每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
教学反比例反思数学篇一
今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。
周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。
教学反比例反思数学篇二
其实我们这部分的内容在五年级就已经学过了,只是没有告诉学生这样的两种量的变换规律就是成正比例。特别是我们在上学期学过了比的意义、比的化简与比的应用。联系比例的式子体会到生活中存在这很多像这样的变量关系。让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量。
课堂上我设计了情境:当单价一定时,总价与数量的变化关系。先让学生观察数量是怎样变化的,再看总价又是怎样变化的。引导学生观察并思考:当数量发生变化时,总价怎样变化;接着一个情境则是,购买同一种苹果(也就是当单价一定时),应付的钱数与购买的苹果质量之间的关系。引导学生认识到:当速度一定时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价一定时,应付的钱数随购买数量的变化而变化,在变化过程中应付的钱数与质量的比值相同。让学生总结出:1.两种变量是不是相关联的量;2.在变化的过程中,这两种量比值是否一定。
《正反比例练习》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
教学反比例反思数学篇三
由于反比例函数的内容比较抽象、难懂,历来都是学生怕学的内容。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在反比例函数的意义的教学中做了一些尝试。由于学生有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中利用类比、归纳的数学思想方法开展数学建模活动。
我选择了百米赛跑中时间与速度的关系等素材组织活动,让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的意义,构建反比例的数学模型就显得水到渠成了。
为了使学生进一步弄清反比例函数中两种量之间的数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了问题二使学生对反比例的一般型的变式有所认识,设计问题三使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的思路进行,达到了预计的`效果。此环节暴露的问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。
设置问题四的目的、问题五两个题目是让学生得到求反比例函数解析式的方法:待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。此环节学生基本达到预定效果。从生活走向数学,从数学走向社会。教学是一个充满遗憾的过程,通过反思能够不断的提高设计的能力、应付课堂上突发事件的技巧,从而将教学机智发挥到最高,减少教学当中的遗憾,学生通过反思完善自己的知识体系,将最近发展区的知识与新的知识单位进行结合,提炼学习技巧达到创造性学习的目的。
另外课堂中指教者的示范作用体现的不是很好,板书不够端正,肢体语言的多余动作,需要在今后的教学过程中严格要求自己,方方面面进行改善!
教学反比例反思数学篇四
时间3月6号地点办公室
学科数学年级办公室
主发言人高欢发言主题
出席人员数学教师
缺席人员无
讨论内容围绕“比例”和“正反比例”这两单元李梅芝老师提出了以下三点问题:
1、“正比例的意义”是一个对于小学生来说非常抽象的数学概念性知识。在教学中就直接采用课本中的例题,忽视调动学生的生活经验。如果在这儿能创设情境充分调动学生的日常概念,用日常概念来帮助理解数学概念应该有助于帮助学生初步感知“正比例关系”(教学设计中创设师生写字比赛的生活情境等)。
2、学生第一次接触正比例,教师不能在简单的引导学生完成书中例1、例2后就急于出示正比例的意义,其实学生根本就没有完成对新知的建构。如果能让学生依靠直接经验,从大量的具体例子出发,主动概括出正比例的本质特征,也许学生的理解要深刻得多,准确得多。在学生充分体验正比例意义的过程中,教师应该舍得花时间,学生不懂坚决不急于出示概念。
