推荐数学必修一知识点总结(推荐)(六篇)

时间:2024-11-15 作者:储xy
简介:百分文库小编为你整理了这篇《推荐数学必修一知识点总结(推荐)(六篇)》及扩展资料,但愿对你工作学习有帮助,当然你在百分文库还可以找到更多《推荐数学必修一知识点总结(推荐)(六篇)》。

总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结吧。什么样的总结才是有效的呢?这里给大家分享一些最新的总结书范文,方便大家学习。

推荐数学必修一知识点总结(推荐)一

1.1.1

算法的概念

1、算法概念:

在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点:

(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.

(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.

(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2

程序框图

1、程序框图基本概念:

(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

(二)构成程序框的图形符号及其作用

程序框起止框输入、输出框处理框法中任何需要输入、输出的位置。赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。判断某一条件是否成立,成立时在出口处标判断框明“是”或“y”;不成立时标明“否”或“n”。不可少的。表示一个算法输入和输出的信息,可用在算名称功能表示一个算法的起始和结束,是任何流程图学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。

1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,a框和b框是依次执行的,只有在执行完a框指定的操作后,才能接着执行b框所指定的操作。2、条件结构:

ab条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。

条件p是否成立而选择执行a框或b框。无论p条件是否成立,只能执行a框或b框之一,不可能同时执行a框和b框,也不可能a框、b框都不执行。一个判断结构可以有多个判断框。

3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件p成立时,执行a框,a框执行完毕后,再判断条件p是否成立,如果仍然成立,再执行a框,如此反复执行a框,直到某一次条件p不成立为止,此时不再执行a框,离开循环结构。

(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件p是否成立,如果p仍然不成立,则继续执行a框,直到某一次给定的条件p成立为止,此时不再执行a框,离开循环结构。

aapp成立成立不成立不成立p

当型循环结构直到型循环结构

注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步......执行的,累加一次,计数一次。1.2.1

输入、输出语句和赋值语句1、输入语句

(1)输入语句的一般格式

图形计算器格式input“提示内容”;变量input“提示内容”,变量(2)输入语句的作用是实现算法的输入信息功能;(3)“提示内容”提示用户输入什么样的信息,变量是指程序在运行时其值是可以变化的量;(4)输入语句要求输入的值只能是具体的常数,不能是函数、变量或表达式;(5)提示内容与变量之间用分号“;”隔开,若输入多个变量,变量与变量之间用逗号“,”隔开。2、输出语句

(1)输出语句的一般格式

图形计算器格式print“提示内容”;表达式disp“提示内容”,变量(2)输出语句的作用是实现算法的输出结果功能;(3)“提示内容”提示用户输入什么样的信息,表达式是指程序要输出的数据;(4)输出语句可以输出常量、变量或表达式的值以及字符。3、赋值语句

(1)赋值语句的一般格式

(2)赋值语句的作用是将表达式所代表的值赋给变量;(3)赋值语句中的“=”称作赋值号,与数学中的等号的意义是不同的。赋值号的左右两边不能对换,它将赋值号右边的表达式的值赋给赋值号左边的变量;(4)赋值语句左边只能是变量名字,而不是表达式,右边表达式可以是一个数据、常量或算式;(5)对于一个变量可以多次赋值。

注意:①赋值号左边只能是变量名字,而不能是表达式。如:2=x是错误的。②赋值号左

右不能对换。如“a=b”“b=a”的含义运行结果是不同的。③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)④赋值号“=”与数学中的等号意义不同。

1.2.2条件语句

1、条件语句的一般格式有两种:(1)ifthenelse语句;(2)ifthen语句。2、ifthenelse语句

ifthenelse语句的一般格式为图1,对应的程序框图为图2。

图形计算器变量=表达式格式表达式变量if条件then语句1else语句2endif满足条件?是语句1否语句

图1图2

分析:在ifthenelse语句中,“条件”表示判断的条件,“语句1”表示满足条件时执行的操作内容;“语句2”表示不满足条件时执行的操作内容;endif表示条件语句的结束。计算机在执行时,首先对if后的条件进行判断,如果条件符合,则执行then后面的语句1;若条件不符合,则执行else后面的语句2。3、ifthen语句

ifthen语句的一般格式为图3,对应的程序框图为图4。if条件then语句endif(图3)

是满足条件?否(图4)执行的操语句注意:“条件”表示判断的条件;“语句”表示满足条件时

作内容,条件不满足时,结束程序;endif表示条件语句的结束。计算机在执行时首先对if后的条件进行判断,如果条件符合就执行then后边的语句,若条件不符合则直接结束该条件语句,转而执行其它语句。

