制定教学工作计划可以帮助教师系统地安排课程内容和教学方法,提高教学效果。下面是一些编写教学工作计划的步骤和方法,希望对教师们的教学工作有所帮助。
等比数列的教学教案(汇总18篇)篇一
设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。7.总结归纳,加深理解以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。设计意图:以此培养学生的口头表达能力,归纳概括能力。8.故事结束,首尾呼应最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1.84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。9.课后作业,分层练习必做:p129练习1、2、3、4选作:(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。四、教法分析对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。五、评价分析本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。
等比数列的教学教案(汇总18篇)篇二
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学重难点。
熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
教学过程。
【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。
【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。
一、基础训练。
1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成()。
a、511b、512c、1023d、1024。
2.若一工厂的生产总值的月平均增长率为p,则年平均增长率为()。
a、b、
c、d、
二、典型例题。
例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.问经过多少年的努力才能使全县的绿洲面积超过60%.(lg2=0.3)。
例4、.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数.
等比数列的教学教案(汇总18篇)篇三
子曰:“知之者不如好之者,好之者不如乐之者。”意思是说:学习知识或本领,知道它的人不如爱好它的接受得快,爱好它的不如对其有兴趣的接受得快。为了激发学生的学习热情,实施趣味教学,我首先利用一个初中自然学科中的“细胞分裂”的问题以及银行的一种支付利息的方式——复利(把前一期的利息和本金,再计算下一期的利息,也就是通常说的“利滚利”,其计算公式是:本金和=本金(1+利率)存期。引入新课。然后,再由浅入深,由低到高地设置了三个层次的问题,逐步加深学生对等比数列定义及其通项公式的记忆和理解。在教学过程中,我采用了发现式教学法、分组讨论法、类比分析法。在学生练习过程中,我以游戏抢答方式、分组竞争方式,使课堂气氛较为活跃。针对职高学生的实际情况,我对教材的引入、例题、练习作了适当的补充和修改,增强了学生的学习兴趣,也提高了课堂教学效果。在课堂上还是有少数学生参与不够积极,回答问题比较被动,还需要加大力度调动学生的学习积极性和主动性。
教学建议:
1、从学生的提问和老师询问中我们发现,有的学生对“通项公式”理解还不到位,首先他们不知道通项究竟是哪一项,因此,建议老师在讲解数列的概念时就可以换一种说法来解释“通项”:例如说通项就是一个数列中“普通的项”,“一般的项”,也就是“任意的一项”。
2、公式的推导过程还是按等比数列的定义,用代入的方式一步一步推出比较好,即能紧扣“后项比前项等于常数”,结果又能令人信服。
3、学生似乎有一种定向思维:数列只能从小变到大,为改变这种思维模式,还可以增加一个公比为的例题。
4、学生的积极性还不够,本节课前老师准备的提问、问题思考及习题让学生参与到课堂教学中来,充分的体现了“以学生为中心”这一主题,不过在教学内容的选择上还是有点偏少,最后一道思考题:已知一个等比数列的前4项是4,16,64,x,则x的值是多少?对大部分学生来说难度较大,学生应该难以完成,在今后的教学中还需进行适当的调整。
6、本节课的课件较为简单,板书比较清楚,步骤比较详细,对于职高学生来说较为适合。
5、本堂课内容只适合基础较差的职高学生。职业学校学生的基础比较薄弱,每一节的教学内容要适合学生的实际情况,最好是能将解题的步骤详细写出来,让学生严格按照步骤要求来解决问题。
等比数列的教学教案(汇总18篇)篇四
(2)求数列的前10项的和。例7已知数列满足,,.
(1)求证:数列是等比数列;
(2)求的表达式和的表达式。
作业:
1.已知同号,则是成等比数列的。
(a)充分而不必要条件(b)必要而不充分条件。
(c)充要条件(d)既不充分而也不必要条件。
2.如果和是两个等差数列,其中,那么等于。
(a)(b)(c)3(d)。
3.若某等比数列中,前7项和为48,前14项和为60,则前21项和为。
(a)180(b)108(c)75(d)63。
4.已知数列,对所有,其前项的积为,求的值,
5.已知为等差数列,前10项的和为,前100项的和为,求前110项的和。
6.等差数列中,,,依次抽出这个数列的第项,组成数列,求数列的通项公式和前项和公式。
7.&nbs…p;已知数列,,
(1)求通项公式;
(2)若,求数列的最小项的值;
(3)数列的前项和为,求数列前项的和.
