抽屉里的小故事 抽屉原理说课稿(大全8篇)

时间:2024-11-15 作者:书香墨

一个好的提纲可以让读者一目了然地了解文章的内容和结构。如何制定一个有效的提纲?这是许多人在写作时面临的难题。这是一些经过精心挑选的总结范文,希望可以给大家带来一些灵感和启示。

抽屉里的小故事篇一

这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说这节课。

本单元共三个例题,例1、例2的内容,教材通过几个直观例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。今天我讲的是例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。因此,这节课在本单元起着引领指航的重要作用。

根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点是;经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

教学难点:理解抽屉原理中“总有”“至少”的含义。

我之所以这样确定重难点和教学目标,因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

本节课共四个教学环节:游戏导入——探究新知——解决问题——游戏深化。

下面我分别说说这样设计的意图。

通过“抢椅子”游戏,体验不管怎么坐,总有一把椅子上至少坐两个同学。激起学生认识上的兴趣,趁机抓住他们认知上的求知欲,作为新课的切入点,我这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。

此环节正是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是生搬硬套,只求结论或囫囵吞枣,让学生不但知其然,更要知其所以然。课上我让学生通过列举法、数的分解法及假设法探究总结出了结论:3本书,放到2个抽屉里,不管怎么放,总有一个抽屉里至少有2本书。这是本课的重点,接着引导学生把每种分法中得书最多的旁边作个记号,得出每种分法中有一名学生得2本、3本即2本书以上,再让学生用一个词语表示这种意思,那就是“至少”的意思,再反过来理解“总有”“至少”的意思。这样既突破了本节课的难点,也加深了对抽屉原理的理解。

在此基础上,我让学生把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?先摆放、再讨论能不能只摆一次就能得出结论。然后得出只要先平均分,再把余下的再平均分就能得到“不管怎么放,总有一个盒子里至少有2枝铅笔。”

数学来源于生活又服务于生活,此环节我选择了贴近学生生活的喜闻乐见的事物,让学生在满怀激情中解决问题。练习题的设计遵循了“让学生接触这类问题——逐步熟悉这类问题——然后归纳这类问题的基本型——这类问题的变式型。即给出了抽屉数,引导学生逆向思维去求物体数,这一问题是抽屉原理的逆思考问题,拓宽了学生的思维空间。

课的开始是游戏导入,结束时必须让学生没有遗憾的离开课堂,所以我在出示了几道关于出生年、月、日的练习题,在解决这几个问题时,我把问题逐步深化,比如:四(3)班有43名同学,至少有多少人在同一个月出生?我校有1603名学生至少有xx人同日出生。最后我又给学生做了一个游戏:有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?这一类问题正是下节课要学习的抽屉原理(二)的知识,学生的思维向纵深发展了,不但解决了问题还受到了相信科学不迷信的情感教育,落实情感教育标。

抽屉里的小故事篇二

上午,再一次听了明老师的课,总体来说,她的课有了很大的进步。不管是教态、教法、评价语言还是对整堂课的流程设计,进步还是满喜人的。因为我从来没有上过高段,对高段知识不是太了解,所以昨天问来了上课内容后,临阵磨枪找来教本和教师用书熟悉了一下教材。《抽屉原理》一课,是六年级下册数学广角的内容。本课与课前后知识点没有联系,比较孤立,惟一可以联系的是有余数的除法。抽屉原理很抽象,依靠学生的逻辑思维能力进行教学,对于师生而言,这节课比较难上。虽然不是很了解内容但是整体上说明老师的课在以下几方面做的很好。

课始明老师通过学生比较熟知的扑克牌入手,激发了学生的学习兴趣。当明老师说如果我拿出5张牌,我不用看也可以肯定其中至少有两张牌的花色是一样的,其实这个对于学生来说也是有经验的只是无法用数学的语言来描述罢了,这个时候明老师没有直接回答而是说:王老师为什么能做出如此准确的判断?道理是什么?这其中是不是蕴含着一个有趣的数学原理?引发了学生学习数学的求知欲,为学生学习抽屉原理作了很好的铺垫。

本节课明老师组织的教学结构紧凑,实施过程层层推进上的扎实有效,教师通过4支铅笔3个杯子,先让学生小组合作讨论,把所有情况摆出来,运用直观的方式,发现并描述:理解最简单的“抽屉原理”,举例后学生感知理解“铅笔比杯子多1时,不管怎么放,总有一个杯子至少有2支铅笔”。再让学生探究解决问题的简便方法,即“平均分”的`方法,在这节课中,由于明老师提拱的数据较小,为学生自主探索和理解“抽屉原理”提供了很大的空间,特别是教师设问:到底是“至少数=商1”还是“商余数”?引发学生思维步步深入,并通过讨论,说理等活动,得出“至少数=商1”。使学生经历了一个初步的数学证明过程,培养了学生的推理能力和初步的逻辑思维能力。

