2023年八年级上册数学等腰三角形的性质教案(五篇)

时间:2024-11-19 作者:储xy
简介:百分文库小编为你整理了这篇《2023年八年级上册数学等腰三角形的性质教案(五篇)》及扩展资料,但愿对你工作学习有帮助,当然你在百分文库还可以找到更多《2023年八年级上册数学等腰三角形的性质教案(五篇)》。

作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。

八年级数学等腰三角形的性质教案篇一

今天我说课的内容是人教版初中数学八年级上册第十二章第三节“等腰三角形”第二课时的内容:“等腰三角形的判定”,我将围绕教材分析、教法分析、学法分析、教学过程、板书设计说个方面来进行说课。

1、本节课的地位与作用

等腰三角形的判定是初中数学的一个重要定理,也是本章的重点内容。本节内容是在学生已有的平行线性质、命题以及等腰三角形的性质等知识基础上进一步研究的问题。特点之一是它揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明两条线段相等的新方法,为以后的学习提供了证明和计算依据,有助于培养学生思维的灵活性和广阔性。所以本段教材承上启下、至关重要。

2、教学目标:

知识与技能:会阐述、证明等腰三角形的判定定理。

过程与方法:学会比较等腰三角形性质定理和判定定理的联系与区别。

情感态度与价值观:经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。

3、教学重点:等腰三角形的判定定理的探索和应用。

5、教具准备:作图工具和多媒体课件。

1、引导探索法:在数学教学中,作为教师应善于引导学生去观察、去分析、去归纳、去总结,从而培养学生主动求知的探索精神。

2、情景教学法:数学课程的特点之一是内容抽象,而多媒体在数学教学中的应用可以较好的解决这个难题。我在教学中充分运用远教资源中的媒体资源设计出可视的图形运动轨迹,帮助学生理解教材意图。

本节课按照质疑、猜想、验证的学习过程,遵循学生的认知规律,让学生感受由实践到理论再到实践的学习过程,也体现了数学源于生活,而又服务于生活的基本理念。本节课将着力培养学生的实践探究能力、合作交流和抽象概括能力。

我现将本节课的教学目标展示给学生,让学生做到心中有数,再展示出自学指导,让学生带着问题看书,加强自主探索的能力。

本节课的教学过程分为创设情境——激发兴趣、提出问题——大胆猜想、讨论交流——探索分析、科学引导——得出结论、反馈教学——加深理解、拓展延伸——综合运用六大教学版块。

1、创设情境——激发兴趣

我结合课本中的实际问题引入课题,并出示大屏,展示这一实际问题,再结合形象的图形展示给学生。“如图,位于在海上a、b两处的两艘救生船接到o处的遇险报警,当时测得∠a=∠b。如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?” 通过学生观察、思考,产生悬念,使学生从生活走进数学,自然地渗透数学来源于生活的思想。

2、提出问题——大胆猜想

我首先引导学生将实际问题转化为数学问题,即:在一个三角形中,如果有两个角相等,那么他们所对的边有什么关系? 通过问题的提出,引导学生写出已知、求证,并根据已知条件画出图形。

3、讨论交流——探索分析

4、科学引导——得出结论

在教学中,我针对学生的讨论情况,结合教材实际,引用了远教资源中的媒体展示,让学生更加直观形象的感知这一过程,再引导学生通过两种方法来解决问题,方法一:过点a作ad平分∠a得到∠1=∠2 ,从而推出△abd≌ △acd,证明ab=ac。方法二:过点a作ad⊥bc得到∠adc=∠adb,从而推出△abd≌ △acd,证明ab=ac。通过两种不同方法的推证,我再引导学生用数学语言来总结这一规律,针对学生的发言进行点评,给出提示,达成共识后得到结论。

5、反馈教学——加深理解

在学生得出这一结论之后,我再给出课前提出的救生船问题,让学生运用所学知识反馈于教学,用数学知识来解决生活中的实际问题,此时,学生就不难发现两行船将同时到达o点,同时我用了一道典型例题,本题也是课本中的例2,旨在考查学生对平行线性质定理和等腰三角形判定定理的综合运用,以进一步加深学生对等腰三角形判定定理的理解和运用。

6、拓展延伸——综合运用

这一题型的设计将等腰三角形的性质定理与判定定理有机的结合起来,重在培养学生对两个知识点的综合运用,鼓励学生积极思考,勇于探索。

7、课堂小结

在小结部分,我提出两个问题:一是学到了什么知识?二是这个知识有什么作用。通过问题的设计引导学生归纳出学习内容。

本节课的板书设计,主要围绕等腰三角形的判定定理的探索和归纳来展开教学。

八年级数学等腰三角形的性质教案篇二

特殊三角形

2.6

直角三角形

第1课时

这一定理的的证明过程较难,教师板书性质后,用几何画板课件演示一下预先准备好的证明过程给学生看,只要求学生感受和理解,不要求掌握。

(1)直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为。

(3)例

a

b

c

d

30°

30°

a

b

c

教师先引导学生理解题意后分析:书上分析。

教师板演解题过程:

解:如图作rt△abc的斜边上的中线cd,则cd=ad=1/2ab=1/2×200=100(在直角三角形中,斜边上的中线等于斜边的一半)

∵∠b=30°(已知)

∴∠a=90°-∠b=90°-30°

(直角三角形两锐角互余)

∴∠dca=∠a=60°(等边对等角)

∴∠adc=180°-∠dca-∠a=180°-60°-60°=60°(三角形内角和等于180°)

∴△abc是等边三角形(三个角都是60°的三角形是等边三角形)

∴ac=ad=100

答:这名滑雪运动员的高度下降了100m。

讲完后教师归纳一下“在直角三角形中如果一个锐角是30°,则它所对的直角边等于斜边的一半”让学生注意书写的规范。

如图,已知ad⊥bd,ac⊥bc,e为ab的中点,试判断de与ce是否相等,并说明理由。

解题小结:说明两条线段相等,有时还可以通过第三条线段进行等量代换。

,g是ab的中点,则fg⊥de,请说明理由。

分析:通过添加直角三角形斜边上的中线,构造等腰三角形,利用等腰三角形的三线合一得出最终的结论。

八年级数学等腰三角形的性质教案篇三

大家好!