8.三数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第三个数加上32又成等比数列,求这三个数。
等比数列的教学教案(汇总18篇)篇五
(1)学会通过实例归纳概念
(2)通过学习等比数列的通项公式及其推导学会归纳假设
(3)提高数学建模的能力
3、情感目标:
(1)充分感受数列是反映现实生活的模型
(2)体会数学是来源于现实生活并应用于现实生活
(3)数学是丰富多彩的而不是枯燥无味的
1、 教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
1.课前复习
(1)复习等差数列的概念及通向公式
(2)复习指数函数及其图像和性质
2.情景导入
等比数列的教学教案(汇总18篇)篇六
1、掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;
2、通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。
3、通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
(1)知识结构。
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和。
(2)重点、难点分析。
是等比数列前项和公式的推导与应用。公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
等比数列的教学教案(汇总18篇)篇七
教材重点:等比数列的概念和通项公式。
1、知识目标。
2.能力目标。
(1)学会通过实例归纳概念。
(2)通过学习等比数列的通项公式及其推导学会归纳假设。
(3)提高数学建模的能力。
3、情感目标:
(1)充分感受数列是反映现实生活的模型。
(2)体会数学是来源于现实生活并应用于现实生活。
(3)数学是丰富多彩的而不是枯燥无味的。
1、教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学。
2、学习需要分析:
1、课前复习。
(1)复习等差数列的概念及通向公式。
(2)复习指数函数及其图像和性质。
2.情景导入。
等比数列的教学教案(汇总18篇)篇八
在等比数列的教学中,特别是探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,这样很容易让学生思维僵化而且并没有起到让学生归纳类比的思想。所以在教学中通过建模活动启发学生,引导学生从实际情境中发现规律,类比等差数列通项公式的获得过程,寻求等比数列中首先,公比,项数,第n项这四个量之间的关系,引导学生用迭代法及叠乘法得到等比数列的通项公式。在教学活动中渗透了数学建模的思想。在这个活动中不断将等差与等比的概念及方法做对比,让学生更加清楚地了解等比数列的特征。在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。
在这一节课后,一个很大的感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,要能启发学生,内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。现在的教学需要使用鼓励教育,充分调动学生的积极性和能动性,打开学生思维。
本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导和分析应用。在前面的教学中,学生已经有了等差数列的有关内容,这节课的重要思想采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标(特别是学生对等比中项和下标和的关系应用)。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有待改进,课件展示得当,但时间把握有点仓促。
就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。
经过这次公开课,另外一个重要的收获是我们备课的时候一定要认真备好三维目标,特别是情感价值态度。只有带着情感态度价值带来备课才能从宏观上来把握整堂课,头脑里清楚我们将带非学生什么东西,这样我们的教学才会具有目标性。这堂课下来,我更多的只是注意了基础知识和基础技能,而忽略了带给学生的思想上的总结。
经过四年的教学让我认识到教学不仅是一门学问,也是一门艺术。教学需要我们在日常教学中不断总结和探索,不断学习,不断研究反思,这样才能在教学中进步和创新。
等比数列的教学教案(汇总18篇)篇九
知识目标:正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比数列在生活中的应用。
能力目标:通过对等比数列概念的归纳,培养学生严密的思维习惯;通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维能力并进一步培养学生善于思考,解决问题的能力。
情感目标:培养学生勇于探索、善于猜想的学习态度,实事求是的科学态度,调动学生的积极情感,主动参与学习,感受数学文化。
【教学重点】。
【教学难点】。
正确理解等比数列的定义,根据定义判断或证明某些数列是否为等比数列。
【教学手段】。
多媒体辅助教学。
【教学方法】。
启发式和讨论式相结合,类比教学.
【课前准备】。
制作多媒体课件,准备一张白纸,游标卡尺。
【教学过程】。
【导入】。
复习回顾:等差数列的定义。
创设问题情境,三个实例激发学生学习兴趣。
1.利用游标卡尺测量一张纸的厚度.得数列a,2a,4a,8a,16a,32a.(a0)。
2.一辆汽车的售价约15万元,年折旧率约为10%,计算该车5年后的价值。得到数列15,15×0.9,15×0.92,15×0.93,…,15×0.95。
3.复利存款问题,月利率5%,计算10000元存入银行1年后的本利和。得到数列10000×1.05,10000×1.052,…,10000×1.0512.
