教学工作计划需要根据学校的教学大纲和教学安排进行合理调整,确保教学的顺利进行。接下来是一些经典的教学工作计划模板,希望能对大家的教学工作有所帮助和指导。
数学教案-三角形边的关系范文(17篇)篇一
这节课教学三角形的高,三角形的高和底的概念是有关三角形的重要概念,是学习三角形面积计算的基础。例题首先通过量人字梁的高,引导学生初步联系现实生活感知三角形的高,然后通过图示介绍三角形的高和底的意义,建立三角形的高和底的概念。
1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高(只限三角形内部的高)。
2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与显示生活的`联系。
3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。
三角尺、学具盒等。
一、复习:
明确:只有当两条边的长度和大于第三边的时候,这样的三条边才能围成三角形;一般判断的时候只要把最短的两条边加起来和最长的比就可以了。
2、画一个类似于人字梁的三角形(只要外面的三条边)。
说说三角形的组成:三条边、三个角、三个顶点。
1、我们刚才说到三角形有三条边,这节课我们将要来认识关于这个三角形神秘的第四条线段,你猜是什么?(高)。
板书:高。
由“高”你联想到了什么?(垂直、直角标记……)。
2、示范画高的方法:
边画边说:以这条边为底,现在要找它的高。板书:底。
用三角板的直角边和它重合,(不断移动)说说它的垂线有多少条?(无数条)。
其中只有一条很特殊,你能说说是哪一条吗?(从对面的顶点画下来的这条垂线)用虚线画一画。
指出:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,画完后还要画出直角标记和“高”(或用字母“h”表示)。
学生在作业本上,模仿板书也画一画。
学生把该样子的三角形也画在作业本上,并画出其中的一条高。
画完后问:你有什么疑问吗?
(可能会有同学会提出:三角形一共有3条边,只能以刚才的那条边位底吗?如果是以另外两条边为底呢?)。
指出:底和高是一对一对出现的,另外两条边也可以作为底,也可以分别找到它们的高。继续分别请学生来用三角板摆一摆另两条高的位置。学生在作业本上完成三条高。
观察该图,你有什么发现?
(一个三角形可以画出它的3条高;这3条高相交于同一个点。)。
指出:如果你画的三条高没有相交于同一个点,那么你的高肯定是画得不够准确。
4、举老师手里的三角板,问:我手里的这个三角板和刚才画的三角形,有什么不用?(有一个直角)。
描画出三角板中的三角形,并标出其中的一个直角。
问:这个三角形,你也能像刚才那样找到3条高吗?怎么找?
结合学生的回答,使大家明白:三角形中有一个角是直角,那么这两条直角边可以互相看作是一底一高,不用另外画;只有当把斜边当作底的时候,它的高要另外画;3条高相交于原来的直角处。
三、完成书上的练习。
1、试一试,分别量出下面每个三角形的底个高各是多少厘米。
2、想想做做第1题:画出每个三角形底边上的高。
注意图上以规定了底,只要画出指定的一条高就可以了。
交流的时候,重点说说第三个三角形:它的高是哪一条?为什么?
说说你的方法?有没有有序思考的方法?
(比如可以这样考虑:把14厘米一分为二是7厘米和7厘米,最长的边不可能是7厘米,因为如果一条边是7厘米了,那另外2两边合起来也是7厘米,那就不能围成三角形了。在整数的范围里,最长的边只能是6厘米,那另外两条边合起来就应该是8厘米;8不能分成1和7,那还能分成2和6、4和4,3和5就是书的情况。还可以想最长的是5厘米,那另外两条合起来是9厘米,9不能分成1和8、2和7,3和6已经有,还有就是4和5。所以一共有4种情况:3、5、6;2、6、6;4、4、6;4、5、5。)。
4、想想做做第3题,请你说说为什么这个三角形的高的长度一定比小棒短?
(可引导学生回忆:从直线外一点到这条直线的所有线段中,垂线最短。所以这条高要比小棒短。)。
四、介绍“你知道吗?”
1、学生分别用学具盒里的3根小棒,搭成一个三角形,轻轻捏住其中的一个角,敲其他的边或角,发现:这个三角形的形状、大小不变。
再用4根或5根甚至更多的小棒,围起来,得到一个多边形,也捏住它的一个角,轻轻地敲,发现:它非常容易得变成其他模样。
指出:三角形具有稳定性。
数学教案-三角形边的关系范文(17篇)篇二
教学目标:
1、探索并发现三角形任意两边的和大于第三边。
2、在实验过程中,培养学生自主探索合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教学重难点:
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
教具准备:
直尺、小棒。
教学过程:
一、数学活动。
1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。
不重复,全面的范文参考写作网站你还可以怎么围?
2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?
3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。
二、运用知识模型。
1、第1题:下面各组线段能围成三角形吗?
