在教学分数和整数相乘的计算法则时,从学生所熟悉的整数和小数乘法的意义入手,引入分数乘法。
此外本单元在备课之初,师傅就提示自己在教学完分数乘整数和一个数乘分数后要先补充一个课时比较分数加法和分数乘法之间的区别,再进行分数乘法混合运算和简便计算的教学。当时的自己是听的一头雾水,不明白师傅的用意。直到真的开始教学分数乘法混合运算时,才明白了师傅的良苦用心。虽然在师傅的提醒下自己有进行分数加法和乘法的对比教学。但是晚上的作业还是有部分学生计算分数加法时按照分数乘法运算的规则进行计算(按分子和分子相加,分母和分母相加),到这时自己才知道师傅当时为什么要让自己对比分数乘法和加法。看到学生的作业,自己在第二天的分数乘法混合运算时,在课前复习时再次讲解分数乘法和加法的不同。让学生在计算的时候有个比较清楚的认识。虽然这个问题解决了,但是学生在分数乘法混合运算时又遇到了另一个问题,部分学生在计算加乘混合运算时,特别是加法在前面而乘法在后面的问题时,先计算加法而不是先计算乘法,在老师的指点之下才恍然大悟。说明学生对于四则运算的运算顺序不够熟练。自己在今后的教学中,也应着重强调四则运算的运算顺序。
本单元的教学,分数乘法解决问题也是一个重点内容。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。在以后教学前我还要深钻教材,把握好课本的度,向其他教师请教,取长补短。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学,提高教学质量。
分数乘法解决问题教学反思篇四
在本节课中,我信任学生对学好数学的愿望和潜能,把学习的主动权交还给学生,同时创设愉快、民主、活泼、开放的课堂气氛,尊重学生的人格,尊重学生对学习方法的选择,鼓励学生用自己的方法去掌握数学知识。如在推导分数乘法的意义过程中,让学生通通过计论、交流,发现分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算等。在课堂中,我也积极地创设出有利于学生主动参与的教学情境,如写出几道分数乘法的计算题,让学生口述各题的意义,从而激发学生的学习兴趣,充分地调动学生学习积极性,给学生留有思考和探索的余地,让学生能在独立思考与合作交流中解决学习中的问题。
新课标指出:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。在教学中,我注意面向全体学生,使所有学生在数学知识掌握、数学能力发展、思想品德及个性心理品质养成等方面都能有所发展。同时,由于学生的个性素质存在差异,教学中,我也尊重了学生的这种个性差异,要求不同的学生达到不同的学习水平。在本节课中,我有意识地提问学困生,直到他们都懂了才放手,这样既解决了学困生学习难的问题,帮助他们克服了学习上的自卑心理。。同时,对于一些学有余力的学生,我也为他们提供了发展的机会,难度比较大的题,让他们来解决或去帮助有需要的同学,这样既防止他们产生自满情绪,又让他们始终保持着强烈的求知欲望,使他们在完成这种任务的过程中获得更大的发展。
分数乘法解决问题教学反思篇五
在本单元的教学目标中,“探索”是一个关键词——“结合具体的'情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(1)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(3)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
1、脱式计算(自觉运用简便运算)的题,有许多学生盲目运用运算定律进行简算。
采取应对措施:注意让学生明白简算的目的,分数的简算,原则上与整数、小数简算相同,都是在不改变结果的前提下改变运算顺序,尽可能减少计算的繁琐性。但方法却不同,整数和小数往往是凑整十、整百的数,而分数则是为了好约分。
2、在教学中我注重了对单位“1”的理解、根据分数意义来分析题意,而忽略了单位化聚的计算方法的复习,以及两步计算的求一个数的几分之几是多少的应用题的重点评讲。