“抽屉原理”这一知识点,明老师让学生通过实验操作、观察、思考、推理的基础上理解和发现的,整堂课在她的精心安排和指导下,学生学的积极主动,课堂气氛非常活跃。

当然,不管是谁上的课总是有许多值得探讨的地方,更何况是一个刚走上工作岗位不足一年的新教师。整堂课下来,看起来气氛非常的好,学生讨论积极,发言大胆似乎都已经理解了这个抽屉原理,但是深究一下,不难发现其实这堂课的难点还是没有突破。学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而学生对这个词语的理解非常的模糊不清。所以感觉孩子们对所学的知识像是没有根的浮萍不是很扎实,那么如何让学生的理解更准确,更深刻,还需要我们共同去探究的。

抽屉里的小故事篇三

各为评委、老师,大家好:

我说课题目是《抽屉原理》(板书),这节课是小学数学第十二册第五单元数学广角的第一节,下面我从以下四方面来说说这节课。

本单元共三个例题,例1、例2的内容,教材通过几个直观的例子,借助实际操作向学生介绍抽屉原理。例3则是在学生理解抽屉原理这一数学方法的基础上,会用这一原理解决简单的实际问题。例1例2的内容,主要经历抽屉原理的探究过程,重在引导学生通过实际操作发现、总结规律,这一内容为后面学习抽屉原理(二)及利用这一原理解决问题做下了有力的铺垫。例1和例2既可以用一课时完成,又可以分两课时完成,而我选择后者,有如下思考。

数学广角的内容蕴含着丰富的数学思想方法,广角的教学目的主要在于让学生受到数学思想方法的熏陶,发展数学思维能力,因此对大多数学生而言,学起来是存在一些思维难度的。而抽屉原理是数学广角这个皇冠上的明珠,比十一册上的《鸡兔同笼》的学习更具挑战性。在《抽屉原理》中,“总有一个”、“至少”这两个关键词的解读和为了达到“至少”而进行“平均分”的思路,以及把什么看做物体,把什么看做抽屉,这样一个数学模型的建立,学生学起来颇具难度,尤其是对“至少”的理解,它不同于以往数学学习中所说的含义,这里的“至少”是指在物体个数最多的抽屉中找到最少的物体个数,这对学生而言是一种全新的思维方式,他们很可能一时转不过弯。另外,让学生用精炼准确的语言来表述自己的思考也是一个难点。

再看看课本,根据例1、例2理出了《抽屉原理》的知识序列。例1描述的是物体数比抽屉数多1的情况,例1的做一做代表的是物体数不到抽屉数的2倍,比抽屉数多2、多3一类的情形,例2描述的是物体数比抽屉数的非1整数倍多1的情况,例2的做一做代表的是物体数比抽屉数的非1整数倍多,且不止多1的情形。可见,例1是学好例2的基础,只有通过例1的教学,让全体学生真实地经历“抽屉原理”的探究过程,把他们在学习中可能会遇到的几个困难,弄懂、弄通,建立清晰的基本概念、思路、方法,他们才可能顺利地进行例2的学习,否则,此内容的学习将只是优生炫酷的天地,他们可能一开课就能说出原理,而其他学生可能一节课下来还弄不清什么是“总有一个”、什么是“至少”,怎样才能很快知道“至少”是几个物体。因此,我选择将例1、例2分成两课时完成。可能有老师说,这样本课的教学内容容量太少了,基于这一点,我在第四个环节有说明的。

根据《数学课程标准》和教材内容,我确定本节课学习目标如下:

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过“抽屉原理”的灵活应用感受数学的魅力。

教学重点是:经历抽屉原理的探究过程,发现、总结并理解抽屉原理。

我把:理解抽屉原理中“总有”“至少”的含义作为本课的教学难点

我之所以这样确定教学目标和重难点,是因为《新标准》指出:在本学段学生将通过数学活动了解数学与生活的广泛联系,学会运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。