1.2.3循环语句

循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(while型)和直到型(until型)两种语句结构。即while语句和until语句。

1、while语句

(1)while语句的一般格式是对应的程序框图是

循环体while条件循环体wend满足条件?否是(2)当计算机遇到while语句时,先判断条件的真假,如果条件符合,就执行while与wend之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到wend语句后,接着执行wend之后的语句。因此,当型循环有时也称为“前测试型”循环。2、until语句

(1)until语句的一般格式是对应的程序框图是

do循环体loopuntil条件循环体满足条件?是否(2)直到型循环又称为“后测试型”循环,从until型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到loopuntil语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。分析:当型循环与直到型循环的区别:(先由学生讨论再归纳)(1)当型循环先判断后执行,直到型循环先执行后判断;

在while语句中,是当条件满足时执行循环体,在until语句中,是当条件不满足时执行循环

1.3.1辗转相除法与更相减损术

1、辗转相除法。也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下:(1):用较大的数m除以较小的数n得到一个商为m,n的最大公约数;若(3):若商

s2r1r0s0和一个余数

r0r0;(2):若

s1r0=0,则n

r1≠0,则用除数n除以余数

r1得到一个商

r0和一个余数

r1;

=0,则

r2r1为m,n的`最大公约数;若≠0,则用除数除以余数

rn1得到一个

和一个余数;依次计算直至

rn=0,此时所得到的即为所求的最

大公约数。2、更相减损术

我国早期也有求最大公约数问题的算法,就是更相减损术。在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。

翻译为:(1):任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。(2):以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。例2用更相减损术求98与63的最大公约数.分析:(略)

3、辗转相除法与更相减损术的区别:

(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术

则以减数与差相等而得到

1.3.2秦九韶算法与排序1、秦九韶算法概念:

f(x)=anxn+an-1xn-1+….+a1x+a0求值问题

f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0

=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0

求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1然后由内向外逐层计算一次多项式的值,即

v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0、

这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。2、两种排序方法:直接插入排序和冒泡排序1、直接插入排序

基本思想:插入排序的思想就是读一个,排一个。将第1个数放入数组的第1个元素中,以后读入的数与已存入数组的数进行比较,确定它在从大到小的排列中应处的位置.将该位置以及以后的元素向后推移一个位置,将读入的新数填入空出的位置中.(由于算法简单,可以举例说明)2、冒泡排序

基本思想:依次比较相邻的两个数,把大的放前面,小的放后面.即首先比较第1个数和第2个数,大数放前,小数放后.然后比较第2个数和第3个数......直到比较最后两个数.第一趟结束,最小的一定沉到最后.重复上过程,仍从第1个数开始,到最后第2个数......由于在排序过程中总是大数往前,小数往后,相当气泡上升,所以叫冒泡排序.

1.3.3进位制1、概念:进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数。对于任何一个数,我们可以用不同的进位制来表示。比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的。

一般地,若k是一个大于一的整数,那么以k为基数的k进制可以表示为:

anan1...a1a0(k)(0ank,0an1,...,a1,a0k),

而表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数

第二章统计

2.1.1简单随机抽样

1.总体和样本

总体:在统计学中,把研究对象的全体叫做总体.个体:把每个研究对象叫做个体.

总体容量:把总体中个体的总数叫做总体容量.

为了研究总体的有关性质,一般从总体中随机抽取一部分:研究,我们称它为样本.其中个体的个数称为样本容量。......

2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。3.简单随机抽样常用的方法:

(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:

(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签

,,,

(3)对样本中的每一个个体进行测量或调查

例:请调查你所在的学校的学生做喜欢的体育活动情况。5.随机数表法:

例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

2.1.2系统抽样

1.系统抽样(等距抽样或机械抽样):

把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

k(抽样距离)=n(总体规模)/n(样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

2.1.3分层抽样

1.分层抽样(类型抽样):

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准:

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。3.分层的比例问题:

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征

1、本均值:xx1x2xnn

2、.样本标准差:ss2(x1x)(x2x)(xnx)n222

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、

均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。

4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍(3)一组数据中的最大值和最小值对标准差的影响,区间(x3s,x3s)的应用;“去掉一个最高分,去掉一个最低分”中的科学道理2.3.2两个变量的线性相关1、概念:

(1)回归直线方程(2)回归系数2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存

的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即

因变量y)进行估计,即可得到个体y值的容许区间。

(3)利用回归方程进行统计控制规定y值的变化,通过控制x的范围来实现统计控

制的目标。如已经得到了空气中no2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中no2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;(2)回归分析前,最好先作出散点图;(3)回归直线不要外延。

