初中教案可以帮助教师分析学生的学习状况,及时调整教学策略,提高教学质量。教案的实施需要教师有一定的创新思维和教学能力,以适应学生的学习需求和教学环境的变化。
初中数学试讲教案设计(实用13篇)篇一
知识与技能:
1.能说出列一元一次方程解应用题的一般步骤;
2.会列一元一次方程解决水费和出租车计费问题;
3.进一步培养学生分析问题和解决实际问题的能力;
过程与方法:
1.一题多解,学会从多角度分析问题的能力;
2.初步体会数学建模的基本方法;
情感态度价值观:
1.增强节约用水的意识;
2.体会数学来源于生活、来源于实践、又服务于实践,认识到学习数学的用处,增强学习的目的性和数学意识。
构建“数学模型”,并列出一元一次方程解应用题。
挖掘题目中的等量关系。
探究式。
一、创设情境,导入新课。
问题情境:
据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的,是世界人均占有量的.
(1)问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
小红家上月5日自来水表的读数为344米3,本月5日自来水表各指针的位置如图所示,这时水表的示数是_______米3,所以一个月来她家用去_______米3水(读数到米3即可),应缴纳水费元.
水费是由哪几个量决定的?(答:单价、用量)。
三者之间的关系:单价×用量=水费.
二、呈现问题,自主探究。
(一)水费问题。
问题:实行新的阶梯水价后你会计算自家的水费吗?
资料表明:“按照《北京市水价调整及阶梯式水价初步方案》,对于生活用水阶梯式水价价格级差拟采用1:3,即第一级水量价格为居民基本生活水价,第二级水量价格为居民基本生活水价的3倍,阶梯式水价的计量方法将按四口家庭核定水量基数,每人月均用水量3立方米,为了方便居民用水淡旺季自行调剂,实行阶梯式水价以后,每半年查一次水表.”
分析:阶梯式水价水费的计算,需要分别按不同的单价进行计算。单价分别为3.7元和11.1元.
解:(元)。
设上半年用水为x立方米,根据题意列方程,得。
解这个方程,得。
下半年用水为:(立方米)。
答:上半年用水97立方米,下半年用水70立方米.
说明:本题也可采用计算的方法直接得到结果.
分析:
单价数量(立方米)水费(元)。
未超部分1.2201.2×20。
超过部分2(x-20)2(x-20)。
平均1.5x1.2×20+2(x-20)。
水费应按两部分计算,即单价分别为1.2元和2元.
解:设他家这个月共用x立方米的水.
1.5x=1.2×20+2(x-20)。
x=32。
答:他家这个月共用32立方米的水.
(二)出租车计费问题。
例2:
分析:收空驶费了吗?即超过15千米吗?如何判断?
15千米收费:10+1.2×11=23.2(元)。
3423.2。
所以,超过了15千米.
总费用应分三段计费:
(1)10元:4千米;
(2)1.2×(15-4)=13.2元:11千米;
(3)超过15千米部分的费用,单价1.8元.
解:设甲、乙的路程大约是x千米,由题意得,
10+1.2×(15-4)+1.2×(1+50%)(x-15)=34。
解这个方程得:x=25。
答:甲、乙两地的路程大约是25千米.
巩固练习:书p119/2。
三、提高拓展,发展创新:
围绕出租车计费的多种情况,学生分组进行编题并解答。
由学生利用投影进行展示,其他学生给与评价.
四、师生共同小结:
1.本节课我们共同研究的问题是什么?共同点是:由于单价的变化,必须要分段计算.
2.列一元一次方程解应用题的一般步骤是什么?
3.你的收获是什么?
五、作业:
整理分组编题及解答的笔记.
初中数学试讲教案设计(实用13篇)篇二
2.体会数学来源于生活、来源于实践、又服务于实践,认识到学习数学的用处,增强学习的目的性和数学意识。
挖掘题目中的等量关系。
探究式。
一、创设情境,导入新课。
问题情境:
据《北京日报》报道:北京市人均水资源占有量只有300立方米,仅是全国人均占有量的,是世界人均占有量的.
(1)问全国人均水资源占有量是多少立方米?世界人均水资源占有量是多少立方米?
小红家上月5日自来水表的读数为344米3,本月5日自来水表各指针的位置如图所示,这时水表的示数是_______米3,所以一个月来她家用去_______米3水(读数到米3即可),应缴纳水费元.
水费是由哪几个量决定的?(答:单价、用量)。
三者之间的关系:单价×用量=水费.