2、第2题:组织学生用小棒摆一摆,并填入表中。
3、第3题:摆一摆,填一填。
4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
三、总结。
通过今天的学习你有什么想法?
数学教案-三角形边的关系范文(17篇)篇三
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
理解、掌握三角形任意两边之和大于第三边的性质。
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
课件、不同长度纸条若干张、实验表格。
一、创设情境。
1、出示情境图。
政府。
师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?
(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)。
师:你觉得老师走哪条路最近呢?为什么?
(学生会说出中间这条线路最快,但原因说不清楚。)。
师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。
2、大胆猜测。
师:请同学们观察,在这幅图中,你可以发现几个三角形?
(学生边说边用手指出两个三角形)。
师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?
(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。
师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?
现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的。?
揭示课题:三角形的三边关系。
二、自主探究。
动手实验:
用三张纸条摆一个三角形。
师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)。
数学教案-三角形边的关系范文(17篇)篇四
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
一、创设情境,导入新课。
师:(出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)。
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
(学生困惑,沉默不语.)。
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
二、设疑激趣,动手探究。
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)。
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)。
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)。
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
你的重大发现。
三、汇报交流,发现规律。
让每组同学汇报围成和围不成三角形的数据。
根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)。
师:到底什么样长度的三根小棒可以围成三角形呢?
结论一:两边之和大于第三边。
师:同学们都同意这个结论吗?有不同意见吗?
师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?
进一步得出结论二:三角形任意两边之和大于第三边。
师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。
师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。
四、学以致用,解决问题。
1.解释老师所行路线的原因。
2.判断。
五、全课小结。
数学教案-三角形边的关系范文(17篇)篇五
本课的教学内容是人教版四年级下册第五单元第一课时《三角形的认识》。
学生通过第一学段和四年级上册的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形,认识了线段,学习了垂直,能从直线外一点画出这条直线的垂线。在此基础上,本课时安排了三角形各部分名称,定义,高和底等教学内容。为学习三角形的面积算法和各种图形打下基础。
(一)知识与技能。
在操作活动中,概括三角形的特征,认识各部分名称以及底和高的含义,会在三角形内画高,用字母表示三角形。
(二)过程和方法。
在操作活动、概括中,积累认识图形的经验和方法。
(三)情感态度和价值观。
培养学生学习数学的兴趣。
教学重点:理解三角形的概念,认识三角形各部分的名称,知道三角形的底和高。
课件、实物投影。
师:同学们,老师今天带来了很多美丽的建筑图片,我们一起来欣赏一下。
师:谁能说说这些图片中都有哪种平面图形?
揭题:是的,每张图片中都含有三角形。三角形的奥秘非常多,那么它在我们的生活中究竟有什么作用呢?今天这节课我们就一起走进三角形,揭开三角形神秘的面纱。(板书课题:三角形的认识)。
(1)请同学们翻开书本第60页,自学有关三角形的内容。
(2)师:自学完了,如果现在让你画一个三角形,你会画么?
指名学生到黑板上画三角形,并介绍一下画的三角形有什么特点。
在学生说的时候板书:3个角,3条边,3个顶点。
并提问:对他的发言你还有什么需要补充的吗?
指名不同的学生说。
刚才有同学说到:三条线段围成的图形叫三角形。(课件出示)。
师:这句话里哪个词是关键?
师:三条线段围成是怎么样的?(出示:每相邻两条线段的端点相连。)。
对这句话你们都理解了吗?那老师就要来考考你们了。
教师举出反例让学生判断。
师:现在你认为到底怎样的图形才叫三角形呢?
(5)师:你们每人都画了一个三角形,黑板上现在也有一个三角形,这么多的三角形,我们该怎么去区分它们呢?你们能给它们取个名字吗?(给它们标上字母)。
师:老师给黑板上的三角形中的每个顶点分别标上abc,那么这个三角形就记作三角形abc。
在三角形abc中,我们把这个点叫做顶点a,那么其他两个就是?这条边叫ab边,那么这两条是?请你想一想,这三个顶点,分别对应哪条边。
师:对了,就是从这个顶点出发,作对边的垂直线段。这条路才是最近的。
师:谁能上来把它画出来?指名,要求学生边画边说画垂线段的过程。
先把三角尺的一条直角边和bc这条边重合,使三角尺的另一条直角边经过点a,再沿着这条直角边画一条垂直的线段。(当学生说的不完整的时候请其他学生补充)。
师:让我们重温一下刚才画垂线段的过程(课件演示)。
师:像这样,从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫三角形的高,这条对边叫做三角形的底。
师:黑板上这条垂直线段就叫做三角形的高,与高垂直的bc边就叫做它的底。通常,三角形的高要画成虚线,还要标上直角符号。(板书:高、底)。
(2)师:你会画高吗?请同学们在刚才自己画的三角形中画高。
师:第四个图形画的是高吗?想想看,它是怎么画出来的。这时候谁是底?
