范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
蜡的有趣变化教学反思篇一
教学目标:
1、结合具体情境,用表格、图像、关系式呈现变量之间的关系,体会生活中存在大量互相关联的变量。
2、在具体情境中,尝试用自己的语言描述两个量之间的关系。
教学重点:充分感受互相关联的变量。
教学难点:辨别哪些相关联的量可以用字母表示,怎么样表示?哪些不能。
教学过程:
一、体会什么是变量
师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。
二、创设情境,感受生活中互相关联的变量。
师:往往一些量的.改变会引起另外一些量的改变,比如:身高的改变会引起体重的改变;购物时,单价或数量的改变,会引起总价的改变;象这样的例子很多,今天我们就来学习“变化的量”。
1、小明体重变化情况
小结:人的年龄和体重是互相关联的两个量,人的体重随着年龄的变化而变化。
2、骆驼的体温变化
(1)出示骆驼体温变化统计图,先观察认识统计图中反应出哪些信息。
(2)依次回答书中的三个问题。(先独立思考,再小组交流。)
(3)小结:请说说骆驼的体温与时间之间的关系。
3、圆的直径与周长的关系
(1)圆的直径与周长之间有怎么样的关系?
(2)这两个量的关系跟前两种情况比有什么不同?
(3)你能用式子表示这两个量的关系吗?前两个例子可以用含有字母的式子表示吗?
(4)小结:用语言表达圆的直径与周长之间的关系。
二、巩固
(只要学生说的合理,教师就应肯定。)
三、练习
蜡的有趣变化教学反思篇二
复习完物态变化这一节后,我对这一节的复习有以下几点反思。
1、对物态变化这一章的概念,如熔化,凝固,升华,凝华,汽化和液化等概念模糊不清。在考试中仍大面积出现把熔化和升华混淆等。
2、不能用所学的知识来解释生活中的现象。如在这张试卷的实验题中,其实考的就是影响蒸发快慢的因素。如果单纯的问:影响蒸发快慢的因素有哪些?大部分学生都能回答出来。但是,结合实际生活中的例子:蔬菜和水果水分蒸发的快慢,他们就无所适从。
3、对于温度计的读数也不太熟练。零下22度往往看成22度。最后一题是关于温度计的计算,全班只有少数同学答对,可见我在上温度计这节新课时,讲的过于简单。没有进行深入的训练。这个毛病有待在以后的课上改正。
4、探究实验仍是弱点。这就需要在以后应该加强对学生进行探究实验题的强化训练。此外,更需要我们在平时的教学中加强对学生实际动手能力的锻炼。应该多做一些探究性实验和对学生发散思维能力的培养。但最重要的是要培养学生]学习物理的兴趣和积极性。
《物态变化》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
蜡的有趣变化教学反思篇三
一、指导思想与理论依据:
我们生活在一个变化的世界里,周围的一切都在发生着变化,如温度的变化、速度的变化、物价的变化、季节的变化、身高体重的变化等。从数学的角度探索现实世界中的变化及变化规律,研究变量和变量之间的关系,使学生从常量的世界进入了奥妙无穷的变量的世界,开始接触一种新的思维方式,将有助于学生更好地认识现实世界、预测未来。
函数是刻画变量之间关系的数学模型。函数的核心是“把握并刻画变化中不变”其中变化的是“过程”,不变的是“规律(关系)”。函数的定义通常有两种:即变量说和对应说,变量说便于从宏观上动态地把握,对应说便于从微观上静态地认识;函数常用的表示方法有:语言描述法、解析式表示、表格表示和图像表示。函数思想在小学阶段强调的是“渗透”,教师应创设“变化”的过程;激发学生“探究”的本性,让学生于变中把握不变。
二、教学背景分析:
1、学习内容分析:
“变化的量”是在学习正比例和反比例之前的一节准备课。函数是研究现实世界变量之间关系的一个重要模型,从数学的角度研究变量和变量之间的关系,将有助于人们更好的认识世界、预测未来,而本单元的正比例、反比例就是两个重要函数。对函数的学习是中学阶段的一个重要内容,然而国际数学发展的趋势表明:对于变量之间关系的探索、描述应从小学非正式的开始,丰富早期对函数的经历是十分重要的。同时,研究现实世界中的变化规律也使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式。为了让学生在学习正比例和反比例之前初步感受到生活中存在着大量的变量,有些变量之间是存在着一定的联系的(一个变量随着另一个变量的变化而变化),所以教材在“变化的量”这一课中,设计了三个具体情境,使学生在观察、讨论交流的过程中体会变量与变量之间相互依赖的关系,尝试对这些关系进行大致的描述,体会函数思想。
着很多变化的量,初步体会变量之间的关系,并尝试对这些关系进行大致的描述,为后面学习正比例、反比例提供丰富的知识背景,使学生学习正比例、反比例时不再觉得抽象难懂,也有利于学生函数思想的形成。这样的教学,使学生对函数内容的学习从实际背景和生活经验开始,经历“数学化”的过程,并逐步向广度和深度两个方向拓展,小学主要理解正比例、反比例的初步模型,到中学逐步上升到严谨、抽象的数学概念。
2、学生情况分析:
的结构化的认识,知道可以多种形式表示变量间的关系,并尝试用自己的语言描述它们之间的关系。虽然学生有了一些变量的生活经验,但是从数学的角度学生对具体情境中相互依存的两个变量能感悟多少呢?为此,我对六(5)班37名学生做了前期调查问卷测试,结果分析如下:
问卷试题:在一次实验活动中,小青记录了一壶水加热过程中水温变化的情况,数据如下:
水加热过程中水温变化记录
(1)上表中哪些量在发生变化?
(2)说一说水烧开之前水温是如何随着时间的变化而变化的?
(3)你还能举出我们生活中变化的量的例子吗?试着写出几个
测试结果分析:
切都在发生着变化,如温度的变化、速度的变化、物价的变化、季节的变化、身高体重的变化等。但是有接近一半的学生还不能从数学的角度探索现实世界中的变化及变化规律,不能感悟到很多变量和变量之间的相互依赖的关系。学生还没有从常量的世界进入奥妙无穷的变量的世界,开始接触一种新的思维方式。因此更加突出了本节课的教学目标。
3、教学手段说明:
分类思想是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想。
分类以比较为基础,比较是分类的前提,分类是比较的结果。数学中的分类思想,是根据数学对象本质属性的相同点与不同点,将其分成几个不同种类,进行研究从而解决问题的一种数学思想。它既是一种重要的数学思想,更是一种重要的数学逻辑方法。本节课将在“分类辨析”中比较,使学生对变量之间相互依赖关系的理解“水到渠成”。
三、教学目标:
1.知识与技能目标:体会生活中存在着大量互相依赖的变量,对这些变化的量有一个整体的结构化的认识,知道可以多种形式表示变量间的关系,并尝试用自己的语言描述它们之间的关系。
2.过程与方法目标:在具体情境中,借助数据和图像的深入分析,整体感知两种相关联的量的变化情况,初步探究它们的区别和联系。
3.情感态度价值观目标:体验数学和生活的密切联系,主动尝试用数学的方法和语言进行交流和分析,体会函数思想。
四、教学过程:
1、导语:儿子过7岁生日时,我们为他点上了生日蜡烛,过了一会儿,我儿子突然喊起来:“妈妈,我发现蜡烛越来越短了!”我随口说道:“当然了,蜡烛燃烧的越多,剩余的自然就越短。”
这个情境中有没有哪两个量变化关系特别密切呢?