二、呈现问题,自主探究。
(一)水费问题。
问题:实行新的阶梯水价后你会计算自家的水费吗?
资料表明:“按照《北京市水价调整及阶梯式水价初步方案》,对于生活用水阶梯式水价价格级差拟采用1:3,即第一级水量价格为居民基本生活水价,第二级水量价格为居民基本生活水价的3倍,阶梯式水价的计量方法将按四口家庭核定水量基数,每人月均用水量3立方米,为了方便居民用水淡旺季自行调剂,实行阶梯式水价以后,每半年查一次水表.”
分析:阶梯式水价水费的计算,需要分别按不同的单价进行计算。单价分别为3.7元和11.1元.
解:(元)。
设上半年用水为x立方米,根据题意列方程,得。
解这个方程,得。
下半年用水为:(立方米)。
答:上半年用水97立方米,下半年用水70立方米.
说明:本题也可采用计算的方法直接得到结果.
分析:
单价数量(立方米)水费(元)。
未超部分1.2201.2×20。
超过部分2(x-20)2(x-20)。
平均1.5x1.2×20+2(x-20)。
水费应按两部分计算,即单价分别为1.2元和2元.
解:设他家这个月共用x立方米的水.
1.5x=1.2×20+2(x-20)。
x=32。
答:他家这个月共用32立方米的水.
(二)出租车计费问题。
例2:
分析:收空驶费了吗?即超过15千米吗?如何判断?
15千米收费:10+1.2×11=23.2(元)。
3423.2。
所以,超过了15千米.
总费用应分三段计费:(1)10元:4千米;(2)1.2×(15-4)=13.2元:11千米;(3)超过15千米部分的费用,单价1.8元.
解:设甲、乙的路程大约是x千米,由题意得,
10+1.2×(15-4)+1.2×(1+50%)(x-15)=34。
解这个方程得:x=25。
答:甲、乙两地的路程大约是25千米.
巩固练习:书p119/2。
三、提高拓展,发展创新:
围绕出租车计费的多种情况,学生分组进行编题并解答。
由学生利用投影进行展示,其他学生给与评价.
四、师生共同小结:
1.本节课我们共同研究的问题是什么?共同点是:由于单价的变化,必须要分段计算.
2.列一元一次方程解应用题的一般步骤是什么?
3.你的收获是什么?
五、作业:
整理分组编题及解答的笔记.
初中数学试讲教案设计(实用13篇)篇三
教学设计思想:
通过身边各种具体的事物来引出角的形象,在小学里角的概念基础上给出定义。通过具体的事物呈现角的各种变式图形,由此得到角的各种表示方法。在教学过程中要体现从现实生活中的角到数学中的角再到角的表示这一条主线。在讲方位角这部分内容时,要求通过学生的活动和自主参与,使学生能了解方位角的意义与对生活的实际意义。整堂课要注重体现学生学习的主体性,让学生充分参与,使之能体会数学与人类活动的密切联系。
教学目标:
1.知识与技能。
叙述角的有关概念,认识角的表示;。
认识度、分、秒,会进行简单的换算。
2.过程与方法。
通过具体的实例,体会数学在实际生活中的应用。
发展动手实践的能力。
3.情感、态度与价值观。
通过学习过程中,鼓励大胆尝试,形成勇于探索、创新的科学精神。
教学重难点:
重点:角的表示方法。
难点:逐步掌握正确的书写格式,会表示角的各种变式图形。
教学媒体:
一块三角板。
教学安排:
2课时。
教学过程:
一、导入。
可以让学生观察剪刀、时钟等物品,并让他们总结一下这些物品有什么共同的特点,并由此引出这节课所要学习的内容:角。同时让学生去发现生活中还有哪些物体具有角的形象。
(联系实际,从实际出发,让学生能比较清楚地感受到角的形象,为下面引出角的概念作好铺垫。同时,可以让学生参与进来,提高学生学习的兴趣,活跃课堂气氛,使学生尽快进入学习的状态,这也是课改的需要与必然。)。
初中数学试讲教案设计(实用13篇)篇四
教学设计思想:
本节知识是探究如何用一元一次方程解决实际问题。在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程,在此基础上我们才可以进一步探究用一元一次方程解决实际问题。在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
教学目标:
1.知识与技能。
利用相等关系建立数学模型列方程;。
掌握一元一次方程的解法。
2.过程与方法。
会用方程解决简单的实际问题,认识到建立方程模型的重要性;。
在建立方程解决实际问题时,我们体会到设未知数的意义。
3.情感、态度与价值观。
体会数学建模与实际的'相互密切联系,加强数学建模思想。
教学重点:解决相关问题时,利用相等关系列方程。
教学难点:解决相关问题时,利用相等关系列方程。
重难点突破:关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。
教学方法:采用直观分析法、引导发现法及尝试指导法充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
课时安排:1课时。
教具准备:投影仪。
教学过程:
一、创设情境。
师:通过前几节课的学习,同学们回忆一下,列方程解应用题的第一步是什么?