师:为什么刚才把bc叫底,现在却把ab叫底呢?
师:想想看,过点b如何画ac边的高?方法也一样,把三角尺的直角边和ac边重合,经过点b就能画出这条高,这时ac边就是三角形的底。(课件演示)看来在一个三角形中能画几条高?(从3个不同的顶点出发能画出3条不同的高)。
师:你还能在自己的三角形中画出其他两条高呢?
(1)师(课件出示):想象一下,这些三角形的高在哪里?
师:课件出示前面三个图形的高,这些高有什么变化?这是什么原因呢?(为什么高逐渐向右移动)。
生:顶点向右移动。
师:如果顶点继续向右移动,那么最后一个三角形的高应该画在什么地方呢?
生:与另一条边重合了。
师:这是为什么呢?(因为是直角三角形)这里ac是高,哪条是底呢?
师:刚才我们知道了三角形都有三条高,你还能找出这个三角形的其他两条高吗?(学生找出)。
师:原来直角三角形的两条直角边就是对应的两组底和高。
(2)师:现在老师把这四个图形放在一起,想一想,如果顶点继续向右移动,会出现怎样的三角形,高会出现在什么地方呢?(课件出示一个钝角三角形)。
学生先想象,再指出高的位置。
师:如果顶点向左边移动呢?(课件出示)高又会出现在什么地方?
学生想象后,再指出。
师:请同学们仔细观察大屏幕,这些三角形有什么共同之处?(板书:同底等高)。
师:想一下,为什么这些高的长度都相等呢?(顶点在平行线上移动)。
师:如果顶点不在平行线上移动,他们的高还会一样吗?
学生回答,师演示。看来高的位置跟什么有关?是呀,同学们高是从顶点画出来的。
师:这节课你有什么收获,对于三角形的知识,你还有那些问题和疑惑?
这节课我们明确了三角形的特征:三个角、三条边和三个顶点,知道了高是从顶点出发画出来的,研究了顶点的特性,下节课我们还要继续探究三角形的其他奥秘。
如何正确地理解并画出三角形的高是本节课的教学难点。为什么学生画高的时候会经常出现错误呢?分析思考后我发现很多学生都不能正确地找到顶点及相应的对边,学生的操作是在模仿中进行的,所以我让学生帮小红找最短的路径,让学生借助已有的知识和经验解决具体的问题,在具体情境中逐步理解三角形“高”和“底“的定义。然后逐步深入,让学生感悟三角形的底和高的相互依存关系,最后隐去三角形,和底让学生想象三角形的底在哪里,再次感受三角形的底和高的相互依存关系。
数学教案-三角形边的关系范文(17篇)篇六
系及构成三角形的条件,并从中探索出解决这种问题的实质。
教学准备:教材、ppt演示文稿、小棒。
一、导入新课,板书课题。
上课后,放幻灯片1引入新课。
二、展示学习目标。
放幻灯片2-3。
放幻灯片4导学案反馈。
老师:讲出现的问题及强调得到的结论。放幻灯片5、6知识应用。
三、合作交流(8分钟)。
放幻灯片7合作交流的要求。老师巡视观察学生完成学案的情况。
四、高效展示(8分钟)。
放幻灯片8高效展示要求。
五、点评(约15分钟)。
展示完成后,放幻灯片9点评要求。2分钟以后按照分工开始点评。点评【活动一】完成后放幻灯片10,老师点拨。学生继续点评。
学生点评完【跟踪练习1】后,放幻灯片11变形练习。完成后学生继续点评。
数学教案-三角形边的关系范文(17篇)篇七
教学目标:
1、让学生通过剪一剪、拼一拼、摆一摆等方法,加深对正方形、长方形、三角形和圆的感性认识。
2、初步认识这些图形之间的关系,同时通过对图形的分解与组合,初步发展学生的想象力和创造力。
教学重点:
通过各种方法弄清正方形、长方形、三角形和圆的特征,并能进行判断。
教学难点:
图形的分解与组合。
教学方法:引导探究法。
教学准备:长方形、正方形纸片、小棒。
教学过程:
一、复习。
1、把下列图形的题号填入相应的括号内。练习一。
2、用小棒分别摆出长方形、正方形、三角形各一个。
二、新授。
1、取出事先准备好的两张长方形纸,如让学生思考,两个这样的长方形可以拼成什么样的图形呢?学生动手操作发现两个这样的长方形可拼成一个正方形,也可拼成一个长方形。
2、出事先准备好的四个小正方形,让学生想一想有几种摆法。
3、取出12根小棒,想一想,你能摆出几种图形。学生以四人为一小组进行讨论。(手画)。
4、完成教科书p4、4。
