教学工作计划的制定需要教师具备对课程和学生的深入了解,以确保教学目标的实现。在以下范文中,你可以找到一些优秀的教学工作计划,用于提升你的教学水平。
勾股定理活动课教案大全(19篇)篇一
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;。
二数学思考。
1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;。
2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.
三解决问题。
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.
四情感态度。
2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.
勾股定理活动课教案大全(19篇)篇二
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法。
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观。
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体。
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。
情景:
第二环节:合作探究(15分钟,学生分组合作探究)。
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
第三环节:做一做(7分钟,学生合作探究)。
教材23页。
李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
第四环节:巩固练习(10分钟,学生独立完成)。
2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。
第五环节课堂小结(3分钟,师生问答)。
内容:如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)。
作业:1.课本习题1.5第1,2,3题.。
要求:a组(学优生):1、2、3。
b组(中等生):1、2。
c组(后三分之一生):1。
文档为doc格式。
勾股定理活动课教案大全(19篇)篇三
理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。
【过程与方法】。
经历得出猜想、推理证明的过程,提升自主探究、分析问题、解决问题的能力。
【情感、态度与价值观】。
体会事物之间的联系,感受几何的魅力。
【重点】勾股定理的逆定理及其证明。
【难点】勾股定理的逆定理的证明。
(一)导入新课。
复习勾股定理,分清其题设和结论。
提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。
出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。
(二)讲解新知。
请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确。
出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。
学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。
勾股定理活动课教案大全(19篇)篇四
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
1、创设情境。
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界。
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论。
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
勾股定理活动课教案大全(19篇)篇五
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)。
勾股定理活动课教案大全(19篇)篇六
教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
教学重点:平行四边形的判定方法及应用。
教学难点:平行四边形的判定定理与性质定理的灵活应用。
引
二.探。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
证一证。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
证明:(画出图形)。
三.结。
两组对边分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
四.用。
勾股定理活动课教案大全(19篇)篇七
教学目标:
1、知识目标:
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
教学过程:
1、新课背景知识复习。
(1)三角形的三边关系。
(2)问题:(投影显示)。
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得。
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边。
(2)学生根据上述学习,提出自己的问题(待定)。
3、定理的证明方法。
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形。
方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。
以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明。
4、定理与逆定理的应用。
5、课堂小结:
已知直角三角形的两边求第三边。
已知直角三角形的一边,求另两边的关系。
6、布置作业:
a、书面作业p130#1、2、3。
b、上交作业p132#1、3。
勾股定理活动课教案大全(19篇)篇八
1、知识目标:
(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;
(3)知道什么叫勾股数,记住一些觉见的勾股数.
2、能力目标:
(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;
(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过知识的纵横迁移感受数学的辩证特征.。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
勾股定理活动课教案大全(19篇)篇九
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法。
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观。
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体。
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。
情景:
第二环节:合作探究(15分钟,学生分组合作探究)。
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
第三环节:做一做(7分钟,学生合作探究)。
教材23页。
李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
