认识倒数课篇一
:六年级上册第二单元倒数的认识。
1、使学生理解倒数的意义,掌握求倒数的方法。
2、提高学生观察、比较、、概括的能力。
3、感悟“变通”的数学思想。
:倒数的意义与求法。
:理解“互为”的意义,明确倒数只是表示两个数间的关系。
(生:上下两部分调换了位置,变成了另一个字)
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
1、引导质疑。
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
2、游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?
好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。
3、揭示倒数的意义
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数
你认为哪个词非常重要?你是如何理解“互为”的?生回答
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
强调:(1)乘积必须是1。
(2)只能是两个数。
(3)倒数是表示两个数的关系,它不是一个数。
4、小组探究求一个倒数的方法
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
1、判断题。
2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。
师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。
交流发现:
师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。
(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)
师:是不是所有真分数的倒数都是假分数?
(出示结论:所有真分数的倒数都是假分数)
师:第二组(这组分数都是假分数,它们的倒数都是真分数。)
师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)
师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?
(都是大于1的假分数。)
所以——(卡片结论:大于1的假分数的倒数都是真分数。)
师:第3组呢?(这组分数的倒数都是整数。)
这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)
师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)
师:是不是所有整数的倒数都是分数单位?
(出示:非零整数的`倒数都是分数单位)
师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。
师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?
师:你能用“我学会了--”来描述今天学到的知识吗?
生:。.。.。.。
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
认识倒数课篇二
新课标六年级上册课本p28页的例1做一做,第29页的练习六。
1.通过观察、比较、概括、抽象,从本质上理解倒数的意义,并掌握求倒数的方法。
2.培养学生的数学思维,并能比较熟练地写出一个数的倒数。
倒数的意义与求法。
从本质上理解倒数的意义。
一、创境导课、激发兴趣。
生:(大声喊道)想!
师:学科
生:科学
师:人人为我,
生:我为人人。
师:上海自来水,
生:水来自海上??
师:同学们,刚才的文字颠倒游戏好玩不?
生:好玩。
这是语文方面的倒数现象,数学方面把一个数倒一下会有什么现象,你们想知道吗?好,这节课我们一起来学习倒数的认识(板书)。
一、探索新知
1.师:(课件出示)同学们请看大屏幕,谁能准确的说出结果。(学生回答)
师:同学们计算的真准确,那同学们请观察算式,你有什么发现?
(先独立思考,然后小组讨论交流)
2.找学生汇报。
生:乘积都是1.
师:其他同学还有没有其他意见。
生:我发现分子、分母位置是颠倒的。
师:在数学中我们把乘积是1的两个数互为倒数。(板书)
师:例如倒数的认识的教学设计和倒数的认识的教学设计互为倒数,倒数的认识的教学设计的倒数是倒数的认识的教学设计,倒数的认识的教学设计的倒数是倒数的认识的教学设计。
师:同学们一起读一下。(学生齐读)
师:那谁来用刚才的。方法来说一说第二道题。(学生回答)
师:5×倒数的认识的教学设计那这个算数谁来说说?(学生回答)
师:通过刚才的学习,想一想,互为倒数的两个数有什么特点?
生回答,教师总结(课件出示)
二、深入讨论
(课件出示)同学们请看,下面那两个互为倒数?
学生回答。
师:(课件出示)同学们讨论一下:1的倒数是多少?0有没有倒数,为什么?(同学们互相讨论一下)
学生汇报讨论结果。
师:通过刚才的讨论以及前面学习的,说一说怎样求一个数的倒数?
找学生回答,教师总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。(同学齐读)
师:同学们刚才学习的你们会了吗?
生:学会了。
三、巩固练习
师:那老师来考考你,同学们请看下面的题(课件出示)。
老师找学生回答。
四、课堂小结
1.这节课你学到了什么?
2什么是倒数?怎样求一个数的倒数?(课件展示)
五、课后作业
数学书29页练习六1、2、3题
六.板书设计
倒数的认识
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
认识倒数课篇三
教学内容:
苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。
教学目的.要求:
认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。
教学重点难点:
掌握求倒数的方法,能熟练得求一个数的倒数。
教学过程:
一、导入新课
问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?
二、新授
教学例题
(1)出示例7
下面的几个分数中,哪两个数的乘积是1?
(2)学生回答。
(3)引出概念。
乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。
(4)学生举例来说。进行及时的评议。
(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?
归纳方法
小组讨论:
全班交流。
求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
问:5的倒数是几?1的倒数是几?
学生回答,并说原因。
追问:0有倒数吗?为什么?
指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。
除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。
教学“练一练”
学生回答。
提醒学生正确地书写格式。
三、巩固练习。
1、做练习六第17题
学生填书上后,集体订正,并说说是怎样想的。
2、做练习六第18题
指名口头回答,选择两题让学生说说思考的过程。
3、做练习六第19题
重点引导学生讨论每一组数的规律。
4、做练习六第21题
5、做思考题
联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?