第三章概率

3.1.13.1.2随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件s下,一定会发生的事件,叫相对于条件s的必然事件;(2)不可能事件:在条件s下,一定不会发生的事件,叫相对于条件s的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件s的确定事件;

(4)随机事件:在条件s下可能发生也可能不发生的事件,叫相对于条件s的随机事件;(5)频数与频率:在相同的条件s下重复n次试验,观察某一事件a是否出现,称n次试

验中事件a出现的次数na为事件a出现的频数;称事件a出现的比例nafn(a)=n为事件a出现的概率:对于给定的随机事件a,如果随着试验次数的增加,事件a发生的频率fn(a)稳定在某个常数上,把这个常数记作p(a),称为事件a的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数na与试验总次数n

na的比值n,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

3.1.3概率的基本性质

1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若a∩b为不可能事件,即a∩b=ф,那么称事件a与事件b互斥;

(3)若a∩b为不可能事件,a∪b为必然事件,那么称事件a与事件b互为对立事件;(4)当事件a与b互斥时,满足加法公式:p(a∪b)=p(a)+p(b);若事件a与b为对立

事件,则a∪b为必然事件,所以p(a∪b)=p(a)+p(b)=1,于是有p(a)=1p(b)

2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤p(a)≤1;2)当事件a与b互斥时,满足加法公式:p(a∪b)=p(a)+p(b);

3)若事件a与b为对立事件,则a∪b为必然事件,所以p(a∪b)=p(a)+p(b)=1,于是有p(a)=1p(b);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件a与事件b在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件a发生且事件b不发生;(2)事件a不发生且事件b发生;(3)事件a与事件b同时不发生,而对立事件是指事件a与事件b有且仅有一个发生,其包括两种情形;(1)事件a发生b不发生;(2)事件b发生事件a不发生,对立事件互斥事件的特殊情形。3.2.13.2.2古典概型及随机数的产生

1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。(2)古典概型的解题步骤;①求出总的基本事件数;

a包含的基本事件数②求出事件a所包含的基本事件数,然后利用公式p(a)=总的基本事件个数

3.3.13.3.2几何概型及均匀随机数的产生

1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:

构成事件a的区域长度(面积或体积)积);

p(a)=试验的全部结果所构成的区域长度(面积或体(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

推荐数学必修一知识点总结(推荐)二

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、落实课外活动的内容。组织和加强数学兴趣小组的活动内容。

1.通过实例,了解集合的含义,体会元素与集合的.属于关系。

2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

3.理解集合之间包含与相等的含义,能识别给定集合的子集。

4.在具体情境中,了解全集与空集的含义。

5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

7.能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

8.通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

9.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

10.通过具体实例,了解简单的分段函数,并能简单应用。

11.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

12.学会运用函数图象理解和研究函数的性质。

课时分配(14课时)

1.1.1集合的含义与表示约1课时9月1日
1.1.2集合间的基本关系约1课时9月4日 | | 9月12日
1.1.3集合的基本运算约2课时

小结与复习约1课时
1.2.1函数的概念约2课时
1.2.2函数的表示法约2课时9月13日 | | 9月25日
1.3.1单调性与最大(小)值约2课时
1.3.2奇偶性约1课时

小结与复习约2课时

1.通过具体实例,了解指数函数模型的实际背景。

2.理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

3。理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

4.在解决简单实际问题过程中,体会指数函数是一类重要的函数模型。

5。理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及其对简化运算的作用。

6。通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性和特殊点。

7.通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

课时分配(15课时)

2.1.1引言、指数与指数幂的运算约3课时9月27日30日
2.1.2指数函数及其性质约3课时10月8日10日
2.2.1对数与对数运算约3课时10月11日14日
2.2.2对数函数及其性质约3课时10月15日18日
2.3幂函数约1课时10月19日24日

小结约2课时

1。结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

2。利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

3。收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

4。根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

课时分配(8课时)

3.1.1方程的根与函数的零点约1课时10月25日
3.1.2用二分法求方程的近似解约2课时10月26日27日
3.2.1几类不同增长的函数模型约2课时10月30日 | 11月3日
3.2.2函数模型的应用实例约2课时

小结约1课时

考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。

推荐数学必修一知识点总结(推荐)三

  • 高中数学必修一知识点总结 推荐度:
  • 高二数学知识点总结 推荐度:
  • 高二数学必修四《任意角和弧度制》教案 推荐度:
  • 高一历史必修一知识点总结 推荐度:
  • 初中数学知识点总结 推荐度:
  • 相关推荐

高二数学必修2知识点总结

你可能体验过很多美妙的事情,比如抚慰心灵的乐曲,赏心悦目的画作,动人心弦的诗歌,不过有一样东西,能够包含上面所有的内容,那就是数学。下面是小编整理的高二数学必修2知识点总结,欢迎来参考!