生:分析题意,设未知数。
师:很好。我们以前学的应用题大多是求一个未知量,因而设一个未知数我们今天要学的内容需要求两个未知量,这又如何解决呢?通过今天的学习,这些问题将得到很好的答案。
[教法说法]:此节内容与前边内容联系不大,所以开门见山直接提出问题,同时也引起学生的注意和好奇,使学生带着问题进入今天的学习,激发了学生的求知欲。
师:[板书]一元一次方程的应用。
初中数学试讲教案设计(实用13篇)篇五
1.进一步认识图形的轴对称,探索形成轴对称的本质特征。
2.在方格纸上画出一个图形的轴对称图形,初步学会运用对称的方法在方格纸上设计图案。
3.在欣赏图形变换所创造出的美过程中,感受对称在生活中的应用,体会数学的价值。
教学重难点。
[教学重点]探索形成轴对称图形的特征及画轴对称图形的方法。[教学难点]在作图中探索轴对称的本质特征。
教学过程。
一、创设情境,激发兴趣。
1、欣赏轴对称图形。
在我们生活中,有这样一些美丽的图形,你知道它们是什么吗?(播放轴对称图形)。
学生观察欣赏。
2、你们知道它的对称轴在哪里吗?你还见过哪些轴对称图形?
(1).轴对称图形的意义:。
(2).这类图形有什么共同的特征?
3、小结:
(1)如果一个图形沿着一条线对折,两侧的图形能够完全重合,这样的图形就是轴对称图形。
(2)折痕所在的直线就是轴对称图形的对称轴。
下面哪些图形是轴对称图形。
4、激发兴趣,引出课题。
看看说说,下面哪些图形是轴对称图形。
哪大家想不想把这么美的图形画下来呢?这节课我们一起来研究学习“轴对称”。
5、(板书揭题:轴对称)。
指出下列轴对称图形的对称轴,每个轴对称图形的对称轴有几条?
二、自主探究,掌握新知。
【设计意图:激发学生兴趣,引导学生的自主学习。】。
2.数一数?
把图形标上几个点,它们和对称轴有没有什么关系?你们看一看有什么发现?(课件出示a,a’、b,b’、c,c’)。
先在小组内和同桌说一说。
汇报交流:a、点a和a’到对称轴的距离都是2小格,点b和b’到对称轴的距离都是3小格,点c和点c’到对称轴的距离都是5小格。b、点a和点a’连起来和对称轴是垂直关系,点b和点b’连起来点c和点c’连起来都和对称轴是垂直关系。
小结:a、点a、b、c在数学上叫它原点,点a’、b’、c’叫它对应点。b、原点和对应点到对称轴的距离都相等,它们的连线和对称轴成垂直关系。
3.画一画。
拿出方格纸,动手画一画。
小结方法:首先,要先标好原点,再找出原点的对应点。再画出连线。
4.剪一剪动手剪一剪课本p4的做一做,小组同学合作,先猜一猜,再剪一剪,看谁剪得又快又好。
【设计意图:通过操作让学和加深体会,进一步掌握轴对称图形的知识。】。
1、你生活周围有哪些物体的面是轴对称图形?
(长方形、正方形、等边三角形、等腰三角形、等腰梯形、圆形、平行四边形等)平面图形让学生辨认哪些是轴对称图形,并找出对称轴。着重让学生辨析平行四边形,并画图说明理由。
【设计意图:加深理解轴对称的平面图形,体会轴对称图形的本质特征。】。
2、你会画出下列轴对称图形的对称轴吗?
拿出方格纸,根据今天的学习内容,设计一个美丽的图案。
把自己的作品展示给大家看,并说一说你是如何设计?(把学生的作品贴在黑板上)。
3、判断:下面的数字哪些是轴对称图形?它们分别有几条对称轴?
