教学反思有助于教师提高自身的教育教学水平,实现教育教学目标。请大家阅读下面这篇教学反思,作者通过反思和总结,发现了自己在学生管理中的不足,并提出了相应的改进措施。
教育工作者的小数乘小数教学反思大全(13篇)篇一
今天上午经过精心的准备,邀请实习教师走进课堂听课,课题是《小数乘小数》(教案已发),下面谈谈今天教学后的反思。
说是学生思维的外在表现形式,培养学生说的能力也是我们课堂教学应该重点关注的。这节课孩子能说的有课前的复习题:根据乘法算式说出积的小数位数;小数乘整数的计算方法;为什么可以先用整数乘法来计算;归纳小数乘法计算方法;怎样点积里的小数点;在计算的时候要注意些什么;等等这些问题学生都可以说出来,所以我管好自己的嘴巴坚决代替学生说。而我就是在适当的时机提出这些问题引导孩子们说,说得不完整我再请其他孩子来补充说,需要所有孩子都说得时候,我就让他们同桌互说。
例题是小数乘小数,是新知识;但今天这两节课里几乎所有的孩子都能独立进行计算,这个时候我就放手让他们去算,再来说说怎样算的:有的孩子说前面我们学习了小数乘整数,就是先按照整数乘法计算方法来计算,再点小数点,所以在计算小数乘小数的时候,也是先按照整数乘法方法来计算,再点小数点(这类学生是联系旧知解决新问题的);有的孩子说:我先把3.6扩大10倍,再把2.8扩大10倍,然后再把积缩小100倍来想的(这类学生是通过预习来找到解决问题的新方法),总之是解决难点了。
3、培养学生提问意识。带着问题去学习,可以更好的投入到学习中去。这节课我给孩子们提供了提问的空间:解决完房间的面积后,我问:你还能提一个一步计算的乘法问题吗?课的最后,我问:你还能提出比较复杂一点的问题吗?孩子们能根据我的设计提出有解决价值的问题,使得练习有了一定的层次性。
在比较中找出新知与旧知的联系,在比较中找到解决问题的策略,在比较中归纳计算方法。
(1)、例题与复习的比较,从而引出本课教学的重点——小数乘小数;。
(2)求阳台面积与求房间面积比较,引出两位小数乘一位小数的新问题,但比较后得知,计算的方法是不变的,进行了知识的迁移,从而得出了小数乘小数的计算方法。
(3)最后求总面积的两道算式的比较,引出把整副图看成一个大的长方形进行计算的这种方法比较简便;求阳台比房间小多少的时候,引出先用房间的长(3.6米)减去阳台的宽(1.15米)来计算比较简便。这里没有要求学生进行计算,但通过比较使所有学生感知到简便的列式方法,为后面的学习埋下伏笔。
(1)今天首先教学的b班,孩子们表现的很不错,我基本上是按着教案中的预设进行教学的。等到了a班,学生思想活跃,原本的一些设计就要跟着他们稍微调整。估算意识的渗透,b班是先估再算,a班是先算在估,这时处理估算的作用就有不同,a班算完了估,渗透了用估算来演算的教学思路;b班就是提高估算能力的一个小环节。
(2)b班比较顺利,就带来了一个好处:时间宽裕,所以有时间将练一练第二题全部上课堂练习本;a班就来不及了,所以我就让他们自己任意选一题做,然后进行讲评。
教育工作者的小数乘小数教学反思大全(13篇)篇二
教学片断:
1.出示课本例题7的小明房间和外面阳台的平面图。
提问:从图中可以知道哪些信息?根据这些信息,你能提出什么问题?
预设:小明的房间面积是多少?阳台面积是多少?
生成:房间面积和阳台面积一共是多少?房间面积比阳台面积多多少?
2.求小明的房间面积,怎样列式?
