最新分数除以整数课后反思 数学分数乘整数教学反思(通用5篇)

时间:2024-11-02 作者:影墨

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。

分数除以整数课后反思篇一

本节课我是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。具体说本节课有以下几个特点:

一、直观演示是学生理解分数与除法的关系的前提。

由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3块饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3块饼的就是张。把2块饼平均分给3个人,每人应该分得多少块?继续让学生操作,丰富对2块饼的就是2/3块饼的理解。学生操作经验的积累有效地突破了本节课的难点。

二、培养学生提出问题的意识与能力是培养学生创新精神的关键。

爱因斯坦曾说:提出一个问题比解决一个问题更重要。学生提出问题的能力不是与生俱来的,需要教师精心、具体的指导。本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。比如学生展示完自己的分法后教师启发学生提出问题:

a:你们是几块几块的分的?

b:每人每次分得多少块饼?

c:分了几次,共分了多少块?(就是3个块就是几块)

d:怎样才能看出是几块?

问题的提出针对性强,有利于学生把握数学的本质。

三、 用发展的思维去理解所学的知识,注重了知识的系统性。

数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对于0.7÷2=,部分学生会觉着的表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除以整数课后反思篇二

这是学生第一次接触小数乘法,教材安排了复习积变化的规律。透过例1,让学生在解决实际问题的过程中掌握小数乘整数的计算方法,之后安排了一些练习巩固。所以,我从以下几个方面作安排:

1.突出积变化的规律

在教材中积变化的规律是复习,在教学中却将它当新知,引导学生发现规律,体验发现的乐趣。充分理解一个因数不变,另一个因数乘以(除以)多少,积就会乘以(除以)相同的数这样一个变化规律,引导学生直接运用这个规律计算出1.5×5,同时运用小数乘整数的好处进行验证,感受规律的正确性。

2.突出竖式的书写格式

有了前应对算理的理解,当遇到用竖式计算0.72×5时,学生不会感到困难,但要他们说出为什么,一些孩子还是不能理解,所以抓住小数点为什么不对齐来引导学生思考,推导出应根据整数乘法的计算方法计算,最后还有将积缩小相应的倍数。

3.突出小数位数变化

小数位数的变化是本节课的一个难点,因此安排了两个练习,一个是推算小数的位数,另一个是决定小数的位数,透过用两道练习来让学生认识到并不是积的小数位数和因数的小数位数都是一样的。

在课的结尾还安排了头脑风暴,填写×=3.6,让学生体会积的小数位数和因数的小数位数之间的关系,扩散学生思维,发挥学生的主观能动性,去主动思考,激励探究。

4.突出口算

教材中并没有安排小数乘整数的口算,而在实际学习中,口算由于数目比较小,计算结果能够比较快速地反馈,易于检验学生计算的正确与否,同时能够帮忙学生理清计算小数乘整数的计算思路,所以在计算中增加了口算练习,让学生主动说出自己的想法,同时用小数乘整数的好处检验方法的正确性。

在本节课的学习中,还有一些做得不足的地方:

学生开始对学习充满兴趣,用心地思考,运用发现发现的规律去解决问题,能正确计算小数乘整数,而让我困惑的是,在前面的学习过程中都很流畅,顺利的引导学生进行知识的迁移和扩展,学生掌握状况也良好,但并没有最大化的去让学生参与到课堂,并没有意识去倡导小组合作学习,没有让学生在质疑,讨论,交流中发现问题,分析问题,再去解决问题,真正去经历探究的过程,所以到后面的教学过程中,学生略显疲态,所以这节课让我意识到数学教学活动务必是学生学,师生合作探究,发现的过程。

所以,在以后的教学中,务必以学生为主体,教师为主导,活动为主线的教学模式,让学生参与到课堂,自主探究,合作交流,再质疑的过程,才能真正实现高效的课堂。

分数除以整数课后反思篇三

一、尊重学生的“数学现实”。

在教学分数乘整数之前,其实班里已经有不少学生知道了分数乘整数的计算方法。如果再按照一般的教学程序进行教学,学生就会觉得“这些知识我早就知道了,没什么可学的了。”,从而失去探究的兴趣。于是在教学时,我提出:“为什么结果是9/10?为什么要把分子与整数相乘?”接下来的教学就引导学生带着“为什么”去探索。