4、判断:下面的字母哪些是轴对称图形?它们分别有几条对称轴?
6、开心测试:
7.拓展题。
(1)、推理:根据自己发现的规律,画出下一个图形的形状?
【设计意图:应用轴对称的知识,创造、体会数学的美】。
四、总结提高,延伸感受。
五、作业设计。
用轴对称知识设计一幅题为“美丽的房子”的作品。
板书设计:轴对称。
初中数学试讲教案设计(实用13篇)篇六
2、初步培养学生观察、分析和抽象思维的能力。
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式。
现代课堂教学手段。
启发式教学。
1、用代数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x-3)。
(3)乙数比x的倒数小7;(-7)。
(4)乙数比x大16%?((1+16%)x)。
(应用引导的方法启发学生解答本题)。
例1用代数式表示乙数:
(1)乙数比甲数大5;
(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;
(4)乙数比甲数大16%?
解:设甲数为x,则乙数的代数式为。
(1)x+5。
(2)2x-3;
(3)-7;
(4)(1+16%)x?
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则。
(1)2(a+b);
(2)a-b;
(3)a2+b2;
(4)(a+b)(a-b);
(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;
(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;
(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;
(4)这个数的平方与这个数的的和?
解:
(1)3(a+5);
(2)(a-1);
(3)(5a+7);
(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:
(1)m(m+6)个;
(2)(m)m个?
1、设甲数为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;
(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;
(4)甲乙的差除以甲乙两数的积的商?
2、用代数式表示:
(1)比a与b的和小3的数;
(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;
(4)比a除b的商的3倍大8的数?
3、用代数式表示:
(1)与a-1的和是25的'数;
(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;
(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕。
首先,请学生回答:
1、怎样列代数式?
2、列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:
(1)这个长方形另一边的长;
(2)这个长方形的面积?
§3.2代数式。
(一)知识回顾。
(三)例题解析。
(五)课堂小结。
例1、例2。
(二)观察发现(四)课堂练习练习设计。
由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。
初中数学试讲教案设计(实用13篇)篇七
(一)基础知识目标:
1、理解方程的概念,掌握如何判断方程。
2、理解用字母表示数的好处。
(二)能力目标。
体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。
(三)情感目标。
增强用数学的意识,激发学习数学的热情。
知道什么是方程、一元一次方程,找相等关系列方程。
如何找相等关系列方程。
(一)创设情景,引入新课。
由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。
为了回答上述这几个问题,我们来看下面这个例题。
(二)提出问题。
你会用算术方法解决这个实际问题么?不妨试一下。
如果设王家庄到翠湖的路程为x千米,你能列出方程吗?
根据题意画出示意图。
由图可以用含x的式子表示关于路程的数量,
王家庄距青山千米,王家庄距秀水千米,
由时间表可以得出关于路程的数量,
从王家庄到青山行车小时,王家庄到秀水小时,
汽车匀速行驶,各路段车速相等,于是列出方程:
=(1)。
各表示的.意义是什么?
以后我们将学习如何解出x,从而得到结果。
例1某数的3倍减2等于某数与4的和,求某数。
例2环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?
用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。
习题3.1第1,2两题。
初中数学试讲教案设计(实用13篇)篇八
(一)认知目标:
1.了解二元一次方程组的概念。
2.理解二元一次方程组的解的概念。
3.会用列表尝试的方法找二元一次方程组的解。
(二)能力目标:
1.渗透把实际问题抽象成数学模型的思想。
2.通过尝试求解,培养学生的探索能力。
(三)情感目标:
1.培养学生细致,认真的学习习惯。
2.在积极的教学评价中,促进师生的情感交流。
1.二元一次方程组及其解的概念。
2.用列表尝试的方法求出方程组的解。
(一)创设情景,引入课题:
1.本班共有40人,请问能确定男女各几人吗?为什么?
(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)。
(2)这是什么方程?根据什么?
两个方程中的x表示什么?类似的两个方程中的y都表示?
像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4.点明课题:二元一次方程组。
(二)探究新知,练习巩固:
1.二元一次方程组的概念。
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
(2)练习:判断下列是不是二元一次方程组:
x+y=3,x+y=200,
2x-3=7,3x+4y=3,
y+z=5,x=y+10,
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2.二元一次方程组的解的概念。
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=?
y=0;y=2;y=1;y=?
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,尝试求解:
现在我们一起来探索如何寻找方程组的解呢?
1.已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试.