预设:3.8×3.2=小数乘小数怎么计算?让学生说一说准备怎么算。
学生独立完成,一个学生板演(正确的),展示另一个学生的算法(错误的)。让学生分别说说自己计算的想法。
生:把3.8看成4,3.2看成3,3.8×3.2≈4×3=12平方米。
【反思】:教材中先要求学生用三种估算的方法,体会房间面积的大小范围。而根据实际经验,学生其实潜意识里觉得估算就是四舍五入法,其余两种估算他们是很难想到的,那么我势必要在这里花较多的时间教授估算的问题,这与本课的重点不符。于是我便把估算设计到了后面,让学生明确通过估算可以初步确定哪个积才是合理的。但是评课的沈老师觉得我这是没有认真解读教材。当然他说的我没有让学生自己来判断121.6与12.16哪个正确的方法,如果估算放在前面教学,让学生结合刚才的估算就自然而然会判断了。实际上我在之前教学五年级的时候,试过这种方法,学生的回答完全没有我们想的那么好,他们基本不会把估算和计算结果联系起来判断。在平时的计算中,学生往往都是直接计算,而不会先估计,所以我此次设计想让学生在计算的结果上,养成用估算方法初步判断结果正确与否。当然,沈老师说我后面的计算全都没有提到估算,我承认确实是这样,教师需要提高自己的估算意识,这样才能带动学生的估算意识。
3.求阳台的面积是多少平方米?学生独立列式,展示学生的作业。
【反思】:本来我想展示学生错误的答案,可以让课堂冲突性更强。谁知让沈老师觉得我是之前小数乘整数没教好,所以在这堂课还要去强调列竖式时要数位对齐这个旧知。看来公开课需要伪装,我的侧重点完全偏离轨道了。
教育工作者的小数乘小数教学反思大全(13篇)篇三
本节课的内容是在学生掌握了小数乘整数的基础上进行教学的。通过对比建立新旧知识间的联系,学生学得比较轻松,正确率也较高。
在知识障碍出引发学生的思考,着力解决当两个因数都是小数时,积怎样处理点小数点。通过复习小数乘整数的内容,让学生进一步明确计算方法,特别是小数点的处理。在新知学习中,着重让学生观察因数的小数位数与积的小数位数之间有什么关系,从而得出因数中一共有几位小数,就从积的右边数出几位点上小数点。
1.列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因数的小数位数,从而出现了虎头蛇尾的错误频出。
2.计算出错仍是学生计算的拦路虎,该进位不进位,该对齐数位不对齐。
1.加强计算的练习,特别是加强口算题卡的练习,强化口算能力。
2.加强学困生的辅导,在课堂上多关注,多留给他们答题的机会。
教育工作者的小数乘小数教学反思大全(13篇)篇四
小数乘小数的计算方法,教参与教材是这样归纳的,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。其实质就是根据积的变化规律而归纳而成的。
学生掌握了小数乘整数的计算方法后,通过议一议、说一说在小组交流中大多数会利用积的'变化规律进行推导,把1.2x0.8的因数1.2和0.8分别扩大10倍算出积是96,要使积不变,积就要缩小到96的1/100,所以1.2x0.8=0.96.在这个环节,学生初步感知了积的小数数位和因数的小数数位的关系,因数共有几位小数,积就要从右到左点上几位小数。
接下来,我出示两道计算6.7x0.3和0.56x0.04,让学生在利用0.8x1.2所得的方法进行计算,然后排列出0.8x1.2因数一共有位小数,积0.96也是两位小数,6.7x0.3中因数一共有两位小数,积也有两位小数,0.56x0.04因数一共有四位小数,积也有四位小数,从而在这些例子当中让学生进一步感受到了积的因数的小数位数的关系,进而学生很自然的就归纳出,小数乘小数的计算方法,先按照整数乘法计算,看因数一共有同位小数,再从积的右边起数出几位,点上小数点,当位数不够时,要添“0”补足。
在知识的巩固过程中,突出竖式计算的书写格式,强调在计算时简要的说出计算的算理,如计算0.29x0.07时,要求学生不但要按书写格式书写,而且要求学生说出0.29x0.07,先29x7计算出积,再看因数一共有四位小数,就从积的右边起点上四位小数,位数不够的添“0”补足。
在整节课的学习中,学生开始对学习充满兴趣,积极的思考,运用发现的规律去解决问题,能正确计算小数乘整数,效果还是比较好的!