四、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
五、作业
练习六第20题
板书设计:
(略)
认识倒数课篇四
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:倒数的意义与求法。
教学难点:1、0的倒数
教学用具:媒体展示台
教学过程:
一、竞赛激趣,揭示课题。
1、谈话:
师:同学们,你们喜欢比赛吗?现在我们进行小组间比赛。
(说明比赛事项)比赛内容:写两个数的乘法算式,要求:乘积等于1;比赛时间:30秒;比赛规则:每人每次写一式,写完后传给小组内其它同学。比赛结果评定:比较数量与正确率(重复计一次)。(写在白纸上)
2、学生开始紧张激烈比赛,教师组织评议,评选出优胜小组。
3、说明:其实我们的祖先早就已经研究过这方面的问题,这就是今天要学习的倒数。(板书课题)这堂课我们就来学习倒数的知识。
二、引导质疑,自主探究。
1、引导质疑。
师:看着“倒数”这个数学新名词,你的脑子里产生哪些问题?
学生可能提出:什么是倒数?
倒数是指一个数吗?
倒数应该怎样表述?
怎样求倒数?
倒数是不是一定是分数?
倒数有什么用?
是不是每个数都有倒数?..........
2、自主探究。
(1)明确学习方法。
师:今天我们采用自学加小组讨论的方法学习倒数的有关知识。同学们围绕刚才我们提出的这些问题先自学课本,然后小组讨论,解决问题。
(2)学生自学讨论,教师指导。
(3)组织全班交流:
a你现在知道什么是倒数了吗?强调:“互为”两个词的意思
b怎样求一个数的倒数?
3、质疑:在自学的过程中你们还有什么疑惑的地方吗?
三、巩固提高,拓展外延。
师:现在老师要来检查一下同学今天自学的效率怎么样?对自己有信心吗?
1、找朋友游戏(课前给七个同学发一张数字卡片)
出示卡片:(六位同学举着卡片依次站在黑板前)7/911/41/5086/599
规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
2、说出下列各数的倒数,说说你是怎么想的?
4/1116/9357/84/1510
(组织讨论:1的倒数是1,0没有倒数。你能用已有的知识来给大家解释吗?)
3、课本练习题:第4题。
4、数学诊所:“我来当名医”
认识倒数课篇五
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:
理解倒数的意义,求一个数的倒数。
教学难点:
从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/75×1/50
2、计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
说说你是怎样写得,有什么窍门?
你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数)
3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)
2、会找了吗?你能找到下列数的倒数吗?
3/54/967/2学生独立完成,然后交流。
(1)先说说你找到的这个数的倒数的,你是怎样找的?
(2)在找这些数的倒数中,你有什么想说的?
3、现在你对倒数有了什么新的认识?(0没有倒数,其他的数都有,1的倒数就是1。)
四、巩固深化。
1、做一做,写出下面各数的倒数,并说说你是怎样想的。
2、同桌互说倒数,你说一个数,让同桌说他的倒数。汇报几组。
3、判断题。书上第25页的第3题。
补充:(3)2/5×5/2=1,那么2/5是倒数。
(4)任何一个数都有倒数。
(5)如果一个数是a(0除外),那么这个数的倒数就是1÷a。重点讨论:一个数的倒数一定比这个数小。
那么哪些数的倒数比原数小、大或相等。
4、完成作业:作业本第12页的`1、2、3题。
五、课堂小结。今天这节课我们认识了倒数,你对倒数有什么认识?
《倒数》教学的想法和反思
结合自己的个人研究重点:
1、关注数学概念的内涵和外延的关系。
2、关注学生学习数学过程中的思维活动。
先给自己提几个问题:
1、倒数的内涵是什么?分子分母颠倒位置的外延与内涵的关系?如何处理两者的关系?