3、在讲解了正比例的意义后,在学生还是囫囵吞枣、似懂非懂的时候,教师又忙不迭的给出判断题,人为地进一步造成了学生认识上的混淆。也许在揭示正比例的意义后可以先出一组成正比例的例子,以帮助学生巩固正确的认识,再出示反例以进一步明确认识。
围绕这三点问题,我们六年级数学组的老师开展了讨论交流:
郭虹:我同意李老师的说法.首先我会创设与学生生活密切相关的例子,激发学生的学习兴趣.比如我会跟学生说,成绩的取得是与平时认真学习成正比的,然后我才进入例题的学习.正如作者说的一节课时间不够,下节课我会出大量的习题来进行练习,从而让学生得到知识上的巩固。
范斌:正比例意义是比较抽象的概念,我认为应从学生的生活出发,正如“新课标”指出的让学生学生活中的数学。教学例题时,首先设计学生身边的生活事例,如学生从家到学校上学的速度一定,也就是两个数的比值一定,从而得出商一定。又如可以设计1分钟跳绳80下,2分钟跳绳160下…………这样调动学生的积极性,认识到学习比例的重要性。再来学习例题,让学生进入轻松愉快的学习环境,并让学生得出一种量随着另一种量扩大而扩大,缩小而缩小,有什么变化规律?以培养学生有规律的进行判断、推理的能力。来完成教学任务。
何芳:学习正反比例的意义,必须要从学生的认知能力出发,书本上的给出的三个数量关系式起了很好的铺垫性的作用,我们就可以从这三个数量关系式着手去编写一些学生日常生活实际的一些应用题,让他们去找规律,发现规律,获得直接经验。进而抽象出正反比例的数学概念和公式。
包莉婷:学习正比例的意义,对六年级学生来说是一个全新的概念,如果在教学中单纯地从书上例题出发进行教学,我个人认为学生会感觉比较抽象,因为书上的例题与学生的日常生活联系不够紧密,老师在教学时,可选用与学生日常生活联系密切的例子引出新知,这样做可以提高学生的学习兴趣,从而能主动地去学习新知.在巩固练习时,同样利用大量的例题让学生多练,达到熟能生巧的效果.
何芳:苏联教育家苏霍姆林斯基说:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”在学习正比例意义时,学生了解了书上例题后,让学生自己举例说明自己对正比例的理解,教师应该倾听学生的发言,不及早的对学生的发言下结论,让学生把自己的想法和理解充分的表达出来,尽管学生观察、归纳的程度不一,但确实符合学生的认知,从中老师也可以了解学生对正比例意义的理解情况。课堂中,我们要鼓励学生的这种探索精神,对理解不同的学生提不同的要求,采取不同形式的指导,让学生按自己的方式学习,达到真正理解正比例意义的教学目的。
李梅芝:学习正比例的意义,对于六年级的学生来说,这是一个新概念,如何引导学生学习,这是我们每一个教师应该思考的问题.我认为,在教学时让学生主动找出和正比例有关的应用题,再由学生自己去寻找规律,发现规律,从而真正掌握正比例的意义,最终达到预期的教学效果.
教学反比例反思数学篇五
反比例关系是一种重成反比例的量要的数量关系,它渗透了初步的函数思想。所以本节课体现了以下2点:
本节课《成反比例的量》中重点和难点都是学生理解“成反比例”这个概念,而这个概念的得出要从研究数量关系入手,实质上是对数量之间关系一种新的定义,一种新的内在揭示。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。“成反比例的量”与数量关系是有本质联系的,都是研究两种数量之间的关系,而且是两种数量之间相乘的关系,因此在复习题中我让学生大量的复习了常见的乘法数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。
学习数学概念的最终目的是应用于实际,去灵活解决实际问题,而实现这个目标归根结底依赖于对概念的本质理解。成功的概念教学是要在得出概念之前下功夫,要设计多种教学环节,利用各种教学手段使学生充分体验得出概念的思维过程,先做到对概念本质的理解,再顺理成章的引出概念的物质外壳---即用语句表达。
例如我在教学《成反比例的量》时,我通过复习常见的数量关系,从生活事例中引出数量关系,然后给这种数量关系一种新的.理解,将这种数量关系重新定义为成反比例关系,给具备这种数量关系的数量重新定义为成反比例的量,沿着这条线索学生由浅入深,由表及里的体验了概念形成的过程。为帮助学生建构“反比例”的意义,课堂流程重点设计两大板块。其一是“选择材料、主体解读”的“原型体验”板块。在这一板块中,借助三则具体材料让学生经历商量选择、独立解读、交流互评和推荐典型等数学活动,积累了较多的与反比例有关的信息和感性认识;其二是交流思维、点化引领的数学化生成板块。在这一板块中,学生立足小组间的交流和思维共享,借助教师适时介入的适度点拨,生成了“反比例”数学概念,并通过回馈材料的概念解释促进了理解的深入。并能利用概念准确的判断两种量是否成反比例。