教育工作者的小数乘小数教学反思大全(13篇)篇五
小数乘小数是整数乘法的发展,是小数乘法教学的重点,也是难点,它是在学生学习了小数乘整数和整数乘整数的基础上进行教学的。本节内容应用转化和对比概括小数乘法的计算方法。即用转化的方法,将小数乘法转化为整数乘法。在转化的过程中,处理积中小数点的位置问题是学习的重点。我以为这一节知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实的情况大大出乎我的意料。在本节课的课后练习中,我发现学生出现以下错误现象:
1、竖式中的错误:部分学生列竖式时,按照加减法的计算方式对齐小数点的位置列式,显然是对算理没有理解。
2、积的小数位数数不对,体现在两方面:有的孩子把两个因数的小数点也算在小数位数里了,导致积的小数位数总是多两位。
3、还有部分学生在积的末尾有零时,先划去0再根据因数的小数位数点小数点,从而使积的小数位数总是少一位或几位。
4、由于因数中间有0的整数乘法没过关,在小数乘法笔算时也犯同样的错误。
对于学生所出现的这些错误,我对自己的课堂教学进行了深刻的反思:说算理对于学生计算方法的掌握,逻辑思维能力的培养的确具有积极的作用。然而说算理一定要建立在学生对计算过程和方法感悟的基础上,使学生对算理真正内化,理解实现对所学知识的“意义建构”。教学中准确把握学生的学习状况,学生的学情不一样,接受能力各不相同,基础也不同,要尽量抓住课堂上的四十分钟,多关注后进生对知识的掌握情况。多给他们说话、板演改错题的机会,真正做到因材施教。
给予学生更多的自主探索学习的时间,因为小数乘法计算方法的依据是因数变化与积的变化规律,应该放手让学生通过独立思考或小组合作学习的形式,自己举例子说明积的变化规律,这样获得的积的小数点与因数的小数点的关系才是主动的。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,做到既重视教学过程又重视教学结果;既注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。这样才能切实的提高课堂教学的效率。
教育工作者的小数乘小数教学反思大全(13篇)篇六
小数乘法已经进行了两节课,现在讲一下讲完两节课的感受。
整节课还是我主导的多,学生主动发现的少,是我太心急了。工作一年,反而不知道该怎么样讲课了。
小数乘法先让学生回顾了小数乘整数,回顾买3个水杯多少钱?
学生口算3.2×3=9.6。
然后提出问题:爸爸又想买草莓,根据图片你能得到哪些信息?
学生知道单价乘数量就是总价。
列式为9.9×0.4,首先进行估算,需要的钱少于4元。然后进行精确的竖式计算。这是本节课的重难点。
学生对于计算过程也会理解。
但是,真正在交上来的作业过程中,却漏洞百出,让我的内心甚是惶恐。
作业主要出现的问题是:
1.小数乘小数的竖式出现错误:0参与运算过程当中。
2.竖式当中末尾不划0。
3.小数点直接下拉到竖式中或者计算原理不清楚。
上式中,第一幅图片10.5=2.1×5。
第二幅图片0.86=0.43×0.2,0.43=0.43×1。
第三幅图片10.5=2.1×5,6.3=2.1×3,第一位因数按小数计算,第二位因数分别按整数计算。
4.一种新的计算方法在学生当中出现。懂原理,但是不会写简便形式。
上式中0.0190=0.38×0.05,0.076=0.38×0.2。
该如何纠正学生的错误呢?下面是预设的解决办法。
假设一:学生不懂原理。该如何解决。
具体方法:说过程。
先出示几道错题,让学生感受下混乱的竖式能计算出正确的结果吗?