5、请学生拿出若干个长方形、正方形、三角形和圆,分组合作,自由拼摆图形,充分发展学生的想象力和创造性。
三、巩固练习。
数学教案-三角形边的关系范文(17篇)篇八
1.理解三角形高的概念。知道三角形有三条高。
3.了解直角三角形、钝角三角形三条高的画法及特征。
三角板、学生的学习单。
1.在前面的学习中,我们已经知道了三角形有三条边、三个顶点、三个角。(课件演示)。这节课我们继续研究三角形高的有关知识。
2.揭示课题(板书课题:三角形的高)。
1.(课件边演示边说)如果我们从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
3.你觉得三角形会有几条高呢?为什么?(三角形有三个顶点,从三角形的每一个顶点都能向它的对边作一条垂线,所以有三条高)请同学们画出这个三角形的三条高。一名同学上黑板上演示画高。
4.认真观察三角形的高,你有什么发现?(一个三角形可以画出三条高,三角形的底和高是相互依存的。锐角三角形的三条高在三角形内相交于一点。)。
1.我们再来看直角三角形,你会以bc边为底,画出这个三角形的高吗?。(学生在学习单上画)。你有什么发现?(老师课件边演示边说:以直角三角形一条直角边bc为底,作高时,要从a点向它的对边bc作一条垂线,发现高与另一条直角边ab重合;如果以直角边ab为底,作高时,要从c点向它的对边作垂线,发现高与另一直角边bc重合,也就是直角三角形两条直角边,如果一条是底,那么另一条直角边就是它的高。以斜边ac为底,作高时,要从顶点b向它的对边ac作垂直线,发现高在三角形内。直角三角形也有三条高,其中一条在三角形内,另外两条高与两直角边重合。)。
2.我们再来看钝角三角形,从钝角三角形的b点向它的对边作高,高在三角形内;从a点向它的对边作高,需要把对边bc延长,高在三角形外;从c点向它的对边作高,需要把对边ab延长,高也在三角形外。钝角三角形也有三条高,其中一条高在三角形内,另外两条高在三角形外。
这节课你有什么收获?(学生因答可以是两个方面)一是从高的画法说;二是从发现说。通过研究,我们发现任何三角形都有三条高,其中锐角三角形的三条高在三角形内,并且相交于一点;直角三角形其中一条在三角形内,另外两条高与两直角边重合;而钝角三角形其中一条高在三角形内,另外两条高在三角形外。
数学教案-三角形边的关系范文(17篇)篇九
1、探究、发现三角形任意两边的和大于第三边,初步理解三角形三边的关系。
2、经历操作、发现、应用的过程,渗透数学思想与方法,积累数学活动经验,培养自主探究、合作交流的能力。
3、激发学生探究愿望和兴趣,培养参与数学活动的积极性和严谨的科学态度。
这节课,精心设计了一系列的数学活动,让学生“在参与中体验,在活动中发展”。课堂上,学生通过自主操作、自主估猜、自主探究、自主迁移,深入认识三角形。通过课上师生之间、生生之间充分交流合作,学生自然、自主、自由地发展。
活动一:引发质疑,提出问题。
1、出示各种三角形。(这些是什么图形,什么是三角形?)。
2、出示三根纸条红、蓝、黑。
师:我们把这三根纸条看成三条线段,你能把它围成三角形吗?
生代表上来围。师:你们觉得他围得怎么样?生补充围。我真佩服你的细心。纸条要顶点对着顶点,首尾相连,这样才能真正用上了这三根纸条的长度。
3、围三角形比赛,(看来同学们都会围了,现在我们来进行一场比赛吧。从信封拿出纸条1号袋红3cm,蓝6cm,黑11cm。2号袋红3cm,蓝6cm,黑5cm。
4、讨论。
为什么有些能围成有些围不成,板书(围不成)(围成)它可能跟什么有关系呢?我们来猜想一下,你说:
生1:可能跟边有关。
生2:跟边的长短有关系。
师:那么三角形三边长短之间到底有怎样的关系呢?这就是这节课我们要探究的课题:出示课题《三角形三边的.关系》。
活动二:探索发现,总结归纳。
1、动手操作:
生:11厘米太长了,那两根太短了。
师:上面这两根和下面这根比,你发现了什么?
生:我发现两根小棒之和小于第三根。
师:从你的回答,我听到了智慧的声音,以前我们总是考虑一根和另一根去比长,而现在却考虑用两根的和去与第三根进行比较,真了不起!
能不能用一个算式来表示呢?
