七年级上册数学教学设计方案 七年级上数学教案免费(模板五篇)

时间:2024-11-16 作者:储xy

为了确保事情或工作得以顺利进行,通常需要预先制定一份完整的方案,方案一般包括指导思想、主要目标、工作重点、实施步骤、政策措施、具体要求等项目。写方案的时候需要注意什么呢?有哪些格式需要注意呢?以下是小编为大家收集的方案范文,欢迎大家分享阅读。

七年级上册数学教学设计方案 七年级上数学教案免费篇一

1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2, 能区分两种不同意义的量,会用符号表示正数和负数;

3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点 正确区分两种不同意义的量。

知识重点 两种相反意义的量

教学过程(师生活动) 设计理念

设置情境

引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些“以前学过的数”够用了吗?下面的例子

仅供参考.

师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是_,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严

密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴

趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展 经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习 教科书第5页练习

小结与作业

课堂小结 围绕下面两点,以师生共同交流的方式进行:

1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

本课教育评注(课堂设计理念,实际教学效果及改进设想)

密切联系生活实际,创设学习情境.本课是有理数的第一节课时.引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的.

负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子

或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实

存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例

子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.

这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,

体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见

的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。

七年级上册数学教学设计方案 七年级上数学教案免费篇二

有理数

教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程(师生活动) 设计理念

探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.••…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业 1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概

念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进

行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分

类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

七年级上册数学教学设计方案 七年级上数学教案免费篇三

教学目标

1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;

2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)

3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

教学难点 深化对正负数概念的理解

知识重点 正确理解和表示向指定方向变化的量

教学过程(师生活动) 设计理念

知识回顾与深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?

问题1:有没有一种既不是正数又不是负数的数呢?

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分

界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)

例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是

零上7℃,最低温度是零下5℃时,就应该表示为+7℃

和-5℃,这里+7℃和-5℃就分别称为正数和负数 .

那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数•

问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入

负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。

所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即

可,不必深究.

分析问题

解决问题 问题3:教科书第6页例题

说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).

类似的例子很多,如:

水位上升-3m,实际表示什么意思呢?

收人增加-10%,实际表示什么意思呢?

等等。

可视教学中的实际情况进行补充.

这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种

意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在

不必向学生提出.

巩固练习 教科书第6页练习

阅读思考

教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流

小结与作业

课堂小结 以问题的形式,要求学生思考交流:

1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?

2,怎样用正负数表示具有相反意义的量?

(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)

本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指

定方向变化的量。

2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.

3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.

4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.

七年级上册数学教学设计方案 七年级上数学教案免费篇四

教学目的:

掌握坐标变化与图形平移的关系;

发展学生的形象思维能力和数形结合意识。

教学重点:掌握图形平移前后的坐标变化规律,

教学难点:利用图形平移解决相关问题。

教学过程:

复习引入

1、什么叫平移?

把一个图形整体沿某一方向移动一定的距离,这种移动叫做平移。

2、平移有什么性质?

(1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是原图形中某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

(3)问:一个点平移后的坐标会发生变化吗?

二、新授

1、平面直角坐标系内有一点a(-2,-3)

1将点a(-2,-3)向右平移5个单位后,得到点 a1的坐标是什么?

2将点a(-2,-3)向上平移4个单位后,得到点 a2的坐标是什么?

2、归纳:

在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));

将点(x,y)向上(或下)平移 b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)) 。

简称:横移纵不变,纵移横不变。

3、问:线段ab两个端点的坐标分别是a(-5,3),b(-3,0).将线段ab两个端点的横坐标都加上6,纵坐标不变分别得到点a1 、 b1 , 连接a1 、b1 ,所得线段与原线段的大小和位置上有什么关系?

4、例题:三角形abc三个顶点的坐标分别是a(4,3)b(3,1)c(1,2)

(1)将三角形abc三个顶点的横坐标都减去6,纵坐标不变,分别得到点a1、b1、c1,依次连接各点,所得三角形a1 b1 c1与三角形a b c的大小、形状和位置上有什么关系?

(2)将三角形abc三个顶点的纵坐标都减去5,横坐标不变,分别得到点a2 、b2 、c2 ,依次连接各点,所得三角形a2b2c2与三角形abc的大小、形状和位置上有什么关系?

5、归纳:

在平面直角坐标系内:

如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;

如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下 )平移 a个单位长度.

6、思考:如果将三角形abc三个顶点的横坐标都减去6,同时纵坐标都减去5,这时图形在哪儿?把它画出来!(有几种平移方法)

7、p53t1:图中三架飞机p、q、r保持编队飞行,分别写出它们的坐标。30秒后,飞机p飞到p`位置,飞机q、r飞到了什么位置?分别写出这三架飞机新位置的坐标。

8、课内练习:

1p53练习;

2口答:p53习题t2、3、4、6。

9、小结:

1在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));

将点(x,y)向上(或下)平移 b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)) 。

2在平面直角坐标系内:

如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;

如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下 )平移 a个单位长度.

10、作业:p55t7、8

<

七年级上册数学教学设计方案 七年级上数学教案免费篇五

教学目标

1. 使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;

2. 初步培养学生观察、分析和抽象思维的能力.

教学重点和难点

重点:列代数式.

难点:弄清楚语句中各数量的意义及相互关系.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;( -7)

(4)乙数比x大16%((1+16%)x)

(应用引导的方法启发学生解答本题)

2在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式本节课我们就来一起学习这个问题

二、讲授新课

例1 用代数式表示乙数:

(1)乙数比甲数大5; (2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7; (4)乙数比甲数大16%

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数

解:设甲数为x,则乙数的代数式为

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x

例2 用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的 与乙数的 的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式

解:设甲数为a,乙数为b,则

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律但a与b的差指的是(a-b),而b与a的差指的是(b-a)两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序

例3 用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n; (2)5m+2

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)

例4 设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的 ;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的 的和

分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)

例5 设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的 ,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个; (2)( m)m个

三、课堂练习

1设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的 的和; (2)甲数的 与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商

2用代数式表示:

(1)比a与b的和小3的数; (2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数; (4)比a除b的商的3倍大8的数

3用代数式表示:

(1)与a-1的和是25的数; (2)与2b+1的积是9的数;

(3)与2x2的差是x的数; (4)除以(y+3)的商是y的数

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕

四、师生共同小结

首先,请学生回答:

1怎样列代数式?2列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备要求学生一定要牢固掌握

五、作业

1用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积.

学法探究

已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度是多少厘米?

分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看 有没有规律.

当圆环为三个的时候,如图:

此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:

解:

=99a+b(cm)

相关范文推荐