学生探究三个数列的共同点,引出等比数列的定义。
【新课讲授】。
由学生根据共同点及等差数列定义,自己归纳等比数列的定义,再由老师分析定义中的.关键词句,并启发学生自己发现等比数列各项的限制条件:等比数列各项均不为零,公比不为零。
等比数列的教学教案(汇总18篇)篇十
探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,而是通过数学建模活动启发学生,引导学生从实际情境中发现规律。类比等差数列通项公式的获得过程,寻求等比数列中四个量之间的关系,引导学生利用迭代法及叠加法得到等比数列的通项公式。在教学活动中渗透了数学建模的思想。
在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。
本节课后,最大的一个感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,而且内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。
本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导。由于前边已经学习了等差数列的有关内容,本节课主要就是采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有条理,课件展示得当,时间把握恰当。
就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。
课后反思,使我更深刻地认识到教学不仅是一门学问,也是一门艺术,值得我们在日常教学中不断探索,不断学习,不断研究,不断反思,只有这样才能不断地进步。这也为我以后的教学奠定了很好的基础,让我明确了自己今后努力的方向。在今后的教学中我会不断地反思,寻找不足,争取更大的进步。
等比数列的教学教案(汇总18篇)篇十一
教材重点:等比数列的概念和通项公式。
1、知识目标。
2.能力目标。
(1)学会通过实例归纳概念。
(2)通过学习等比数列的通项公式及其推导学会归纳假设。
(3)提高数学建模的能力。
3、情感目标:
(1)充分感受数列是反映现实生活的模型。
(2)体会数学是来源于现实生活并应用于现实生活。
(3)数学是丰富多彩的而不是枯燥无味的。
1、教学对象分析:
(1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
(2)对归纳假设较弱,应加强这方面教学。
2、学习需要分析:
1、课前复习。
(1)复习等差数列的概念及通向公式。
(2)复习指数函数及其图像和性质。
2.情景导入。
它山之石可以攻玉,以上就是为大家带来的3篇《等比数列教案通用等比数列优质课教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在。
等比数列的教学教案(汇总18篇)篇十二
新课程理念倡导的数学课堂教学设计必须“以学生的学为本”,“以学生的发展为本”,即数学课堂教学设计应当是人的发展的“学程”设计,而不单纯以学科为中心的“教程”的设计。
一、教学目标的反思。
本节课的教学设计意图:
1。进一步促进学生数学学习方式的改善。
这是等比数列的前n项和公式的第一课时,是实践二期课改中研究型学习问题的很好材料,可以落实新课程标准倡导的“提倡积极主动,勇于探索的学习方式;强调本质,注意适度形式化”的理念,教与学的重心不只是获取知识,而是转到学会思考、学会学习上,教师注意培养学生以研究的态度和方式去认真观察、分析数学现象,提出新的问题,发现事物的内在规律,引导学生自觉探索,进一步培养学生的自主学习能力。
2。落实二期课改中的三维目标,强调探究的过程和方法。
“知识与技能、过程与方法、情感,态度与价值”这三维目标是“以学生的发展为本”的教育理念在二期课改中的具体体现,本节课是数学公式教学课,所以强调学生对认知过程的经历和体验,重视对实际问题的理解和应用推广,强调学生对探究过程和方法的掌握,探究过程包括发现和提出问题,通过观察、抽象、概括、类比、归纳等探究方法进行实践。
在此基础上,根据本班学生是区重点学校学生,学习勤恳,平时好提问,敢于交流与表达自己想法,故本节课制定了如下教学目标:
(l)、通过历史典故引出等比数列求和问题,并在问题解决的过程中自主探索等比数列的前n项和公式的求法。
(2)、经历等比数列的前n项和公式的推导过程,了解推导公式所用的方法,掌握等比数列的前n项和公式,并能进行简单应用。
二、教材的分析和反思:
将本文的word文档下载到电脑,方便收藏和打印。
等比数列的教学教案(汇总18篇)篇十三
本节课是《等比数列的前n项和》的第一课时,学生在学习了等比数列的概念、等差与等比数列的通项公式及等差数列的前n项和公式前提下学习的,对于本节课所需的知识点和探究方法都有了一定的储备。这节课我充分利用情境,激发学生兴趣,顺利导入本节课的内容。