一般我们把不含任何元素的集合叫做空集。

(1)按元素属性分类,如点集,数集。

(2)按元素的个数多少,分为有/无限集

关于集合的概念:

(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

集合可以根据它含有的元素的个数分为两类:

含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

非负整数全体构成的集合,叫做自然数集,记作n;

在自然数集内排除0的'集合叫做正整数集,记作n+或n*;

整数全体构成的集合,叫做整数集,记作z;

有理数全体构成的集合,叫做有理数集,记作q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

实数全体构成的集合,叫做实数集,记作r。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{ }”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

无限集有时也用上述的列举法表示,例如,自然数集n可表示为{1,2,3,…,n,…}.

2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

{x∈r│x能被2整除,且大于0}或{x∈r│x=2n,n∈n+},

大括号内竖线左边的x表示这个集合的任意一个元素,元素x从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

一般地,如果在集合i中,属于集合a的任意一个元素x都具有性质p( x),而不属于集合a的元素都不具有的性质p(x),则性质p(x)叫做集合a的一个特征性质。于是,集合a可以用它的性质p(x)描述为{x∈i│p(x)}

它表示集合a是由集合i中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

例如:集合a={x∈r│x2-1=0}的特征是x2 -1=0

s("content_relate");

【高二数学必修2知识点总结】相关文章:

1.高一数学必修一知识点总结

2.高中数学必修四知识点总结

3.高二语文必修3《蜀道难》知识点

4.高二语文必修5《滕王阁序》知识点整理

5.高二语文必修4柳永词两首知识点

6.高一政治必修一知识点总结

7.必修2《采薇》说课稿

8.高二外研社必修五作文

9.高二语文必修三作文

推荐数学必修一知识点总结(推荐)四

1、理解集合的概念和性质。

2、了解元素与集合的表示方法。

3、熟记有关数集。

4、培养学生认识事物的能力。

集合概念、性质

集合概念的理解

1、定义:

集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。

由此上述例中集合的元素是什么?

例(1)的元素为1、3、5、7,

例(2)的元素为到两定点距离等于两定点间距离的点,

例(3)的元素为满足不等式3x—2x+3的实数x,

例(4)的元素为所有直角三角形,

例(5)为高一·六班全体男同学。

一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??

为方便,常用大写的拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(1)确定性;(2)互异性;(3)无序性。

3、元素与集合的关系:隶属关系

元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如a={2,4,8,16},则4∈a,8∈a,32?a。

集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a记作a?a,相反,a不属于集a记作a?a(或)

注:1、集合通常用大写的拉丁字母表示,如a、b、c、p、q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈a颠倒过来写。

4

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作n__或n+ 。q、z、r等其它数集内排除0

的集,也是这样表示,例如,整数集内排除0的集,表示成z__

请回答:已知a+b+c=m,a={x|ax2+bx+c=m},判断1与a的关系。

【一、及时回忆】

如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。

可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。

【二、重复巩固】

即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网 络,达到对知识和方法的整体把握。

【三、合理安排】

复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。

【四、突破重点难点】

对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。

【五、效果检测】

随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。

总体原则

1、先做简单题,后做难题。

2、遇到较难的大题,把所有跟该题有关的知识点都写出来,要知道数学讲究步骤分。

3、若是证明题,万一不会,可以先写出已知条件,再写出要证明的最后一步,再一步一步往上推,中间步骤随便写点。(使用于粗心的教师,但我们不提倡,重点是要平时学好)。

一、整体把握、抓大放小

拿到试卷后可以先快速浏览一下所有题目,根据积累的考试经验,大致估计一下每部分应该分配的时间。对于能够很快做出来的题目,一定要拿到应得的分数。

二、确定每部分的答题时间

1、考试时占用了很多时间却一点也没有做出来的题目。对于这类题目,你以后考试时就应该尽量减少时间,或者放弃,等以后学习进阶了再尝试着做。

2、考试时花了过多的时间才做出来的题目。对于这类题目,你以后平时做题时要尽量加快速度,或者通过“反复训练”等提高反应速度,这样,你下次考试时能用较少的时间做出来。

三、碰到难题时

1、你可以先用“直觉”最快的找到解题思路;

2、如果“直觉”不管用,你可以联想以前做过的类似的题目,从而找到解题思路;