练习课中先复习求一个数的几分之几是多少的文字题,结合复习题让学生回忆一个数乘分数的意义,对分数的意义进一步加深。帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同,为学习相应的分数应用题打基础。
复习分数乘法应用题时,根据分数乘法的数学模型,说出问题也就是求什么,写出题目中的数量关系。教学中要注意用线段图表示题目的条件和问题,强化分率与数量的一一对应关系,这有利于学生弄清以谁为标准,以及分率和数量之间的关系。
问题可以引发思考,思考促进改变方法,得法扭转教学局面。说明教师教学不怕有问题,有了问题想办法解决就会使教学损失减少到最小。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态,根据实际情况来教学,提高教学质量。当然,教学前的准备细致周到,教学失误的可能性就会更小。
分数乘法解决问题教学反思篇六
大家都知道,六年级的数学课,老师们都不愿意教,因为这是小学阶段知识的综合,特别是本册教材,有很多知识的难点和重点。即使会方法,以前的知识如果学不好,成绩也很难提高。从开学到现在,每上完一节数学课,我和胡老师、薛老师都要进行交流反思。要讲《稍复杂分数乘法应用题》了,我们三个在交流着教学方法。回顾本节教学,我感到既有成功的喜悦也有不足,具体体现在以下几个方面:1、我一改过去先讲课本例题的做法,自己编了一道跟学生生活相关的题目。所以例题的选择、练习的设计都和生活实际相关,这样学生自始至终保持浓厚的兴趣2、教学中先复习分数的意义,让学生明白求一个数的几分之几是多少用乘法,铺垫后进入新课。例题教学时充分的相信学生,大胆的放手让学生去尝试。教学中定点找准单位“1”,理解多(或少)几分之几的量与单位“1”的关系。每个环节都尽量让学生去独立思考、主动探究和积极表达,力争让学生在独立思考、小组交流和全班交流等形式完成了任务。总的来说,效果比想象的要好多了。
第一; 已知条件没有标清或问题没有标出;
第二;不知道该画几条线段;
为此,在练习中我让学生自己画图那然后大家一起评,找出画的不合理的地方一起改,加深印象。本节课中,多数学生都会列算式,画图吃力,看来学生还没有真正的理解,需要多做题吧。
分数乘法解决问题教学反思篇七
上一轮教分数乘法已经是六年前的事了,那时用的教材是人教版的,而北师大版的教材还是第一次教到这一内容,因此集体备课时与同事们进行了深入的探讨。
分数乘法如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,导学稿上设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生联系旧知再小组中自行探究,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/10﹢3/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练5×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
分数乘法解决问题教学反思篇八
六年级上册第二单元围绕"分数乘法"这个主题。本单元教学内容包括三部分内容:分数乘法,解决问题和倒数。本单元是在整数乘法,分数的意义和性质的基础上进行教学的,同时又是学习分数除法和百分数的重要基础。与整数,小数的计算教学相同,分数乘法的计算同样贯彻《标准》提出的让学生在现实情景中体会和理解数学的理念,通过实际问题引出计算问题,并在练习中安排一定数量的解决实际问题的内容,以丰富练习形式,加强计算与实际应用的联系,培养学生应用数学的意识和能力。
根据本套教材的编写思路,本单元将解决一些特殊数量关系问题的内容单独安排。即把解决"求一个数的几分之几是多少"这一类问题组成"解决问题"一个小节,通过教学使学生理解这类问题的数量关系,掌握解题思路。与整数,小数的计算教学相同,教材体现结合具体情境体会运算意义的要求。不再单独教学分数乘法的意义,而是通过解决实际问题,结合计算过程去理解计算的意义。同时也不再呈现分数乘法的计算法则,简化了算理推导过程的叙述及解决问题思路的提示,通过直观与操作等手段,在重点关键处加以提示和引导,这样可以为学生探索与交流提供更多的空间。