生;3+6﹤11。
生:两边的和大于第三边。
生:两边的和等于第三边。
(过渡)同学们有不同的猜想,生活当中许多重大发现都从猜想开始,但是光猜还不行,我们还得从实践中加以验证,接下来我们从探究验证我们的想法,我们把3cm和6cm两边的和不变缩短黑边的长度,为了便于研究,我们移到整厘米,注意刻度线对刻度线。一边围一边想,这两个结论是否正确,找到规律就可以不用每个刻度都要试,即动手又动脑,才是高效的探究。现在小组一起,可分工不同移动的刻度,要有一个同学作记录。(活动教师巡视指导)。
2、汇报交流。
教师:下面请同学们来汇报一下你的操作结果。
请不同的学生汇报,教师在课件中输入数据和结果。
第二层:猜想,初步得出三角形边的性质。
师:长度是9厘米时,有争议,图形有些特殊我们重点研究它,请不能围成的同学上来说说不能围成的原因。
生:只要将纸条3cm或6cm稍微抬高一些,纸条3cm和6cm就不能首尾相连了。师:利用课件演示。问能围成的同学此刻的想法。(善于思考能接纳同学的建议很会学习)。
生:两边之和大于第三边时能围成,用3cm、6cm和7cm展示。
师:这个猜想对不对呢?这需要进行验证,看看这些能围成三角形的边是不是具备这样的关系?3+6﹥7还有谁也得出这样的结论?指名说。
第三层:引发矛盾,突破难点。
生:用3cm、6cm、11cm不能围成三角形,它也有两条边的和大于第三边板书(3+11﹥6)。
师:那这个结论正不正确,除了这两个算式还能写出第三个算试吗?
生:6+11﹥3围成的呢,3+7﹥67+6﹥3。
师:还有别的算式吗?(没有)在围成三角形当中每两边的和都大于第三边,而不能围成的只有两组两边的和大于第三边。在数学中,每两边的和都大于第三边的,叫做任意两边的和大于第三边(板书)。
师:什么叫任意?
第五层:找出判断能不能围成的简捷方法。
师:在判断能不能围成三角形的时候有没有更简单的方法?是不是每次都要计算三组啊?在小组内想一想,说一说;引导学生发现,因为较小的两边的和都大于最长的边了,那么用最长的边加一条较短的边,就一定大于另一条短边了,所以呢?只要把较小的两条边,加起来与第三边进行判断,就可以了。
数学教案-三角形边的关系范文(17篇)篇十
1、探索并发现三角形任意两边的和大于第三边。
2、在实验过程中,培养学生自主探索合作交流的能力。
3、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
1、探索并发现三角形任意两边之和大于第三边。
2、应用发现的结论,来判断指定长度的三条线段,能否组成三角形。
直尺、小棒
课前可以请学生准备四组小棒,课上组织学生摆一摆,让学生边操作边把有关的数据记录在表内。当学生完成操作活动后,教师可以组织学生先讨论能围成三角形的两组小棒的数据,并在填出“”“”或“=”。
一、数学活动
1、出示一组长短不一的几根小棒,请你挑选几根围成三角形。
不重复,你还可以怎么围?
2、三角形形路线,从邮局到杏云村,走哪条路最近?为什么?
3、是不是任意两条边的程度的和一定比第三条边大呢?画一画,算一算。把计算结果填写在第33页的表上。
二、运用知识模型
1、第1题:下面各组线段能围成三角形吗?
2、第2题:组织学生用小棒摆一摆,并填入表中。
3、第3题:摆一摆,填一填。
4、第4题:如果三角形的两条边的长分别是5厘米和8厘米,那么第三条边可能是多长?有多个答案,第三边只要大于3厘米小于13厘米即可。鼓励学生尽可能多的得到答案。
三、总结
通过今天的学习你有什么想法?
板书设计:
三角形边的关系
三角形任意两边的和大于第三边
数学教案-三角形边的关系范文(17篇)篇十一
三角形的特征、特性、分类、内角和。
1.巩固掌握三角形的特性,三角形任意两边之和大于第三边以及三角形的内角和是180o。
2.知道锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形的特点并能够辨认和区别它们。
活动一:简单基础的题目。
1、作锐角三角形、直角三角形、钝角三角形的高和底。
谈谈注意什么问题?(强调钝角三角形高的画法)。
2、三角形的稳定性。
说说生活中很多事物都用到三角形的原因是什么?
3、给出三根小棒说说可不可以组成三角形?
3.4.53.3.32.2.63.3.5。
为什么?
三角形的分类:注意三角形各自之间的联系及个三角形的特点。
活动二:解决问题。
1)三边相等。
2)等腰三角形,顶角是50度。
3)有一个锐角50度,是直角三角形。
根据题目所给条件——分析——解决——汇报解题思路。
2、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是75度,顶角是多少?
观察找信息——分析——解决。
3、长方形和正方形的内角和各是多少度?
活动三:提高题。
1、能画出有两个直角或者两个钝角的三角形吗?为什么?
交流——汇报。
2、根据三角形的内角和是180度,能求出下面的四边形和正六边形的`内角和吗?
