范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
三角形形的面积教学反思篇一
《 三角形面积的计算》这节内容是在学生已初步掌握了平行四边形、三角形特征、长方形、正方形的面积计算方法,以及初步认识图形的平移、旋转等基础上进行教学的。为了使学生轻松地投入到学习中,激发学生学习兴趣,真正掌握本节知识,我在设计这堂课时是这样构思的。
我从学生最熟悉的平行四边形入手,通过复习平行四边形的面积推导公式,为探究新知作了很好的铺垫。同时直接引出本节的课题:三角形面积的计算。
出示课本三角形图,先让学生观察每个三角形的形状、底和高各是多少?讨论“图中涂色三角形的面积各是多少平方厘米?”并鼓励学生多角度思考问题,积极说出自己不同的方法,在此培养了学生的发散思维能力,从而提出猜想:图中三角形的面积是平行四边形面积的一半吗?调动了学生的积极性,为学生主动探索打下了良好的心理基础。
在教师的引导下,把两个完全一样的三角形拼成平行四边形,得出三角形面积是平行四边形面积的一半。又根据三角形的底等于平行四边形的底,三角形的高等于平行四边形的高,平行四边形的面积等于底乘高,所以三角形的面积就等于底乘高除以2,从而沟通了新旧知识间的联系。培养了学生的思维能力,渗透了“平移”、 “转化”思想。经历探究出三角形面积公式的活动,体验了知识的形成过程以及合作探究的兴趣。
在这个练习中,主要运用所学知识来解决问题,使学生尝到应用知识的乐趣
三角形形的面积教学反思篇二
《三角形面积的计算》这节内容是在学生已初步掌握了平行四边形、三角形特征、长方形、正方形的面积计算方法,以及初步认识图形的平移、旋转等基础上进行教学的。为了使学生轻松地投入到学习中,激发学生学习兴趣,真正掌握本节知识,我在设计这堂课时是这样构思的。
我从学生最熟悉的平行四边形入手,通过复习平行四边形的面积推导公式,为探究新知作了很好的铺垫。同时直接引出本节的课题:三角形面积的计算。
出示课本三角形图,先让学生观察每个三角形的形状、底和高各是多少?讨论“图中涂色三角形的面积各是多少平方厘米?”并鼓励学生多角度思考问题,积极说出自己不同的方法,在此培养了学生的发散思维能力,从而提出猜想:图中三角形的面积是平行四边形面积的一半吗?调动了学生的积极性,为学生主动探索打下了良好的心理基础。
在教师的引导下,把两个完全一样的三角形拼成平行四边形,得出三角形面积是平行四边形面积的一半。又根据三角形的底等于平行四边形的底,三角形的高等于平行四边形的高,平行四边形的面积等于底乘高,所以三角形的面积就等于底乘高除以2,从而沟通了新旧知识间的联系。培养了学生的思维能力,渗透了“平移”、“转化”思想。经历探究出三角形面积公式的活动,体验了知识的形成过程以及合作探究的兴趣。
在这个练习中,主要运用所学知识来解决问题,使学生尝到应用知识的乐趣。
三角形形的面积教学反思篇三
有生命的课堂,应该是思维灵动的课堂,既要通过精心的预设,激发思维的灵动,更应巧用生成的教学资源,应情境而变,敏锐捕捉不期而至的生成点,才能演绎不曾预约的精彩应情境而变,提升课堂思维的灵动。
课堂教学是一个动态生成的过程,无论我们预设得如何的充分,都无可避免地存在着许许多多的不确定因素:
记得我在上《三角形的面积计算》一课时,引导学生通过探究得出三角形面积公式后,出示这样一道判断题:等底等高的三角形面积相等。
在预设中,我认为这样的判断在前面的探究基础上让学生判断应该是没有什么问题的,可是当我让学生用手势判断时,竟然有三分之一的学生判断是错误的。于是我有意引导持不同意见的学生来一场辩论。
我首先请一名判断错误的学生起来说理由。
生1:等底等高的三角形,就有可能存在形状不同的情况,那就有可能面积不同。
这时持反方意见的一个学生站起来:老师让我来问问他。
生2:你先说说求三角形的面积要知道哪两个条件?
生1:要知道三角形相对应的底和高。
生2:怎么求三角形的面积?
生1:用底乘高除以2呀!
这时很多判断错误的`学生开始反思了。
生2:那底和高相等,用公式来计算面积会不相等吗?