本节课我用心准备、精心设计、潜心专研,是我上好这节课的前提。在教学过程中,我充分体现了教学目标,抓住了教学重点,解决了教学难点,更重要的是,全班学生心、神、情、与我深度融合。这节课的.内容是“等差数列的前n项和”与“等比数列”内容的延续,为学生后面学综合数列的求和做了铺垫,重点是推导等比数列的前n项和的公式以及公式的简单应用,难点是用错位相减法推导等比数列的前n项和公式以及公式应用中对q与1的讨论。本节课我注重从“知识传授”的传统模式转变为“以学生为主体”的参与模式,注重数学思想方法的渗透和良好的思维品质的养成,注重学生创造精神和实践能力的培养,这在一定的程度上,激活了学生的思维,但对教师的挑战也是不言而喻的,不仅要透彻理解教材的意图,还要有宽厚的知识积累和深厚的自学功底。
在等比数列求和的教学时,开始我给同学们说了一个故事,“在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。”为什么呢?同学们很好奇,于是有计算器的同学拿出了计算器,结果没有计算完,计算器就算不出来了。激发学生的兴趣,调动学习的积极性,于是引入主题,等比数列求和。
首先让学生回忆等差数列的求和公式的推导方法,结合自己的预习谈谈自己对课本上等比数列求和公式推导过程的理解,其本质是什么?这样做的目的是什么?此时教师根据学生们的讨论和展示,适时点拨,指出问题的关键。在用错位相减法推出等比数列前n项和公式过程中,做差后提醒同学们,接下来要做什么工作,注意什么,学生们自然知道分母不能为零,因而知道了等比数列前n项和公式是分情况讨论的,为什么会有公比为1和公比不为1两种情况。此时再提醒学生等差数列求和公式是一个公式的两种形式,而等比数列求和公式是两种不同情况下的公式。然后是对求和公式的简单应用。所以让学生经历等比数列前n项和公式的推导过程成了本节课的重点与难点,在改善学生的学习方式上,是让学生提出问题并解决问题来进行自主学习、合作学习与探究学习。
在教学环节上我利用小组合作学习、学生自主学习、小组讨论、学生展示、师生点评,教师总结升华,当堂检测等环节,有效地实现本节课的教学目标。在教学评价上我关注学生,不单纯看学生是否会解题,关键是看学生是否动脑,看学生的思维过程来肯定和鼓励,如在解决情景问题的过程中,学生跃跃欲试、情绪高涨、讨论激烈,可能会探究出多种解决方案,适时地鼓励与评价,使学生的进取心得到增强,是激发学生学习数学兴趣的有效途径。我通过对学生的评价,将知识点和思想方法又得到强化。
总之,这节课也有不足,容量大,知识丰富,渗透归纳与推理、错位相减法、从特殊到一般、类比推理、分类讨论等数学思想,对学生要求高。但通过课堂反应,教学效果好,这是我感到欣慰的地方。
将本文的word文档下载到电脑,方便收藏和打印。
等比数列的教学教案(汇总18篇)篇十四
人教版小学数学教材六年级下册第107~108页例2及相关练习。
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学课件。
一、直接导入,揭示课题。
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)。
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知。
(一)教师与学生比赛算题。
1.教师:你知道等于多少吗?(学生:)。
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法。
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?那么涂色部分还可以怎么算呢?,也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习。
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现。
1.感受极限。
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)。
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)。
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)。
等比数列的教学教案(汇总18篇)篇十五
2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.
教学建议。
教材分析。
(1)知识结构。
先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.
(2)重点、难点分析。
教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.
教学建议。
(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.
(4)编拟例题时要全面,不要忽略的情况.
(5)通项公式与前项和公式的.综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.