第四环节:巩固练习(10分钟,学生独立完成)。
2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。
第五环节课堂小结(3分钟,师生问答)。
内容:如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)。
作业:1.课本习题1.5第1,2,3题.。
要求:a组(学优生):1、2、3。
b组(中等生):1、2。
c组(后三分之一生):1。
勾股定理活动课教案大全(19篇)篇十
(一)知识与技能目标:
2、会利用勾股定理进行直角三角形的简单计算。
3、了解有关勾股定理的历史知识。
(二)过程与方法目标。
经历课前预习和课上观察、分析、归纳、猜想、验证并运用实践的过程,了解数学知识的生成与发展过程。通过了解勾股定理的几个著名证法(赵爽证法、欧几里得证法等),使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵。使学生自主学习能力和分析问题解决问题的能力得到提高。培养与人合作的意识。
(三)情感、态度和价值观。
1、通过自主学习培养学生探究、发现问题的能力,体验获取数学知识的过程。
2、通过小组合作、探索培养学生的团队精神,以及不畏艰难,实事求是的学习态度和严谨的数学学习习惯。
3、通过了解有关勾股定理的中西历史知识,激发学生的爱国热情,培养学生的民族自豪感。
勾股定理活动课教案大全(19篇)篇十一
教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
勾股定理活动课教案大全(19篇)篇十二
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点。
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
勾股定理活动课教案大全(19篇)篇十三
教学内容:教科书第92~93页。
教学目的:在学生对退位减已经有一定的基础上,通过学生自己计算来掌握这部分内容的。
教学课时:1课时。
教学准备:教学挂图、数字卡片、表格等。
教学过程:
一、创设情境、导入课题。(揭示课题)。
二、探索新知。
1、教学例题。出示挂图,让学生理解图意,列出算式。
教学时,要让学生选择算法自己计算。然后小组内交流自己的算法,再在班内交流。要让学生体会到不同的算法,更要让学生体会到哪种算法既算的快又适合自己使用,引导学生优化自己的算法,但要注意,说某种算法最好,不是由老师说了算,而是让学生在亲身感受、体验的基础上,自觉地去进行比较和选择。优化算法仍然要尊重学生的选择,倡导算法多样化。
2、教学“试一试”。
让学生自己算一算,再组织学生与同伴交流,在成功计算的过程中,增强学习数学的自信心。
三、巩固新知。
1、做“想想做做”的第1题和第2题。
在做第1、2题时可以让学生感受相应算式间的联系,以利于学好减法计算。
2、做“想想做做”的第3、4、5、6题。
学生分组练习,让学生分别把各组题算一算、比一比,说说自己有什么发现。可以组织游戏,或者用线连一连等。
第6题可以让学生看看填好后的统计表,说说从表中能知道些什么,还可以想到什么。
四、课堂总结。
勾股定理活动课教案大全(19篇)篇十四
教学目标:
1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:
课前准备:
多媒体ppt,相关图片。
教学过程:
(一)情境导入。
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
已知一直角三角形的两边,如何求第三边?
学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课。
勾股定理活动课教案大全(19篇)篇十五
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
勾股定理活动课教案大全(19篇)篇十六
教学目标:
1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:
课前准备:
多媒体ppt,相关图片。
教学过程:
(一)情境导入。
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
勾股定理活动课教案大全(19篇)篇十七
师生行为学生分组讨论,交流总结;教师引导学生回忆.。
师:那么,一个三角形满足什么条件,才能是直角三角形呢?
生:有一个内角是90°,那么这个三角形就为直角三角形.。
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.。
二、讲授新课。
是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
活动3下面的三组数分别是一个三角形的三边长?
勾股定理活动课教案大全(19篇)篇十八
即直角三角形两直角的平方和等于斜边的平方.。
因此,在运用勾股定理计算三角形的边长时,要注意如下三点:
(2)注意分清斜边和直角边,避免盲目代入公式致错;
如,利用四个如图1所示的直角三角形三角形,拼出如图2所示的三个图形.。
请读者证明.。
请同学们自己证明图(2)、(3).。
132-52=144,所以另一条直角边的长为12.。
所以这个直角三角形的面积是×12×5=30(cm2).。
例2如图3(1),一只蚂蚁沿棱长为a的正方体表面从顶点a爬到。
顶点b,则它走过的最短路程为()。
a.b.c.3ad.分析:本题显然与例2属同种类型,思路相同.但正方体的。
各棱长相等,因此只有一种展开图.。
解:将正方体侧面展开。
勾股定理活动课教案大全(19篇)篇十九
教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:
1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:
1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
教学准备阶段:
学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
(一)引入。
同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)。
(二)实验探究。
设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:
(讨论难点:以斜边为边的正方形的面积找法)。
交流后得出一般结论:(用关于a、b、c的式子表示)。
(三)探索所得结论的正确性。
当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?
1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)。
在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:
如图2(用补的方法说明)。
师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)。
如图3(用割的方法去探索)。
师介绍:(出示图片)中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的`等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)。
20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)。
如图4(构造新图形的方法去探索)。
1、继续收集、整理有关勾股定理的证明方的探索问题并交流。