生1也在反思,但仍坚持:但它们的形状……
生3:老师,我来画图给他看。
于是,学生上讲台先用直尺在黑板上画了一组平行线,并在两条平行线之间画了几个等底等高的三角形。
生1:哦,我懂了。
这个本来在教学预设中学生应该在可以轻松解决的问题,打乱了我按部就班的教学,但学生的学习积极性和主动性被充分调动起来,迸发出智慧的火花。
我们在日常教学中,要尊重学生不同的思维层次,灵活的利用教学资源进行重组,沿着学生思维的轨迹,多角度地去引导学生,与学生一起生成。在预设中体现教师的匠心,在生成中展现师生智慧互动的火花!让课堂充满生成的美丽。
三角形形的面积教学反思篇四
个有生命的课堂,应该是思维灵动的课堂,既要通过精心的预设,激发思维的灵动,更应巧用生成的教学资源,应情境而变,敏锐捕捉不期而至的生成点,才能演绎不曾预约的精彩应情境而变,提升课堂思维的灵动。
课堂教学是一个动态生成的过程,无论我们预设得如何的充分,都无可避免地存在着许许多多的不确定因素:
记得我在上《三角形的面积计算》一课时,引导学生通过探究得出三角形面积公式后,出示这样一道判断题:等底等高的三角形面积相等。()
在预设中,我认为这样的判断在前面的探究基础上让学生判断应该是没有什么问题的,可是当我让学生用手势判断时,竟然有三分之一的学生判断是错误的。于是我有意引导持不同意见的学生来一场辩论。
我首先请一名判断错误的学生起来说理由。
生1:等底等高的三角形,就有可能存在形状不同的情况,那就有可能面积不同。
这时持反方意见的一个学生站起来:老师让我来问问他。
生2:你先说说求三角形的面积要知道哪两个条件?
生1:要知道三角形相对应的底和高。
生2:怎么求三角形的面积?
生1:用底乘高除以2呀!
这时很多判断错误的学生开始反思了。
生2:那底和高相等,用公式来计算面积会不相等吗?
生1也在反思,但仍坚持:但它们的形状……
生3:老师,我来画图给他看。
于是,学生上讲台先用直尺在黑板上画了一组平行线,并在两条平行线之间画了几个等底等高的三角形。
生1:哦,我懂了。
这个本来在教学预设中学生应该在可以轻松解决的问题,打乱了我按部就班的教学,但学生的学习积极性和主动性被充分调动起来,迸发出智慧的火花。
我们在日常教学中,要尊重学生不同的思维层次,灵活的利用教学资源进行重组,沿着学生思维的轨迹,多角度地去引导学生,与学生一起生成。在预设中体现教师的匠心,在生成中展现师生智慧互动的火花!让课堂充满生成的美丽。
三角形形的面积教学反思篇五
教学内容:人教版第九册第三单元的《三角形面积的计算》。
教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点:掌握三角形面积的计算方法。
教学难点:理解三角形面积计算公式的推导过程。
教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程:
三角形形的面积教学反思篇六
昨天,布置)(学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形形的面积教学反思篇七
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形形的面积教学反思篇八
在本节课教学中,我引导学生发现问题、解决问题。在解决问题的过程中,我充分放手,让学生自己探索计算方法,学生通过独立思考,小组交流讨论,经历与他人交流的过程,培养学生思维的独立性和灵活性。
同时,我让学生用自己的语言进行表述,而不是强求统一的语言进行操练,使学生在一种自由、民主、和谐的氛围中学习。在教流过程中让学生感受到集体的智慧是无穷的,懂得欣赏别人,能够取长补短。
我发现学生动手的能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形和用三角形的中位线剪拼后成为一个平行四边形。
从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作是为什么,学后只做了一次“机械的操作工”而为什么要这样去动手,学生却不得而知。
看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的.
三角形形的面积教学反思篇九
成功之处:
在本节课教学中,我引导学生发现问题、解决问题。在解决问题的过程中,我充分放手,让学生自己探索计算方法,学生通过独立思考,小组交流讨论,经历与他人交流的过程,培养学生思维的独立性和灵活性。同时,我让学生用自己的语言进行表述,而不是强求统一的语言进行操练,使学生在一种自由、民主、和谐的氛围中学习。在教流过程中让学生感受到集体的智慧是无穷的',懂得欣赏别人,能够取长补短。
不足之处:
我发现学生动手的能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形和用三角形的中位线剪拼后成为一个平行四边形。从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作是为什么,学后只做了一次“机械的操作工”而为什么要这样去动手,学生却不得而知。看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的.