数学活动必须建立在学生认知发展水平和已有的知识经验基础之上,强调从学生已有的生活经验出发,让学生亲历实际问题抽象成数学模型并解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度、价值观等方面得到进步和发展。在教学反比例的意义时,我首先通过复习,巩固学生对正比例意义的理解。然后选择了让12位同学上台站一站,看“每行站几人,可以站几行?”这一素材组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景并激发了积极的情感态度。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析、概括、发现规律,培养了学生的自学能力。在学完例4后,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例4的方法学习例5,接着对例4和例5进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再对例4和例5中两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。并通过练习,使学生加深对概念的理解。
教师遵循学生的年龄特点和认知规律,将教材中的例题进行再创造,改成了学生熟悉的事例,问题导向明确,学生对熟悉的事情或操作性强的事例感觉亲切、贴近生活,易于理解,在观察中思考,在操作中体验,学生学得主动、学得积极,在填一填、拿一拿、猜一猜的活动中,自然而然地体会了反比例的变化规律,为抽象概括反比例的意义奠定基础,同进也使学生感受数学就在身边。但其中有一道题学生的争议很大,即华荣做12道数学题,做完的题和没有做的题。全班还有许多同学认为是成反比例的量,这些同学忽略了两种相关联的量一定要乘积一定的时候,这两种量才是成反比例的量。这也暴露了学生在解决问题中思考的过程还不够灵活和全面。今后的教学过程中要加强对学生思维深刻性和全面性的培养。
教学反比例反思数学篇六
反比例关系是一种重成反比例的量要的数量关系,它渗透了初步的函数思想。所以本节课体现了以下2点:
本节课《成反比例的量》中重点和难点都是学生理解“成反比例”这个概念,而这个概念的得出要从研究数量关系入手,实质上是对数量之间关系一种新的定义,一种新的内在揭示。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,本节课的教学并不仅仅停留在数量关系上,而是要从一个新的数学角度来加以研究,用一种新的数学思想来加以理解,用一种新的数学语言来加以定义。“成反比例的量”与数量关系是有本质联系的,都是研究两种数量之间的关系,而且是两种数量之间相乘的关系,因此在复习题中我让学生大量的复习了常见的乘法数量关系,并且联系教材复习了教材及练习中涉及到的一些数量关系,渗透了难点。
学习数学概念的最终目的是应用于实际,去灵活解决实际问题,而实现这个目标归根结底依赖于对概念的本质理解。成功的概念教学是要在得出概念之前下功夫,要设计多种教学环节,利用各种教学手段使学生充分体验得出概念的思维过程,先做到对概念本质的理解,再顺理成章的引出概念的物质外壳---即用语句表达。
例如我在教学《成反比例的量》时,我通过复习常见的数量关系,从生活事例中引出数量关系,然后给这种数量关系一种新的理解,将这种数量关系重新定义为成反比例关系,给具备这种数量关系的数量重新定义为成反比例的量,沿着这条线索学生由浅入深,由表及里的体验了概念形成的过程。为帮助学生建构“反比例”的意义,课堂流程重点设计两大板块。其一是“选择材料、主体解读”的“原型体验”板块。
在这一板块中,借助三则具体材料让学生经历商量选择、独立解读、交流互评和推荐典型等数学活动,积累了较多的与反比例有关的信息和感性认识;其二是交流思维、点化引领的数学化生成板块。在这一板块中,学生立足小组间的交流和思维共享,借助教师适时介入的适度点拨,生成了“反比例”数学概念,并通过回馈材料的概念解释促进了理解的深入。并能利用概念准确的判断两种量是否成反比例。