倒数的内涵是乘积是1的两个数。分子分母颠倒位置是倒数的外在表现,正因为分子分母颠倒了位置,那么他们的乘积就是1了,或者说因为乘积是1了,所以两个数成互为倒数就会产生这样现象。
内涵决定着外延,外延是内涵的一种表现,两者关系密切。如果让倒数的外延更丰富,那么对内涵的理解也就更充分。其实乘积是1和分子分母颠倒位置是有因果联系。
2、概念教学,一般是建立表象,然后逐步地去非本质的特征,抽象概括,最后变式巩固。但是由于倒数这一知识的本质是乘积是1,而学生往往会忽视这一本质,注重其分子分母颠倒位置的现象。因此要改变这样的教学过程。
于是,决定先直接对本质进行提练抽象(因为比较简单),然后在进一步观察现象、比较沟通(为什么叫倒数,是什么现象决定两个数的乘积是1)逐步地丰富,不断地理解本质。
认识倒数课篇六
1.在课前实际调研的基础上,交流常用的理财方式及其利弊,了解各种理财方式在生活中的应用价值。
2.在探究各种储蓄方式收益情况的活动中,体会数学知识在解决实际问题中的实际应用
的价值。
3.在分析、比较各数据的活动中,培养数据分析的能力,推理辨析,反思调整的意识。
4.在课前活动及课上探究的活动中,感受数学源自于生活,数学在生活中的广泛应用。
1.初步了解多种理财的基本方式,感受理财方式的优化。
2.在解决问题、辨析策略的过程中,体会数学在解决实际问题中的价值。
教学难点:能在自觉应用数学知识解决问题的过程中,提高分析数据、推理辨析、反思调整的意识。
学科德育、习惯培养、学科教学改进建议:在活动中培养学生解决问题策略的多样化以及分析数据、推理辨析、反思调整的意识。
教具准备:教学课件、根据学生的调查情况制作的各种图表。
一、谈话引入,组织交流
(一)以压岁钱为话题,引入要研究的问题
1.谈话引入:同学们,每到过新年的时候你们最高兴的一件事是什么?
师:对!得到压岁钱,这是我国古代留下来的一种民族习俗,其寓意是祝收到压岁钱的人在新的一年里顺利、健康,平安。
2.提问:那你们得到的压岁钱一般又是怎么处理的呢?
3.小结:看来我们大多数同学都是把压岁钱进行合理的储蓄,使其获得更大的收益,这就是基本的理财意识。(板书课题:理财)
4.交流汇报:咱班理财意识强的同学,走访了银行,采访了银行的专业人士,了解到了一些相关的信息想与我们大家分享。(课件上出现实践活动的照片)
(二)借助课前调研,了解理财知识
下面有请赵新莹同学与我们进行知识分享。
学生用自己制作的ppt介绍自己知道的理财知识,并且进行简单的说明。
二、结合调研结果,提出研究的问题
2.要想帮助大家解决这个问题你有什么需求呢?
3.师:为了满足大家的需求,老师给大家准备了一份学习资料,大家认真阅读,看看能找到哪些信息帮我们解决问题?(拿出学习资料1--浦发银行储蓄知识单)
预设:
(1)20xx年浦发银行定期存款利率
(2)复利计息方式:每次储蓄后将本息都取出来再进行储蓄。
第二年的本金=第一年的本金+第一年的利息
三、小组合作计算,尝试解决问题
(一)组织讨论,探究存储方式
预设:
(1)还不知道本金呢?
(2)存多长时间呢?
2.学生思考存储方式,猜想验证收益最高的方式
(1)那存三年,都可以怎么存呢?
出示要求:先独立思考,然后将你想到的存储方式写在纸上,并贴在黑板上。
(2)在这几种存储方式中,你们猜猜哪种存储方式的收益会最大呢?说说你的想法。
(3)是不是像大家所猜想的这样呢?我们需要--验证(算一算)
(二)小组合作,借助计算器进行计算,并发现规律。
1.小组合作,自由计算3年后的本息,验证猜测是否正确。
(1)1+1+1;(2)1+2;(3)2+1(4)3;
2.学生交流、汇报
3.发现规律
(1)提问:通过计算、交流你有什么发现或疑惑吗?
(2)交流发现
预设1:直接存三年收益最大,1年1年1年的存收益最小。
预设2:1年+2年和2年+1年的收益是一样的。
4.讨论:在刚才自己模拟的理财过程中,你获得了哪些经验?(学生随意表达自己的想法)
四、拓展知识,发散思维
1.提出问题
2.学生独立思考后,交流想法。
师:是不是像大家所说的这样呢?咱们课下可以试着来验证一下。
3.小结:上完这节课后,相信我们每位同学都成为了是一名小小的理财家。(板书课题)课前,通过调研发现还有众多的理财方式,但无论选择哪一种理财方式,老师都有一句话送给大家----投资有风险,入市需谨慎!
五、板书设计
小小理财家
1+1+11+21+32+1
利率
存期
本金
认识倒数课篇七
1.理解储蓄的含义,明确本金、利息和利率的含义。能正确地进行利息的计算。
2.经历储蓄的认识过程,体验数学知识之间的联系和广泛应用。
3.激发学生学习兴趣,培养学生的应用意识和实践能力。
掌握利息的计算方法。
理解税率的含义。
一、情境导入
(启发学生说出各种可能性和原因)
师生共同小结:人们常常把暂时不用的钱存入银行,储蓄起来。这样不仅可以支援国家建设,使得个人钱财更加安全和有计划,还可以增加一些收入,即到期可以取出比存入的要多些的钱。
那么同学们知道为什么有时我们把钱存在银行,最后去取的时候钱会变多呢?