学生自己解决,老师引导。
小数直接参与到计算过程当中。
假设二:学生已经懂原理,但不会写正确的计算过程。【老师直接指导】
具体方法:课堂上集中解决。写出几种错误形式供学生参考。
多余的计算:000。
计算过程中不得随意改变数的大小。
实施效果:再次对交上来的作业,学生的格式情况良好,除个别学生需要再辅导外,基本上都能写出正确的小数乘法竖式。
教育工作者的小数乘小数教学反思大全(13篇)篇七
本节课的内容基于整数乘法上,而进行有关计算的课程,我按以下步骤进行教学。
教材并没有归纳小数乘小数的法则,参考人教版这样归纳:先按照整数乘法,计算看因数中一共有几位小数,再从积的右边筛骨出几位,点小数点。在教学中,还有学生根据前面的小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积就是几位小数。向学生指出,如果积是未化简的情况,这个方法可以使用。因此,本课的重点和难点都应当在于帮助学生发现和掌握。因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数的位置的方法。关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,避免学生出现计算枯燥无味的感觉。
教学方法上,更多地可以依赖知识的结构间的迁移类推,让学生自主发现归纳饿掌握。
最后总结一句口诀:
一算、二数、三点点。
最后是自主实践,先由一两个错题,通过让学生找错,说理由,进一步深化理解。
总之这节课我紧紧抓住积的变化规律来引导学生理解确定积的小数的位置的方法,关注了学生思维的有效生长。
教育工作者的小数乘小数教学反思大全(13篇)篇八
第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究后比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算方法。
本班有51名学生,其中男的有27人,女的有24人。从上学期的期末检测来看,大部分学生基础知识掌握得比较好,但也有10位同学基础比较差,最简单的整数乘法都不会计算。另外学生的自主学习能力一般,有合作学习的习惯。同时,在学习小数乘小数之前,学生们已经学习了整数乘法和小数与整数相乘,这对学习小数乘小数已有了些基础,现在来学小数乘小数应该一不很难。
1、让学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确地进行相关的计算。
2、 让学生在探索计算方法的过程中进一步增强探索数学知识的能力。培养学生的推理能力和概括能力。
3、 让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的兴趣,增强学好数学的信心。
本节课的教学重点是让学生通过主动探索,理解并掌握小数乘小数的计算方法。难点是理解把小数乘法转化成整数乘法后确定积的小数点位置的道理。
教育工作者的小数乘小数教学反思大全(13篇)篇九
五年级的学生已经具备了一定的分析判断的能力,对身边与数学有关的事物有较强的好奇心和探索精神,我抓住他们这一特点,在学习过程中,多采取小组合作探究的教学方法,充分体现学生的学习积极性和主动性,极大地激发了学生的学习热情。
在进行“验算”环节,首先让学生判断例题中计算的对与错,再说出自己的理由,鼓励他们大胆思考,然后小组合作讨论,激发有创新的思路。经过交流讨论,同学们有的根据条件来说“鸵鸟的速度是非洲野狗的1.3倍,所以鸵鸟的速度应该快,而不是比56小!”说得极有道理,这是上节课中的一个重要知识点,加入了自己的理解,还有学生补充道:“56乘1.3的积应该比56大,因为一个非0的数乘大于1的数,积比原来的数大!”教材上也有,但这样的解释更清查明了!更有学生利用上节课“因数与积的小数数位间的关系来解释”,超越教材!
在整节课的学习中,学生能积极的思考,运用发现的规律去解决问题,效果还是比较好的!不足之处在于个别学生在形成技能环节,还需要多练习,还有待提高。
教育工作者的小数乘小数教学反思大全(13篇)篇十
在教学前,我对学生可能出现的问题预设的不是很充分,本以为学生已经会计算多位数的乘法,只要让学生理解了“积的小数位数是两个因数小数位数之和”后就可以轻而易举的掌握小数乘法计算了,可是教学下来学生练习中出现的情况却让我始料不及。总结起来大致有以下几种:
1、对位问题:初学时,小数乘法的对位也遵守小数加减法的'对位方法,造成乘得的积的末尾对位不准。随后,计算小数加减法时按照小数乘法的对位方法,造成不同计算单位相加减的错误。