我说课的课题是《等腰三角形》,源于义务教育课程标准实验教科书七年级数学第七章,下面我将来汇报我这节课的教学设计。

1、本课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中等边对等角,等角对等边的边角关系,并且对轴对称图形性质的直观反映(三线合一)。并且在以后直角三角形和相似三角形中等腰三角形的性质也占有一席之地。

4、为了使学生了解这堂课,本课要求学生自制一个等腰三角形模型,教学过程采用多媒体教学。

“教必有法而教无定法”,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。

“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

1、等腰三角形的有关概念,轴对称图形的有关概念。

提问:等腰三角形是不是轴对称图形?什么是它的对称轴?

2、教师演示(模型)等腰三角形是轴对称图形的实验,并让学生做同样的实验,引导学生观察重合部分,发现等腰三角形的一些性质。

3、新课:让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的性质定理1、2。

在△abc中,∵ab=ac()∴∠b=∠c()

性质定理:等腰三角形的顶角平分线、底边上的中线和高线互相重合

①∵ab=ac∠1=∠2()∴bd=dcad⊥bc()

②∵ab=acbd=dc()∴∠1=∠2ad⊥bc()

③∵ab=acad⊥bc于d()∴bd=dc∠1=∠2()

4、对新知识的感知性应用

指导学生表述证明过程。

思考题:等腰三角形两腰上的中线(高线)是否相等?为什么?

课堂练习:

p227练习1,练习2(指出这是等边三角形的性质定理)。

5、小结:

(1)等腰三角形的性质定理。

(2)等边三角形的性质

(3)利用等腰三角形的性质定理可证明:两角相等,两线段相等,两直线互相垂直。

(4)联想方法要经常运用,对解题大有裨益。

见作业本

(一)使学生在复习本节知识。

(二)为下一节内容铺垫。

2、通过学生自己动手实验得到两个定理的内容,可以使他们比较好的掌握知识、提高学习数学的兴趣,达到了事半功倍之效。

3、在整个教学过程中,本人利用多种教学方法,使学生在实验中提出问题,解决问题的途径,而不知不觉地进入学习氛围,把学生从被动学习步入主动想学的习惯。

总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。

板书设计

课题:

例1、书写格式

例2、书写过程

性质定理1

性质定理2

学生板演

八年级数学等腰三角形的性质教案篇四

安排一课时学习等腰三角形的性质,内容很多,课堂容量很大,本课教学后,有很多方面需要总结。

在证明性质时,用三种方法研究性质的证明,要用到小组交流,比较发现有三种方法:取中点,用“sss”证明全等;作垂线,用“hl”证明全等;作角平分线,用“sas”证明全等。通过这样的教学设计,一方面,体会了辅助线不同的作法,就有不同的证法;另一方面,为性质2“三线合一”的教学提供了方便。不足的`是,课堂交流的不是很充分。

性质2的应用比较多,学生往往不能灵活应用这条性质,因此要由图形训练和规范符号语言。

在△abc中,ab=ac,下列论断①∠bad=∠cad,②bd=cd,③ad⊥bc中,有一条成立,另外两条就成立,设计一组填空题,有利于性质2的应用。

要培养学生讨论和自觉纠错的学习习惯。性质在证明中的应用,先由学生独立思考,多数同学用全等证明,提出问题进行思考“结合新知识,可以不用全等证明吗”最后留出时间进行课堂小结。

八年级数学等腰三角形的性质教案篇五

特殊三角形

2.3

第2课时

3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图.理解并掌握等腰三角形的性质:等边对等角;三线合一.等腰三角形三线合一性质的运用.1.温故检测:叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是。

2.悬念、引子、思考:

合作学习:分三组教学活动材料

教学活动材料1:

线对折,仔细观察重合的部分,并写出所发现的结论。

(发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)

结论:①

等腰三角形的两个底角相等。或“在一个三角形中,等边对等角”

4.应用定理时的推理格式:

用几何语言表述为:

在△abc中,如图,∵ab=ac

∴∠b=∠c(在一个三角形中等边对等角)

在△abc中,如图

(1)∵ab=ac

,∠1=∠2

∴ad⊥bc,bd=dc

(等腰三角形三线合一)

(2)∵ab=ac,bd=dc

∴ad⊥bc,∠1=∠2

(3)∵ab=ac,ad⊥bc

∴bd=dc,∠1=∠2

例1

如图2-6,在△abc中,ab=ac,∠a=50°,求∠b,∠c的度数.(板书解答过程)

例2

(p36课内练习2)

(例2是运用尺规作等腰三角形,作法思路需要作一些分析转换,是本节教学的难点,在操作过程中要让学生体验等腰三角形三线合一的性质)

等腰三角形三线合一.

相关范文推荐