同学们知道吗,在不同的银行,有时我们可以得到不同的利息,因为它们的利率不同。那么,什么是利率呢?今天我们就一起来学习一下。
教师板书课题:利率。
二、探究新知
1.引导质疑,理解相关概念。
(1)学生围绕上面提出的问题,以小组为单位,阅读教科书第11页,不理解的内容可在小组讨论或做上记号。
学生看书时,教师巡视指导,并参与学生的讨论。
(2)汇报交流。
师:通过看书学习和讨论,你知道了储蓄中的哪些知识?能向全班同学汇报一下吗?
教师根据学生的回答板书:
存款方式
活期
定期:零存整取、整存整取
本金:存入银行的钱叫本金。
利息:取款时银行多支付的钱叫利息。
利率:利息和本金的比值叫做利率。
利息=本金×利率×存期
教师说明:利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。同一时期,各银行的利率是一定的。
2.教学例4。
(1)课件出示例4。
(2)引导学生理解题意,本题中本金、利率、存期分别是多少?
(3)到期后取回的钱除了本金,还应加上利息。
(4)学生独立完成,后交流展示。
方法一:5000×3.75%×2=375(元)
5000+375=5375(元)
方法二:5000×(1+3.75%×2)=5375(元)
(5)教师讲解:存期是几年,就要选取相对应的年利率。本金与年利率相乘,得出的是一年的利息,求两年的利息就要乘2。
三、巩固练习
1.完成教科书第11页“做一做”。
先提问本题中本金、利率、存期分别是多少?后学生独立完成,集体订正。
2.完成教科书第14页第9题。
教师引导学生观察存款凭证后提问:存期是多长?半年用多少年计算?
四、课堂小结
这节课你学习了什么?你有哪些收获?
储蓄与人们的生活联系密切。本节课中概念较多,教学中结合具体实例,帮助学生理解本金、利息、利率的含义以及三者之间的关系,在引导学生探究学习的过程中,有意识地引导学生把所学知识运用到生活实践中去。学生在解决有关“利率”的问题时,可能会出现以下几个错误:计算利息时忘记乘存期;没有注意利率和存期的对应性;计算利息时,存款的利率是年利率,计算时所乘时间的单位应是年等。要将学生的错误转化成学习资源,在纠错中进一步理解和掌握知识。
认识倒数课篇八
二、教材分析:
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
三、教学目标:1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
四、教学重点:理解倒数的意义,掌握求倒数的方法。
五、教学难点:熟练写出一个数的倒数。
六、教学过程:
(一)、谈话
1.交流
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么联系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存联系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存联系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。
(二)、学习新知
对数游戏
1.学习倒数的意义
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,
生:3是4的3/4
师:7是15的7/15;生:15是7的15/7。
……
提问;看我们做游戏的结果,你们有没有发现什么?
生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。
生2:两个分数的分子、分母相互调换了位置。
生2:两个分数的乘积是1。
提问:那么怎样的两个数才是互为倒数呢?指导看书。
思考:(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗。请举例
评析:回答问题
理解“互为”的意义。怎样的两个数互为倒数。
找朋友游戏(课前每位同学发一张数字卡片)
练习
(!)出示卡片(六位同学举着卡片依次站在黑板前)
7/911/41/5086/599
(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队
提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?
3教学求一个数倒数的方法
出示例题:找出下列各数的倒数
2/37/41/591/7/80.4
小组讨论指名板演
提问:1.你是怎么找出2/3的倒数的?
生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3
生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。
2.你是怎么找出7/4的倒数的?
……
提问:我们怎样才能很快地找到一个数的倒数?为什么?
4.练习请剩下的没有找到朋友的同学继续找倒数
5.讨论:1的倒数是谁?0的倒数呢?
生:1的倒数是1
师:能说明一下理由吗?
生1:因为1与1的乘积还是1。
生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。
师:0的倒数呢?
生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。
生2:因为0与任何数相乘都得0,所以0的倒数是任何数。
生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
生4:0可以写成0/1,0/1的倒数是1/0。
生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。
6.完善求一个数的倒数的方法
三、巩固练习
(一)填空
1.因为5/3x3/5=1,所以和()互为();
2.因为15x1/15=1,所以()和()互为();
3.4/7与()互为倒数;
4.()的倒数是6/11
5.()的倒数是2
6.1/8的倒数是()
7.1/2/7的倒数是()
8.0.3的倒数是()
(二)判断
1.得数是1的两个数互为倒数。()
2.互为倒数的两个数乘积必定是1。()
3.1的倒数是1,所以0的倒数是0。()
4.分数的倒数都大于1。()
(四)思考
4/5x()=()x8
四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?
五、布置作业