六年级的学生已经掌握整数乘法,小数乘法的计算,对于分数有一定的理解,能够在现实情境中体现和理解数学的理念。思维已经向抽象发展,需要学习透过事物表象揭示事物的本质。
根据第三学段提出的"计算和运用"目标和本单元的特点确定本单元的教学目标:
1、理解并掌握分数乘法的计算方法,会进行分数乘法计算。
2、理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。
3、会解答求一个数的几分之几是多少的实际问题。
4、理解倒数的意义,掌握求倒数的方法。
本单元的教学重点,难点是:
1、掌握分数乘法的计算方法,会进行分数乘法的计算。
2、会解答求一个数的同分之几是多少的实际问题。
3、理解和掌握求倒数的方法。
(一)注意三个原则
1、在已有知识的基础上,帮助学生自主构建新的知识。
2、让学生在现实情景中学习计算。
3、改变学生学习方式,通过动手操作,自主探索和合作交流的方式学习分数乘法。
(二)设计思路
本单元教学内容计划用15课时。
第一部分:分数乘法(7课时)
1、通过直观与操作帮助学生理解分数乘法的算理,会正确进行计算。
2、加强自主探索与合作交流。
第二部分:解决问题(5课时)
1、紧密联系分数乘法的意义,理解和掌握解决问题的.思路与方法。
2、借助线段图帮助学生理解数量关系。
第三部分:倒数的认识(1课时)
1、让学生充分观察讨论,找出算式的特点。
2、特别理解"互为倒数"的含义
第四部分:整理和复习(2课时)
1、以知识整理措施形式回顾本单元的主要学习内容。
2、安排练习。
"分数乘法"是这一单元的核心内容,不仅分数除法是以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握分数乘法具有重要的意义。教学本单元后我的感受是:
1、分数乘法解决问题对单位"1"的理解,重点应放在在应用题中找单位"1"的量以及怎样找的上面。为以后应用题教学作好辅垫。
2、在以后教学前我还要深钻教材,把握好课本的度。
3、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态。根据实际情况来教学。提高教学质量。
分数乘法解决问题教学反思篇九
分数乘法应用题教学反思“求一个数的几分之几是多少”的乘法应用题是学生已经掌握了分数乘法的计算方法和分数乘法的意义上进行学习的。它是分数应用题中最基本的、最基础的,不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,学生掌握这种应用题的解答方法具有重要的意义。在本课教学中,我努力做到了以下几点:
本节课中,找准单位“1”,写出数量关系式是解分数应用题的关键。因此在新课之前,我出示了这样一组练习做铺垫:
(背投出示)
1、列式解答
(1)20的1/5是多少?(2)6的3/4是多少?
求一个数的几分之几是多少,用乘法来计算。
2、找单位“1”,说关系式
(1)、男生占总人数的2/3。
(2)、红花占总数的5/6。
(3)、一本书,读了3/4。
(4)、一条路,还剩下1/4没有修。
为本节课的新知识做好了准备。
小学生思维处于无序思维向有序思维的过渡阶段。因此,教师要积极地引导和帮助学生过渡这个阶段,训练思维的条理性。在教学这节课时,我特别注重让学生分析表示数量间关系的句子,也就是关键句,在关键句中找出哪个量是单位“1”,哪一个是比较的量,然后分析分率的意义,根据题意画线段图,根据线段图列出等量关系,寻求已知量和未知量,根据关系进行解答。
解答分数问题的关键是弄清楚题中的数量关系,这也是课堂教学的重难点。运用直观的线段图来表示题中的数量关系,有助于学生理解题意。在这节课上,我让每个孩子动手,在理解题意的基础上画出线段图,然后让学生观察、分析、比较,鼓励学生互相讨论,得出哪种线段图最完整,能够看图就能知道题的意思。这一环节使每一位学生都积极认真的参与到学习之中。
这节课也有不尽人意的地方。因为这一段学习的都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是不那么理解。我想,学习了分数除法应用题,与除法进行对比练习后,学生可能才会有更深刻的理解。