2、0的问题:一是在竖式计算过程中,因数中的零也去乘一遍,不会简便了;二是,小数乘整十、整百之类的数,先按整数乘法的方法乘出积后,不把整十、整百数后面的零落下来就点小数点,点上小数点后再添零,随后又根据小数的性质划去。
3、计算上的失误:做题马虎、不仔细。看成整数乘法算好后,忘加小数点;或小数点打错位置;做完竖式,不写横式的得数等。
面对这些情况,我想,如果在课前对学生的知识基础进行一个课前预测,对学生有了充分的把握,课堂的效率会高一些。
今后教学中我要注意:
1、要进一步突出学生的主体地位。这一阶段,教师主导性太强。在学生做题中出现错误时,我总是急于给同学分析做错的情况,而没有让同学自己找找原因。如果让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。
2、新授前的复习铺垫要充分。如果相关复习不够到位,一方面是不利于学生从旧知上迁移出新知识;另一方面是学生就不能清楚新旧知识间的联系与区别。如果在学习之前,提前让学生作好整数乘法和小数初步认识的复习,而不应该急于按教学计划开课,效果可能会好些,错误会少些。
另外,要把好计算关,在平时的教学中,要多加强口算题的训练,以提高计算正确率,给学生夯实基础。
教育工作者的小数乘小数教学反思大全(13篇)篇十一
小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右起数出几位,点上小数点。在实际教学中,有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积(指未化简的)就是几位小数。这两种说法实际上是一致的,都可从由积的变化规律中得出,因此,本课的重点和难点都应当在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。
关键在于适当弱化积的计算过程,突出寻找积的小数位数与因数的小数位数的关系,以保证学生思推的高效性,也免计算时的枯燥无味的感觉。而教法上更多地可以依知识的生长结构近移类推,让学生自主发现、归纳和掌握。
小数乘小数是第一单元的一个教学重点,它是学生在学习了小数乘整数的基础上进行教学的。我以为这一知识学生已有了一定的基础,只要重点掌握了小数乘法的算理,学起来应该是比较轻松的,可事实大大出乎我的意料。
由于对难点问题——积的小数点的位置处理得不到位,所以在课后练习中,学生出现错误的现象比较多:1.方法上的错误。例如在教学例3(2.4×0.8)时,学生能流利地说出先将两个因数分别乘10.这样积想当于来100,为了使积不变,最后还要将积除以100;但是在计算的过程中,学生不能将算理与方法结合起来,不能正确地解决积的小数点的问题,2.计算上的失误。(1)部分学生在积的末尾有0时,先画去0再点小数点;部分学生在遇到因数是纯小数或因数中间有0时,还要将0再乘一遍。(2)因数的数位较多时,个别学生直接写出得数(如4.8×0.24的竖式下直接写出152,没有计算的过程),做完竖式,不写横式的数等,面对学生出现的这样那样的错误,我不得不重新开始审自已的课堂,审视自已的教学,并对此进行了深刻的反思。
教育工作者的小数乘小数教学反思大全(13篇)篇十二
“小数乘小数”是本单元的一个教学重点,小数乘小数这部分的知识,是在学生学习了小数乘整数的基础上进行教学的。小数乘小数的计算在日常生活中以及进一步学习中都有广泛的应用,小数乘小数即是小数乘、除法的重要组成部分,学生学习本节课有利于学生完整的掌握小数乘法的计算方法及运算定律的理解,提高应用四则运算提高解决简单问题的能力。本课的重点和难点都在于帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,形成比较简单的确定积的小数点位置的方法。
二、亮点。
1、创设情境——激发兴趣。
由于计算教学枯燥无味,所以学生对计算教学的内容在学习时缺乏热情和兴趣,对计算的练习备感烦躁。因此,提高学生对计算学习的兴趣在本节课的教学中显很重要。课一开始我首先为学生创设了一个“计算比赛”的情境:超市里橘子搞特价,5.4元每千克,照这样计算,班主任王老师买了4千克应该付多少钱?学校午托部买了40千克应该付多少钱?对这样的教学情境,学生感到自然、亲切,同时解决的是自己眼前的问题,学习兴趣倍增。很快计算完,此处巧妙的复习了小数乘以整数的计算方法。紧接着,又说道,班内学习委员张明的妈妈要过生日了,她用零花钱给妈妈买了0.8千克橘子,应花去多少钱?学生列算式已经不是难点。