交流讨论——汇报。
四、综合练习:
复习目标:
1、通过讲评练习使学生对三角形的相关概念更清楚。
2、熟练画出三角形的高和底。
3、三角形按角分和按边分的分类,以及通过三角形的内角和180度来求三角形的各角,特殊三角形的求角度。
1、复习概念:
概念:1、由三条线段组成的图形叫做三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
3、三角形的内角和为180度。
4、三角形任意两条边的和大于第三条边。
2、练习讲评:
(一)在钉子板上画指定的三角形。
注意:画的时候为了准确,需要画在钉子之间。
(二)填空:
1、一个三角形有()条边、()个角和()个顶点。
2、三角形按角的大小来分,可分为()、()(|三类。
3、三角形按边的长短来分,可分为()、()。
注意:基础概念题,主要是给学生对知识做个梳理。
4、5、6、题主要是根据三角形内角和是180度,来计算角度,除了方法外,还要强调细心计算。
(三)判断:
1、2、3、4、5都为概念的延伸题,要求学生要记忆。
6、7、8为多项选择,主要是让学生利用公式、概念灵活做题。
(四)画高:
注:重点也是难点,放慢速度,让学生用幻灯展示作业,大家来评一评做对了没有。
学生说一说画高的时候应该注意什么。
1、用三角板画垂线,用虚线。
2、要标上垂直符号。
(五)计算。
1、在三角形中角1=136度;角2=29度;角3=?
2、妈妈买了个等腰三角形的风铃。它的一个底角是25度,它的顶角是多少度?
3、在直角三角形中,一个锐角是35度,另一个锐角是多少度?
注意:强调三角形的内角和是180度。
数学教案-三角形边的关系范文(17篇)篇十二
本课是在学生初步了解三角形定义的基础上,让学生进一步理解三角形的特征,即“三角形任意两边之和大于第三边”,加深学生对三角形的认识,同时也为今后学习三角形和四边形的联系和区别打下基础。三角形边的关系的定理主要提供了判断三条线段能否组成三角形的依据,熟练灵活地运用三角形三边关系有助于提高学生全面思考问题的能力。教材积极创设了动手操作的情境,力求让学生在活动中感知、体会并进行归纳总结。同时,也让学生对演绎推理和反证法有初步的了解。
这节课力求让学生在动手操作与引申思考中,经历“发现问题—总结规律—解决问题—实践应用”的过程,真正放手让学生去“做数学”,经历“数学化”的过程。
在学具的准备上,运用了胶片上画线段的方法来摆三角形,尽可能地减小了操作中的误差。
对于三角形,学生并不陌生,通过前面的学习,学生已经初步认识了三角形,知道三角形有三条边、三个顶点和三个角,以及三角形稳定性的知识,这些都是学生进一步进行学习的基础。学生乐于动手,喜欢实践,并在前几年的学习中,掌握了一定的实践方法和思考方式,同时比较善于发现和总结,这也将为本节课的学习做好铺垫。
(课件出示:教师上班路线图)
师:老师从家里出发到学校上班有三条路可以走,你认为老师走哪条路近呢?
生1:我认为老师走第二条路近,因为第一条和第三条路都是弯的,只有第二条路是直的。
生2:我也认为老师走第二条路近。
生:三角形。
师:老师走一、三两条路就好比走了三角形的两条边,而走第二条路好比走了三角形的一条边,三角形的'三条边有什么关系呢?我们是否可以从三角形的三条边的关系来解释老师上班走哪条路近的问题呢?这节课,我们就来研究三角形边的关系。(板书课题:三角形边的关系)
1.发现问题。
师:老师手里有一根吸管,想把它随意剪成三段,什么是随意呢?
生1:随自己的意思,可长可短。
师:把这根吸管随意剪成三段,能围成三角形吗?
生2:能。
生3:不一定。
师:每人从材料袋中,取出一根吸管来剪一剪、围一围。
(学生活动,教师巡视了解情况,有的围成,有的围不成)
师:看来不是随意剪成三段就能围成三角形的,这里面肯定有学问,大家想研究吗?(想)那谁愿意把没围成的作品提供给大家研究?(一学生将作品呈上)
师:有谁觉得能围成,想来帮帮他?(一学生上来帮助,教师也帮助围,还是围不成)
师:怎么会围不成呢?是什么原因?请同桌同学小声商量一下。
生4:因为其中的两根吸管太短了,再长一些就围得成了。
生1:我认为当两根吸管的长度和等于第三根时才可以围成。(板书)
生2:我认为当两根吸管的长度和大于第三根时才可以围成。(板书)
生3:我认为要随便的两根吸管的长度和都大于第三根时才可以围成。(板书:随便)
生:可以做实验来验证一下。
生1:可以量一量,剪一剪。
生2:把一根吸管对折剪开,其中的一段再平分成两段。
生3:拿三根一样长的吸管就可以了。
师:这样的话,两根吸管的长度和还等于第三根吗?