3、如果这样也不行,你可以猜测一下这道题目可能涉及到的知识点和解题技巧。

4、对于花了一定时间仍然不能做出来的题目,要勇于放弃。

四、卷面整洁、字迹清楚、注意小节

做到卷面整洁、字迹清楚,把标点、符号、解题步骤等小的地方尽量做好,不要丢掉应得的每一分。

推荐数学必修一知识点总结(推荐)五

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

1、4班共人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。xx5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约人,中等生约xx人,中下生约xx人,差生约xx人。

2、4班在初中升入高中的升学考试中,数学成绩在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分为xx,最低分为xx。

5班在初中升入高中的升学考试中,数学成绩在100’及以上的有xx人,80’—99’有xx人,60’—79’有xx人,40’—59’有xx人,40’以下有xx人,其中最高分为xx,最低分为xx。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

推荐数学必修一知识点总结(推荐)六

1、认真“听”的习惯。

为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。

2、积极“想”的习惯。

积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。

3、仔细“审”的习惯。

审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。

4、独立“做”的习惯。

练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。

5、善于“问”的习惯。

俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。

6、勇于“辩”的习惯。

讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。

7、力求“断”的习惯。

民族的创新能力是综合国力的重要表现,因此新大纲强调在数学教学中应重视培养学生的创新意识。教师应积极鼓励学生思考问题时不受常规思路局限,乐于和善于发现新问题,能够从不同角度诠释数学命题,能用不同方法解答问题,能创造性地操作或制作学具与模型。

8、提早“学”的习惯。

从小学生认识规律看,要获得良好的学习成绩,必须牢牢抓住预习、听课、作业、复习四个基本环节。其中,课前预习教材可以帮助学生了解新知识的要点、重点、发现疑难,从而可以在课堂内重点解决,掌握听课的主动权,使听课具有针对性。随着年级的升高、预习的重要性更加突出。

9、反复“查”的习惯。

培养学生检查的能力和习惯,是提高数学学习质量的重要措施,是培养学生自觉性和责任感的必要过程,这也是新大纲明确了的教学要求。练习后,学生一般应从“是否符合题意,计算是否合理、灵活、正确,应用题、几何题的解答方法是否科学”等几个方面反复检查验算。

10、客观“评”的习惯。

学生客观地评价自己和他人在学习活动中的表现,本身就是一种高水平的学习。只有客观地评价自己、评价他人,才能评出自信,评出不足,从而达到正视自我、不断反思、追求进步的目的,逐步形成辩证唯物主义认识观。

11、经常“动”的习惯。

数学知识具有高度的抽象性,小学生的思维带有明显的具体性,所以新大纲强调应重视从学生的生活经验中学习理解数学,加强实践能力的培养。在教学中,教师应强调学生手脑并用,以动促思,对难以理解的概念通过举实例加以解决,对较复杂的应用题通过画图找到正确的解答方法,对模糊的几何知识通过剪剪拼拼或实验达到投石问路的目的。

12、有心“集”的习惯。

学生在学习活动中犯错并不可怕,可怕的是同一问题多次犯错。为避免同一错误经常犯,有责任民的教师在教室里布置了错会诊专栏,有心计的学生建立错误的知识档案,将平时练习或考试中出现的错题收集在一起,反复警示自己,值得提倡。

13、灵活“用”的习惯。

学习的目的在于应用,要求学生在课堂上学到的知识加以灵活运用,既能起到巩固和消化知识的作用,又有利于将知识转化成能力,还能达到培养学生学习数学的兴趣的目的。

相关范文推荐

    最新重病爱心捐款倡议书(大全9篇)

    在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大

    2023年指定抚养权协议书 抚养权协议书(大全9篇)

    在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看

    有关述职述责述廉报告通用(7篇)

    “报告”使用范围很广,按照上级部署或工作计划,每完成一项任务,一般都要向上级写报告,反映工作中的基本情况、工作中取得的经验教训、存在的问题以及今后工作设想等,以

    述职述责述廉报告汇总(四篇)

    在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。报告对于我们的帮助很大,所以我们要好好写一篇报告。下面是小编带来的优秀报告范文,希望大家能够喜

    有关述职述廉述学报告怎么写(7篇)

    随着社会一步步向前发展,报告不再是罕见的东西,多数报告都是在事情做完或发生后撰写的。报告的格式和要求是什么样的呢?以下是我为大家搜集的报告范文,仅供参考,一起来

    精选数学教学案例分析范本

    在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小

    数学教学案例分析怎么写(八篇)

    每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面

    数学教学案例分析如何写(四篇)

    人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?

    精选数学教学案例分析怎么写(三篇)

    无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编为大家收集的优秀范文

    最新数学教学案例分析怎么写(5篇)

    无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参