2、发挥学生的主体作用。给予学生更多的自主探索学习的时间,因为小数乘法计算方法的依据是因数变化与积的变化规律,应该放手让学生通过独立思考或小组合作学习的形式,自己举例子说明积的变化规律,这样获得的积的小数点与因数的小数点的关系才是主动的。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,做到既重视教学过程又重视教学结果;既注重新旧知识的联系、讲清算理,又要突出积的变化规律、突出竖式的书写格式、突出因数中小数的位数与积中小数的位数的关系。这样才能切实的提高课堂教学的效率。
3、关注后进生,对于学生所出现的这些错误,我觉得说算理对于学生计算方法的掌握,逻辑思维能力的培养的确具有积极的作用。然而说算理一定要建立在学生对计算过程和方法感悟的基础上,使学生对算理真正内化,理解实现对所学知识的“意义建构”。教学中准确把握学生的学习状况,学生的学情不一样,接受能力各不相同,基础也不同,要尽量抓住课堂上的四十分钟,多关注后进生对知识的掌握情况。多给他们说算理、板演改错题的机会,真正做到因材施教。
三、不足之处:
1、列竖式时出现了点错小数点的现象,有的只关注第一个因数的小数位数,有的只关注第二个因数的'小数位数,顾此失彼的错误频出。
2、该进位不进位,该对齐数位不对齐的错误还是屡见不鲜。
四、改进措施:
1、加强计算的练习,特别是加强口算题卡的练习,强化口算能力。
2、加强学困生的辅导,在课堂上多关注,多留给他们答题的机会。
教育工作者的小数乘小数教学反思大全(13篇)篇十三
今天教学《小数乘小数》,教材以计算布告栏玻璃面积为情境,引出需要学习的小数乘小数的计算题,再让学生进行探索尝试。从昨天的教学中我发现在理解算理时,没有学生借助情境。因此,教材虽然符合从生活中发现数学、应用数学及解决数学问题的要求,情境本身的设置对于小数乘小数的算理推导过程有用,但对学生而言并无实质的作用。小数乘小数与小数乘整数相比较,计算方法可以类推,算理本质上是一致的,都可以通过积的变化规律加以验证。因此,我把帮助学生发现和掌握因数中小数位数变化引起积中小数位数变化的规律,发现比较简单的确定积的小数点的方法为本课的重点和难点。
课中以1.2×0.8让学生自主探索。在结果是9.6与0.96的争论中,学生运用估算的方法,把因数0.8保留整数计算,1.2×1=1.2,准确的积肯定小于9.6,不可能是9.6。于是,很多学生想到了把小数乘整数的算理迁移到了新知,因数中小数位数变化引起积中小数位数变化证明了0.96是正确答案。再以2.9×7.12、0.24×1.5细化过程,巩固算理。借助学生的竖式,有学生把2.9写在上面,有学生把7.12写在上面,从对比中学生明确数位多的写在上面比较简单。小数点对齐的竖式与末尾对齐的竖式对比中,学生理解了我们实际上是看作712×29计算的,整数乘法是个位对齐,小数乘法转化成整数乘法来计算的也应该是末尾对齐,小数加减法要求小数点对齐,小数点的确定中再一次巩固算理。
通过这样的三道计算题,学生基本计算障碍已被扫清,关键是如何准确确定积的小数点的位置?如果只是用计算为强化训练,课堂单调枯燥,索然无味,学生无兴趣可言,一些计算策略、方法也无法更有效的形成。通过设置有思维的“陷阱”的练习,突出重点难点关键点,真正激起学生思维的震撼,亲身体验计算方法的生长过程,从而有效形成计算的技能。
练习一:根据182×23=4186请你快速找出积的小数点应该点在哪里?
1.82×2318.2×2.31.82×2.30.182×0.23。
让学生根据整数乘法的积,确定小数乘法的积的小数点,再一次理解算理,并可以减少学生的繁琐计算,在快速回答时,学生体验和感悟到确定积的小数点位置的简便方法。
练习二:182×23=4186,如何让等式182×23=4.186成立呢?
再次根据整数乘法的积,确定小数乘法的积的小数点,不过这次是根据积的位数,确定因数的位数。在学生的不同答案中,学生又一次感悟到因数中小数的位数与积的位数之间的关系,是学生思维认识上的一次升华。
于是,让学生回顾刚才的探索,对于小数乘小数,怎样迅速的确定小数点的位置?你有什么经验?交流中,对于小数乘小数的计算方法的得出非常自然,学生用自己的理解归纳得很到位。
练习三:1.25×3.2=4,想一想,这一题做对了吗?
本节课我不是用大题量训练来强化计算方式,而是从练习设计上触动学生的思维,关注学生数学思维的有效生长。
作业反馈:作业本上的练习难度大,课堂上重视竖式计算,对于口算,后进学生脱离竖式有点茫然,需老师的指点。对于※号题,根据138×25=3450,使下面的等式成立。()×()=3.45()×()=345。个人感觉对于第一节课后就是这样有思维的练习,一部分学生还真有点不知所措。