教学设计示例。
等比数列的教学教案(汇总18篇)篇十六
作为一名高中数学教师来说,上好每一堂课,要充分挖掘教材,要从“教”的角度去看数学,还要对教学过程以及教学的结果进行反思。高中数学不少教学内容适合于开展研究性学习;教学组织形式是教学设计关注的一个重要问题,提炼出本节课的研究主题。对学生来说,学习数学的一个重要目的是要学会数学的思想。他不仅要能“做”,还应当能够教会别人去“做”。以下是我对本次课教学的一些反思。
本节课主要有两个方面的内容,一是求等比数列前n项和的方法,即错位相减法;二是等比数列前n项和的公式。由于学生初次学习,以前没有接触过错位相减法方法,所以要想让学生自己总结出错位相减这一方法应该是比较困难的,所以我先从简单的多项式化简,构造两个类似的例子让学生自己比较它们的结构出发,给他们一个直观的感受。为拿出错位相减做铺垫。在教学中,学生也确实通过两个例子的比较,比较容易的总结出了这个方法。所以由学生自己来给出通项公式也就顺理成章了,拿出通项公式后,学生总习惯于直接套用公式而忽视对公式的分情况讨论,所以一定要反复强调。
课后,在各位数学老师的帮助下,我认识到在强调公式的时候只是从公式本身出发是不够的,学生理解的也很模糊,如果在这里加上实际的例子效果应该会更好,这是以后需要加强的地方。后面在讲解例题的时候由于时间关系,没有在黑板上进行细致的演算,一带而过,高估了学生的计算能力。
总之,结合新课程的教学理念进行相应的课后反思,努力上好每堂课,我相信可以不断提高业务能力和水平,从而更好地服务于学生。
等比数列的教学教案(汇总18篇)篇十七
在具体的问题情境中,发现数列的`等比关系,能用有关知识解决相应问题。
等比数列的前n项和的公式及应用。
等比数列的前n项和公式的推导过程。
一、复习准备:
提问:等比数列的通项公式;
等比数列的性质;
等差数列的前n项和公式;
二、讲授新课:
1、教学:
思考:一个细胞每分钟就变成两个,那么经过一个小时,它会分裂成多少个细胞呢?
分析:公比,因为,一个小时有60分钟。
思考:那么经过一个小时,一共有多少个细胞呢?
又因为。
所以,则=1152921504。
则一个小时一共有1152921504个细胞。
2、练习:
列1(解略)。
列2(解略)。
在等比数列中:已知求已知求。
在等比数列中,xx,则xx。
三、小结:等比数列的前n项和公式。
四、作业:p66,1题。
等比数列的教学教案(汇总18篇)篇十八
本课是“等比数列的前n项和”的第一课时,是“等差数列的前n项和”与“等比数列”内容的延续,与函数等知识有着密切的联系,也是以后学数列的求和,数学归纳法等的基础。本节的'有助于提升学生的创新思维和探索精神,其中充分利用数学文化背境故事引入课题,也是培养学生应用意识和数学能力的良好载体。
1.对教材的处理。首先借助数学文化背境提出问题,将学生带入了求棋盘麦粒总数的思考之中。然后引导学生分析数学现象,师生互动,设计五个问题层层深入,剖析了错位相减法中减的妙用,使学生容易接受为什么要错位相减,经过繁难的计算之后,突然发现了错位相减法,让学生感受到这种方法的神奇。从而得出等比数列前n项和公式,再对公式进行简单应用,深化理解,最后总结归纳,回到故事结束,首尾呼应,把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。
2.设计思想是。本节课立足课本,着力挖掘,层次分明。充分体现以学生发展为本,遵循学生的认知规律。如本节课例题的设计,先通过精讲一题(例1),使学生既巩固了知识,又形成了技能;通过例题讲解(例2),进一步渗透分类讨论的思想,培养分类讨论的思想和思维的缜密性;再有设计选作思考题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”体现数学的文化价值。在教学思想上既注重知识形成过程的教学,还注重了学生学习方法的指导,探究能力的训练,引导学生发现数学的美,体验求知的乐趣。
3.不足之处。本节虽然以数学文化背景的故事为引例来激发学生的学习兴趣,然而却在求和公式的证明中以“可发现,如果式子两边乘以公比…”一笔带过,这个“发现”却不是大多学生能做到的,他们只能惊叹于解法的奇妙,从而求知欲却会因其“技巧性太强”而逐步消退。因此如何在有趣的数学文化背景下进一步拓展学生的视野,使数学知识的发生及形成更为自然,更能贴近学生的认知特征,这是我后面需要改进的方向。
总之,这节课收获多多,也意识到自身的不足,今后我一定要扬长避短,不断充实自己,争取更大的进步。