2、你能举出一个像这样一种量变化,另一种量也跟着变化的例子吗?(让学生说说生活中变化的量)同学们都很善于观察,发现在生活中有很多变化的量,今天这节课我们就来研究这些变化的量。(板书:变化的量)
(一)、初步感知,用不同的形式表示的变化的量
老师也收集了一些我们身边变化的量的例子,请你看一看每一个情境中有哪两种变化的量?它们又是如何变化的呢?先独立观察、思考,再小组内交流。
学生小组内讨论,教师巡视。
全班交流:请针对你感兴趣的一个情景说一说。
二、整体感知,根据变化的趋势分类
我们发现刚才的每个情境中都存在两种量,一种量变化,另一种量会随着发生变化。这些情境中有的量的变化关系具有共同的特点,请你尝试按照这样的标准进行分类。先思考,再小组交流。将同类的序号填在表格内,并简单写写每一类的特征。
小组汇报,[板书分类序号、特点]
小结:小明的体重和年龄的变化实际是有规律的,只不过规律不明显,受是知识和方法的限制,我们现在还研究不了,将来到了高中,我们可以继续研究。骆驼的变化呈现周期性规律,1个周期就是24小时。
三、深入研究递减的变量间的联系和区别。
今天我们就按照这种分类方法继续深入研究变化的量,你们一定会有更多的发现。
刚才,我们将1和2分成了同一类,虽然都是一个量增加,另一个量就减少,但它们还是有区别的。让我们来一起深入研究一下这两组(一增一减)变化的量,老师给大家提供了一些学习材料(作业纸)小组合作,用你们喜欢的方法进行研究。再整体观察分析,看看有什么新的发现。
3.汇报交流。
学生预设:从表格和图象两方面阐述,
小结:从表格中的数据能看出,同样是一增一减,燃烧长度和剩余长度是和不变(课件)。分的杯数和每杯的量是乘积不变(课件)。
从图象中也能看出这两种关系(课件)。并且同学们还发现蜡烛燃烧是有尽头的,图象是一条线段。而水是分不完的,图象无限趋近横轴,但不与横轴相交。
看来在变化的量中,还有不变的量,这个不变的量,决定了两个变化的量的关系,决定了他们的变化趋势。
5.总结方法:
直观,便于观察整体的变化趋势,表格准确,可以借助数据进一步计算深入分析)
四、机动:对“同增”类的分析
法进行研究呢?老师也给大家准备了研究材料,小组合作,你们有什么发现吗?
(五)、小结全课:(5分)
1、这节课就要结束了,能谈谈这节课你的感受或问题吗?
2、其实我们今天研究的这些变化的量,都是我们以前已经知道并应用过的,例如正方形的`周长和长方形的面积都是是我们三年级学过的内容,包括其他的情境中的变量都是我们非常熟悉的,今天我们从量的变化的角度出发,将数据和图形结合在一起观察分析,通过一次次的分类,发现在我们熟悉的这些规律中蕴含着更多的奥秘。同学们,其实变化的量中还有更多规律等着你们去发现,去探索。
五、学习效果评价分析:
课后学生是否能从具体情境中发现相互依存的两个变量,并能用不同方式(语言、表格、图像或关系式)来描述两个变量之间的关系。
六、教学设计特色说明与反思:
本课内容是在正式学习正比例反比例之前,专门设计的三个具体情境,通过学生感兴趣的日常生活中的问题,使他们体会变量和变量之间相互依赖的关系,并尝试对这些关系进行大致的描述。
教学时,我首先引导学生学会观察,提高他们的观察能力。在教学情景一、情景二、情景三时,我都鼓励学生去观察,去探索。通过学生观察,找出两种相关联的两种量之间的联系。通过观察,让学生自己去发现相关量的两种量之间的关系,从而充分体现学生学习的自主性。
然后引导学生学会归纳,提高学生的语言组织能力和表达能力。在表述相关联的两种量的关系时,让学生根据问题来寻找、组织、归纳得出两个相关联的量之间的变化规律。