生4:大于第三根,可以用做第二个实验的材料。
师:现在就请同桌合作完成实验,特别注意是否要“随便的两根”。
(学生实验,教师巡视指导)
师:实验结束了,我们来开个实验结果发布会吧!谁愿意第一个上来发布实验结果。
生5:我们做第一个实验。先挑选两根一样长的吸管,并把其中一根平均剪成两段,我们发现两根吸管的长度和等于第三根时不能围成三角形。(学生边说边演示围的过程)
师:大家的实验结果与他们一样吗?
生6:我们的实验结果是:两根吸管的长度和等于第三根时能围成三角形。(学生上台演示围的过程)
生7:老师,他们的实验材料有问题,两根吸管的长度和已经大于第三根了,所以这个实验的结果是错的。
师:数学是非常严谨的学科,来不得半点马虎,我们一定要认真仔细。
生8:老师,我们的实验结果也是围成的。(学生上台演示围的过程)
师:对于他们这一组的实验情况,同学们有什么想说的吗?
生9:老师,他们在围的时候,两根吸管的端点根本没有接触,其实是没有围成三角形。
师:老师请你们再试试好吗?(这一组学生按要求再试了一次,果然围不成)
师:现在你们想重新发布实验结果吗?
生10:两根吸管的长度和等于第三根时不能围成三角形。
师:虽然这组同学的实验有问题,但他们敢于发表自己的观点来解决疑问,学习就是要有这种精神才会进步。
师:谁来发布第二个实验结果?
生11:当两根吸管的长度和大于第三根时可以围成三角形。(学生边说边演示围的过程,大部分学生表示赞同)
生12:我觉得你说的不对。这是我开始没有围成三角形的那三根吸管,其中一根短的吸管与一根长的吸管的长度和也是大于第三根的,可是却围不成三角形。所以,要随便的两根吸管的长度和都大于第三根时才可以围成三角形。(全班学生都赞同他的想法)
生13:任何两根吸管的长度和大于第三根时,可以围成三角形。
师:我们可以把“随便”、“任何”说成“任意”。(板书:任意)
师:那么,对于已经围成的三角形,是否意味着任意两边的和都大于第三边呢?请大家拿出课前画好的三角形量一量、算一算。
生1:我量出三角形的三条边分别是3厘米、2厘米、2.6厘米,经过计算发现,三角形任意两边的和都大于第三边。
数学教案-三角形边的关系范文(17篇)篇十三
人教版《义务教育课程标准实验教科书数学》四年级下册第82页的内容。
1.知识与技能:
(1)通过创设问题情境、观察比较,初步感知三角形边的关系,体验学数学的乐趣。
(2)运用“三角形任意两边的和大于第三边”的性质,解决生活中的实际问题。
2.过程与方法:
通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,发展空间观念,培养逻辑思维能力,体验“做数学”的成功。
3.情感与态度:
(1)发现生活中的数学美,会从美观和实用的角度解决生活中的数学问题。
(2)学会从全面、周到的角度考虑问题。
理解、掌握“三角形任意两边之和大于第三边”的性质。
引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。
课件、学具袋。
如果你能答出老师的问题,老师就让你上来任意选一个小奖品。你们想选哪一个?有几种选法?(三种)
如果某个小朋友回答问题特别棒,老师就让你任意选两个。有几种选法?(三种)
教师:真不错,不知不觉中,同学们已经回答出老师的两个问题啦。希望大家再接再厉,在课堂上有更好的表现。
一、动手游戏,提出问题
教师:请同学们拿出你的1号学具袋,看看里面有什么?(三根小棒。)
三根小棒能围成一个三角形吗?
学生先猜。
教师:光猜可不行,知识是科学,咱们来动手围一围。
学生动手围,集体交流:有的能围成,有的不能围成。
教师请能围成和不能围成的同学分别上来展示一下。
同时板贴:能围成三角形不能围成三角形
教师小结:随意的给你三根小棒,有的时候能围成一个三角形,有的时候不能围成一个三角形。看来呀,咱们考虑问题的时候要全面、周到。
提出问题:那么,能围还是不能围,跟三角形的什么有关系呢?
引导学生明白:跟三角形的边有关系。
板书课题:三角形边的关系(让学生收拾好一号学具袋)
数学教案-三角形边的关系范文(17篇)篇十四
知识与技能目标:。
掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。。掌握全等三角形的性质。体会图形的变换思想,逐步培养动态研究几何意识。初步会用全等三角形的性质进行一些简单的计算。
过程与方法目标:
围绕全等三角形的对应元素这一中心,。设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质,经历理解性质的过程。,体会图形的变换思想,逐步培养学生动态研究几何图形的意识。
情感与态度目标:。
学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。
数学教案-三角形边的关系范文(17篇)篇十五
人教版义务教育课程实验教科书数学四年级下册p82页。
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
一、创设情境,导入新课。
师:(出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)。
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
(学生困惑,沉默不语.)。
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
二、设疑激趣,动手探究。
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)。
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的.发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)。
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)。
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
不能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
你的重大发现。
三、汇报交流,发现规律。
让每组同学汇报围成和围不成三角形的数据。
根据学生的情况,进行课件演示能围成和不能围成两种情况。(不能围成又有两种情况:两条边之和等于第三边的情况;两边之和小于第三边的情况)。
师:到底什么样长度的三根小棒可以围成三角形呢?