二、实现教学学习的个性化。

每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了“不同的人学习不同的数学”的理念。有的学生通过对分数乘整数的意义的理解,将分数乘整数与分数加法的计算方法联系起来思考;有的学生通过在老师给的练习纸上涂色来得到结果;有的学生讲清了为什么将分子与整数相乘的道理;还有的学生将分数转换为小数,同样得到了正确的结果。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的、刻板的要求只会阻碍学生的思维发展。

三、对教材进行重组。

本节课时一节枯燥乏味的计算课,因此我利用乌龟和兔子进行智力比赛的方式来刺激学生求知解题的欲望,让孩子们在充满竞争和挑战的环境氛围下,不知不觉地完成书本上的基本练习。当然我也对教材的联系题目进行了重组和改编。如练一练第一题,我就把4个改成了3个,这样就使得这题避免约分,先解决不用约分的计算方法,再进行约分的教学。使整节课自然分成两部分来进行。

四、存在的一些问题。

本节课总体来说比较成功,课堂上的内容都比较顺利的完成了,但是在让学生体会先约分比较简单时,出现了些问题。在做完例题第二个问题之后,依然有不少学生依然觉得先计算好,于是我就出示了四道题目,其中最后一题数据较大,可以很好的引导学生得出正确的结论。但我现在觉得,如果在例题教学完之后就直接完成那个8/11×99,这样就更加直接了,学生立刻就能体会到先约分的好处了,那么再做其它需要进行约分的题目就方便了。

分数除以整数课后反思篇四

一.在问题的引入上,新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲:

1.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过 程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。利用温度计引入调动学生学习的积极 性。

2.教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

二、在问题的探索上:

我采用了师生互动,通过师生双边活动产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索 发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在概念的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学 生出现的问题我给做出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。

三、习题的配备:

整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方。在讲解完例题后,让学生互 相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。但我总体感觉习题的量不够充足,学生的练习机会较少。

四.不足之处:

学生通过学习掌握了画数轴时原点的位置和单位长度可以实际情况来确定,但由于受课本练习册数轴图形的影响,有部分学生认为只有向右的方向才能作为数轴的正 方向,遇到向其它方向为正方向数轴图形就认为它不是数轴了。这有待在今后的教学中改进教学方法使学生加深对这方面的理解。

分数除以整数课后反思篇五

把这次公开课选为《分数乘整数》这一内容,是因为上学年听了冬梅老师讲了若干遍《分数乘分数》,并一举在市名列前茅。我选了《分数乘分数》的.前一信息窗,内容相对来说比较简单。对此类课的教学思路有了一定的了解,感觉有信心上好这节课。

课堂上,我是按照事先设计好的方案一步一步地进行着。结果第一环节提出数学问题,根据已有的经验列出算式就出了问题,我提出:“‘求做一个风筝一共需要多少米布条?’其实就是求什么?”。一下子把孩子问在那里了。周折了一小会儿才开始列式计算了。紧接着第二个环节列式计算,并理解分数乘整数算式的意义还好。很顺利地进行到第三个环节学习计算方法。大部分学生都用分母不变,只把分子与整数相乘的方法计算的。我不失时机地启发学生思考:为什么只把分子与整数相乘呢?比比看谁的理由最充分。这时学生们都陷入了思考,带着“为什么”去探索。在课堂上迫不及待。积极主动地进行讨论,在理清算理的基础上通过课件演示总结出法则。这一环节我自己还比较满意。到了第四环节,通过法则指导计算,并学会简便方法约分时,又出问题了,学生不理解为什么约分后的分子相乘分数的大小还不变,一直在那里纠结,足足耽误了将近十分钟的练习时间。

通过评课,同行们给我找明了问题的关键:

1、教师在第一环节的提问绕圈子了,不要问学生“要求这个问题就是求什么?”直接让学生列式解答即可。在列式的基础上让学生自己发现6个相加可以写成×6的形式,从而明白分数乘整数的意义。

2、在探究算法的过程中,应当与算理相融合,一位同学探究说出算理和算法以后,应该结合课件再多找几个学生强化一下,这样落实面才会更广一些。

3、当学生提出对于约分环节的不理解时,教师不要急于解释,可让其在练习的基础上验证一下,或告知其下课后继续研究,一定不要把时间浪费在与个别学生纠结一些价值不大的问题。教师要有主观能控力。

4、分数的书写顺序要注意标准。

听了大家伙的建议,自己感觉很有道理,不再去邻班讲一次真对不住朋友们提出的这些大好建议。感谢教研组的评课,各路高手就像是一位位神医,帮我查找到这节课的各种病症,只不过要想医治成功还需要“患者”的努力。

相关范文推荐