自己。有的学生也会在整个过程中找回属于他们的自信。最重要的是:让他们学会帮助别人,学会合作。总之,我在整个教学过程中还给学生属于他们的课堂,让他们在属于自己的空间里自主的获取知识,找回学习数学的自信。把数学课堂建立在生活化情境中,使学生在生活化的数学学习中健康成长。
蜡的有趣变化教学反思篇四
物理学科的学习和生活、自然密不可分,这一点在《物态变化》的教学中尤为明显。贴近生活,能举的例子较多,所以通过生活中的实例让学生去学习理解,能收到很好的教学效果。
本单元学习过程中需掌握十一个主要概念,六个物态变化过程,两个探究实验,两组主要图像.考虑到概念和物态变化过程较多,学生容易混乱,所以在教学过程中我注意引导学生用简单的生活事例去理解。
以《汽化和液化》一节为例,理论内容很简单,仅仅是气态和液态两种物态之间的变化,过程中伴随着吸热和放热。但是如何合理应用到自然界和生活中的现象去,能不能用这一节的知识解释自然界中的一些常见现象,需要一个锻炼的过程,需要对学生进行启发,提高思考能力。有这样一个题目“100℃的水和100℃的水蒸气哪一个烫伤更严重?”对于学生来说,在没有教师指导,不查阅资料的情况下这不是一个很简单的问题。这也是生活中的常见现象。解决这个问题就要知道其中存在的物态变化过程,把所学到的理论知识应用进去。我觉得解决这个问题需要教师的引导和启发,培养学生的思考力、判断力。
自然界中雨、雪、露、雾、霜的形成也是比较典型的物态变化,解释这些自然现象形成的过程也是理论知识的一个拓展。尤其是在教材所涉及的液化内容很少的情况下,需要教师进行引导性学习,在讲解的时候还要强调吸热和放热。
水的沸腾探究实验是汽化现象的延伸学习,目的在于锻炼学生动手操作、观察总结能力。仅从操作上来讲,该实验很简单,大部分学生是可以完成的。但是能不能得出正确的实验现象,能不能按要求记录数据并进行总结,还是需要学生认真对待。
总的来说,物理知识来源于生活,学习的目的就是要学生体验理论知识得出的过程,并能把理论知识灵活地应用到生活中去。在潜移默化中锻炼学生理论与实际的结合能力,“在物理中体验到生活,在生活中学习到物理”很重要。
教学中的'注意事项:
作业中出现的问题:学生在表达物态变化的时候写了错字,熔化的“熔”字写成了“溶”或“融”、汽化的“汽”字写成的“气”,热胀冷缩的“胀”写成了“涨”。出现这样的原因,除了学生看书不认字外,我在上课的时候有强调,但没落实到写下来,这使得我吸取了一个教训:越是简单的地方越有可能出现错误。所以老师就不能忽略,而应在教学过程中时刻提醒他们。
蜡的有趣变化教学反思篇五
《变化的量》是学习正比例与反比例的起始课,所以在正式学习正比例反比例之前,专门设计了三个具体情境,通过学生感兴趣的日常生活中的问题,使他们体会变量和变量之间相互依赖的关系,并尝试对这些关系进行大致的描述。使学生从常量的世界进入变量的世界,开始接触一种新的思维方式。
教学时,注重把数学课堂建立在生活化情境中,引导学生学会观察,提高他们的观察能力。在教学情景一、情景二、情景三时,我都鼓励学生去观察,去发现,找出两种相关联的'两种量之间的联系,以体现学生学习的自主性,使学生在生活化的数学学习中健康成长。
但是这节课仍然存在着许多不足,如教师语言还是略显得过多,应尽可能的简洁;教师的提问应字斟句酌,尽量指向明确;应注意倾听学生的声音,能及时的给与学生鼓励和肯定;课前可组织学生预习,以提高课堂效率。此外,还应该认真的研读教参,突破两个变化的量“怎么变”这一难点。