结论一:两边之和大于第三边。
师:同学们都同意这个结论吗?有不同意见吗?
师:看来同学们发现的这个结论不够全面.还能怎么修改一下呢?
进一步得出。
结论二:三角形任意两边之和大于第三边。
师:这个结论全面吗?是否适合任何一个三角形呢?请同学们任意画一个或摆一个三角形,量出三边的长度,验证一下。
师:同学们真了不起,通过大家的共同努力,发现了一个有关三角形的三边关系的重要结论,那就是:三角形中任意两边之和大于第三边。
四、学以致用,解决问题。
五、全课小结。
数学教案-三角形边的关系范文(17篇)篇十六
人教版义务教育课程实验教科书数学四年级下册p82页。
1、让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
一、创设情境,导入新课。
师:出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)。
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
(学生困惑,沉默不语、)。
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的?
二、设疑激趣,动手探究。
师:(设疑)用小棒代替线段。请看,老师这儿有红、蓝、黄色的小棒若干根,任意拿三种颜色的小棒能围成一个三色的三角形吗?(学生会出现能围成和不能围成两种情况。)。
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)。
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
同桌分工合作,一个同学围三角形,然后读出小棒上标出的长度;另一个同学作记录。
(单位:厘米)。
能围成三角形的三根小棒(红、蓝、黄)的长度分别是:
数学教案-三角形边的关系范文(17篇)篇十七
三角形“任意两边的和大于第三边”之内容是人教版新课标实验教材四年级下册的一个内容,它是在熟悉了什么是三角形的基础上进行教学的。我力求从实验入手,让学生通过摆小棒,判定如何才能搭成三角形,引导学生经历“发现问题、大胆猜测、操作验证、修改完善、得出结论”的探究过程,最终发现三角形中三边之间的.这一特殊关系。这样的设计符合学生的认知规律,既增加学生的学习兴趣,又使学生积累了大量的操作经验和研究经验。
2、以活动为基础,在活动中探究新知。
“自主探究、合作交流、亲身实践”是学习数学的一种重要的方式,本节课的设计我改变了“教师重讲知识、学生轻听知识”的模式,而是改为教师指导学生动手操作,自主探索,发现三角形任意两边的和大于第三边作为目的,使学生的主题地位得到了落实,学生真正地成了学习的主人。
1、使学生知道三角形任意两边之和大于第三边。
2、让学生经历探究数学的过程:猜测————实验————结论,感受数学思想在生活、学习中的应用。
3、通过学生动手操作、想象猜测,近一步深化空间概念,提高观察能力和动手操作能力。
引导学生想象、猜测、实验,研究什么样的三条线段能围成三角形,发现三角形三条边的关系。
采用问题性教学模式、“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。并结合先进手段实施教学,突出重点,突破难点。
通过学生动手、动口、动脑等活动,达到主动探索,发现问题的目的;引导学生分析、讨论,得出解决问题的方法,使他们的思维得到了锻炼;增强数学应用意识,合作意识,养成及时回纳总结的良好学习习惯。
课件、小棒若干。
教学过程:
一、创设情景,引渗透新课。
师:今天我们打开课本的82页来认识一位小朋友——小明,你们看,他在干什么?
生:他去上学。
师:小明从家到学校有几条路线?(观察后指名说)。
生:3条。
师:现在小明遇到麻烦了,我们帮帮他的忙好吗?
生:好。
师:小明今天想快一点去学校走哪一条路最近?(把你的想法和小组内的同学说一说,然后指名说)。
生:走中间哪一条路最近。
师:同意吗?
生:同意。
师:为什么呢?谁来说一下自己的理由?
生:我量出来的。
师:谁还有别的方法吗?
生:直走进,拐弯走远。
生:我们以前学过了,两点之间线段最短。
生:三角形。
生:另外两条边的和。
师:根据大家的判断,走过的三角形两条边的和要比第三条边长。那么是不是所有的三角形的三条边都有这样的关系呢?下面我们来做个实验。
二、小组合作,探究新知。
1、实验一:从准备好的小棒中任意取出三根摆一个三角形,观观你能发现什么?
学生动手操作。交流结果。
生:能。
生:不能。
师:有的同学用三根小棒摆成了一个三角形,而有的同学没有,这到底是什么原因呢?下面我们就对这两种情况做一个深入的研究。
2、实验二:进一步研究在什么情况下能组成三角形?
(1)从小棒中任意拿出三根,看观能不能摆成一个三角形?把能摆成三角形和不能摆成三角形的情况分别填写在表格实验内。
小棒的长度(厘米)。