2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。 (2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业:
1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。
2.你还有什么问题或想法需要和大家交流?
3.作业本。
教学设计说明:1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3.本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
初中数学试讲教案设计(实用13篇)篇九
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
(一)教学重点、难点。
重点:通过具体例子了解公式、应用公式。
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
(二)重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
(三)知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
初中数学试讲教案设计(实用13篇)篇十
1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;。
2.会初步应用正负数表示具有相反意义的量;。
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;。
4.培养学生逐步树立分类讨论的思想;。
5.通过本节课的教学,渗透对立统一的辩证思想。
教学建议。
初中数学试讲教案设计(实用13篇)篇十一
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
初中数学试讲教案设计(实用13篇)篇十二
教学目标:
1.继续学习课文,了解卢沟桥的特点。
2.揣摩学习本文说明语言特点,弄清本文说明的方法。
3.进一步了解中国石拱桥的特点,激发对桥梁研究的兴趣。
教学重点:
同教学目标1、2。
教学难点:。
同教学目标2。
教学过程。
一、复习检查。
1、默写生字词。
巧妙绝伦和谐惟妙惟肖匀称推崇古朴弧形。
2、指名说出赵州桥的特点及说明顺序。
二、指导学习研讨。
阅读课文6—9节,探讨下列问题。
1、卢沟桥是个联拱石桥,和赵州桥一样,是我国最著名的石拱桥呢,它有哪些特点?
样说明的?
3、我国石拱桥为什么会取得这样光辉的成就呢?三个原因中哪个是最主要的?为什么?
4、朗读第10段,思考:
揣摩本文语言特点,列出课文中用词准确的句子,说说括号里词语的作用。
1.《水经注》里提到的“旅人桥”,(大约)建成于公元282年,(可能)是有记载的最早的石拱桥了。(“大约”“可能”都表示不确定,只是推测的情况“有记载的”使发言的.根据增加可靠性)。
2.我国的石拱桥(几乎)到处都有。(“几乎”强调了石拱桥分布范围很广,但并不排除有的地方没有石拱桥的可能。)。
3.石拱桥在世界桥梁史上出现得(比较)早。(“比较早”程度较轻,这样表达比较稳妥。)。
符合实际情况。)弄清本文说明方法。
请生速读课文,思考文章在说明中国石拱桥特点时运用了什么方法?举例说明。例如:
1、说明赵州桥及卢沟桥的长、宽、高时采用了列数字方法。
2、说明赵州桥及卢沟桥的形式时,分别采用了引用、打比方、摹貌方法。
3、说明赵州桥及卢沟桥的特点时,分别采用了列数字、作诠释、举例子等方法。
4、用赵州桥和卢沟桥来说明石拱桥的特点是举例子的说明方法。
三、布置作业。
1、完成课后练习二。
2、阅读下列文段,回答文后问题。
“赵州桥非常雄伟,全长50.82米,------。桥的主要设计者李春就是一位杰出的工匠,在桥头的碑文里还刻着他的名字。”
(2)这段文字的说明对象是什么?
(3)揭示这段文字中心的句子是_____________________________。
(4)这段文字的说明顺序是_____________________________。
(5)文中“这个创造性的设计”是指什么?
初中数学试讲教案设计(实用13篇)篇十三
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来,数学教案-列代数式。
2.初步培养学生观察、分析和抽象思维的能力。
3.通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
教学建议。
1.教学重点、难点。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
教学设计示例。
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;。
2.初步培养学生观察、分析和抽象思维的能力.
教学重点和难点。
重点:列代数式.
难点:弄清楚语句中各数量的意义及相互关系.
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
1庇么数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x-3)。
(3)乙数比x的倒数小7;(-7)。
(4)乙数比x大16%((1+16%)x)。
(应用引导的方法启发学生解答本题)。
二、讲授新课。
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。
解:设甲数为x,则乙数的代数式为。
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x。
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x。
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积。
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。
解:设甲数为a,乙数为b,则。
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)。
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数。
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2。
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。
分析:启发学生,做分析练习比绲1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a。
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:(1)m(m+6)个;(2)(m)m个。
三、课堂练习。
1鄙杓资为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。
2庇么数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。
3庇么数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄。
四、师生共同小结。
首先,请学生回答:
1痹跹列代数式?2绷写数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业。
1庇么数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2币阎一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积.
学法探究。
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律.
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)。
7.章建跃:教学设计与好数学教学。
8.小学数学《数学广角――植树问题》教学设计。