教法上本节课主要采用了设疑激趣法、讲授法、实践操作法。

学法上学生主要采用了自主、合作、探究式的学习方式。

第四个方面是:以学定教,与课堂对话。

本节课共我设计了四个教学环节:游戏导入——探究新知——反思、呈现——解决问题(游戏)。

下面我分别说说这样设计的意图。

第一环节——游戏导入

由于只把例1作为本课的教学内容,我在设计的时候对例1的教学进行了一些铺垫和补充。在导入部分,设计了猜至少有几个学生是同月生的游戏,拉近数学与生活的关系,激发学生的探究欲望。在例1的教学后加入了5枝铅笔放入4个盒子的问题,目的在于通过两个不同的实例让学生较充分地感受、体验、发现相同的现象,有利于学生进行抽象、概括,使结论的得出更有说服力。然后拓展到7枝铅笔放入5个盒子,8枝铅笔放入5个盒子,9枝铅笔放入5个盒子,这一类余数是2、是3、是4的问题的探究,完成对抽屉原理第一层次的认识。

第二环节,探究新知。

根据学生学习的困难和认知规律,我在探究部分设计了三个层次的教学活动,这三个层次的教学活动由形象思维逐步过渡到抽象思维,层层递进,培养学生的逻辑思维能力。

第一个层出:实物操作,把4枝铅笔放入3个盒子(板书),解决3个问题:

1、怎样放

知道排列组合的方法,明确如果只是放入每个盒中的枝数的排序不一样,应视为一种分法,并引导学生有序思考,为后面的列举扫清障碍。

2、共有几种放法 孕伏对“不管怎样放”的理解。

3、认识“总有一个”的意义。

通过观察盒中铅笔枝数,找出4种放法中铅笔枝数最多的盒中枝数分别有哪几种情况,理解“总有一个”的含义,得到一个初步的印象:不管怎么放,总有一个铅笔盒放的枝数是最多的,分别是2枝,3枝和4枝。

第二个层次:脱离具体操作,由抽象到数,进行数的分解——思考把5枝铅笔放入4个盒子(板书包括6支5盒),又会出现怎样的情况,学生直接完成表格。这一层次达成三个目的:

1、理解“至少”的含义,准确表述现象。

通过观察表格中枝数最多的盒子里的数据,让学生在“最多”中找“最少”,学会用“至少”来表达,概括出“5枝放4盒”、“4枝放3盒” 时,总有一个文具盒里至少放入2枝铅笔的结论。

2、理解“平均分”(板书)的思路,知道为什么要“平均分”。

抓住最能体现结论的一种情况,引导学生理解怎样很快知道总有一个文具盒里至少是几枝的方法——就是按照盒数平均分,只有这样才能让最多的盒子里枝数尽可能少。

3、抽象概括 小结现象

通过“4枝放入3个盒子”、”5枝放入4个盒子”和练习题“6枝放入5个盒子”,让学生抽象概括出 “当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体” (板书),初步认识抽屉原理。

(三)学生自选问题,探究“如果物体数不止比抽屉数多1,不管怎样放,总有一个铅笔盒中至少要放入几枝铅笔?”(板书789物体5抽屉)

这一层次请学生理解当余数不是1时,要经历两次平均分,第一次是按抽屉的平均分,第二次是按余下的枝数平均分,只有这样才能达到让“最多的盒子里枝数尽可能少”的目的。

教学流程的第三个环节,将本节课研究过的所有实例进行总体呈现,让学生通过比较,总结出抽屉原理中最简单的情况:物体数不到抽屉数的2倍时,不管怎样放,总有一个抽屉中至少要放入2个物体(板书)。

在最后的练习环节以游戏的形式出现,我设计了几个需要应用“抽屉原理”解决的简单的实际问题,进一步培养学生的“模型”思想,让学生能正确地找出问题中什么是“待分的东西”,什么是“抽屉”,同时也让学生感受到数学知识在生活中的应用,感受到数学的魅力。

抽屉原理

平均分

4支铅笔放进 3个文具盒

5支 4 个

6支 5个

当物体数比抽屉数多1时,不管怎么放,总有一个抽屉至少放入2个物体。

7个物体 5抽屉

8个物体 5抽屉

9个物体 5抽屉

﹕ ﹕

﹕ ﹕

“……,不管怎样放,总有一个抽屉,至少放进 2 个物体。”

这是这节课的板书设计。

谢谢大家!我的说课完毕。

抽屉里的小故事篇四

今天我们在培训中心大厅听了来自××县的××老师的一节录像课《抽屉原理》。抽屉原理这节课不同于六年级其他课型,与前后知识点没有联系,比较孤立。抽屉原理也很抽像,对于师生而言,这节课比较难上。××老师是通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”的,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,并会用“抽屉原理”加以解决。

××老师上的《抽屉原理》一课虽然朴实,但是结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探究的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

优点:

1.本节课充分放手,让学生自主思考,采用自己的方法证明:把4支笔放入3个杯子中,不管怎么放,总有一个杯子中至少放进2支笔。然后交流活动,为后面开展教学活动做了铺垫。此处注意了从最简单的数据开始摆放,有利于学生观察理解,有利于调动所有学生的积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验理解最基本的“抽屉原理”:当物体个数大于抽屉个数是,一定有一个抽屉放进了2个物体。这样的教学过程,从方法和知识层面对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。

2.在教学过程中充分发挥了学生的主体性,在抽屉原理的推导过程中,至少是商+余数,还是商+1个物体放进同一个抽屉里。让学生互相争辩,在由学生验证,使学生更好的理解抽屉原理。

3.注意渗透数学和生活的联系,并在游戏中深化知识。课前教师设计了一组简单真实的生活情境:让一名学生在去掉了大小王的扑克牌中,任意抽取5张。老师猜,总有一种花色的牌有2张。学完抽屉原理后,让学生用学过的知识来解释这一现象,有效的渗透“数学来源于生活,又换源于生活”的理念。

建议:

1、3个杯子放4支笔时说的基本原理在后面不适用,教师应该强调。

2、在得出抽屉原理后应该让学生多加练习并加以说明。

3. 应该不断在活动中使学生感受到了数学魅力。

“抽屉原理”的建立是学生在观察、操作思考、推理的基础上理解和发现的,学生学的积极主动。老师上的比较扎实,是一节好课。

抽屉里的小故事篇五

儿子终于上高中了。

这日,她像往常一样收拾儿子的房间,无意中她瞥到了桌子中间的抽屉——这是儿子跟她提过的“私人领地”,这么多年她都没有碰过。可是今天,不知怎的`,她的手不由自主地伸向了那个抽屉,虽有些心慌,但还是颤抖着拉开了它。里面躺着几张儿子铁杆哥们寄来的明信片,除此之外还有一本日记。日记?她的心头一动,刚要翻开,背后的门突然响了:“妈,我回来了。”她猛地一惊,忙不迭地推好抽屉,语无伦次地说:“我……我在帮你收拾东西。”然后匆匆离开了。

午饭时,儿子突然跟她说了一句:“妈,有的时候我们需要沟通。”她没有应答,满脑子都是那本日记,她坚信日记里有她想要知道的秘密。

又一日,儿子吃完早饭便匆匆下了楼。她听着儿子的脚步声一直传到楼下,守在窗口一直看着儿子推出车后,便匆匆走进了儿子房间。突然,她发现那个抽屉上已加了一把锁,不同的是钥匙就放在不远的窗台上。她的心隐约觉得有些痛,但一种强烈的欲望驱使她拿起了那把钥匙,打开了抽屉。翻开日记本,扉页上记述着儿子刚上高中,面对困难挫折时的心境;次页记叙着儿子对老师的感想……她就这样一页页地翻着,她始终坚信那个“秘密”即将出现。突然,房门再一次被推开,“妈!”她的身后传来儿子低沉的声音。她的手一颤,日记本砸在了桌上,“我回来拿本书。”儿子边说边拿起日记扔进抽屉,锁好后离开了。她傻傻地站在那儿,听到儿子把门关得很重。

一连数天,她都被那本日记纠缠着,甚至梦中都会出现那个抽屉的样子。终于有一天,她又一次走入了儿子房间,抽屉上的那把锁依旧挂在那儿,但没有锁好。她拿走锁,拉开抽屉,然后呆住了:抽屉里空荡荡的,什么也没有。

那一刻,她的心如这抽屉一样空荡荡的……这时,她似乎有点意识到,儿子已把他内心的门紧紧地关闭上了,一把锁严严实实地卡着,无法打开来。

抽屉里的小故事篇六

“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课借助把4本书放进3个抽屉里的操作情境,介绍了一类较简单的“抽屉原理”。

本课通过直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考思考问题的意识。

本节课我安排了四个教学环节:

第一环:创设情境,诱发兴趣

在这个环节中,安排了一个小游戏:任意抽取五张扑克牌,不看牌判断五张牌中同种花色的至少有2张,让学生猜猜。为什么老师可以这样判断?由此引发学生的兴趣,营造一个愉快的学习氛围,为学习新知创设良好的情境。

第二环:自主参与,探索新知

在这个环节中,教学时先放手让学生自主思考,采用实践操作的方法进行“证明”,然后再进行交流,引导他们对“列举法”、“假设法”两种方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题。

第三层:应用新知,解决问题

让学生借助直观和假设法最核心的思路“有余数除法”形式,使学生更好的理解抽屉原理解决问题的'一般思路。小学生不要求学生用反证法进行严格的证明,鼓励学生借助学具、实物操作、或画图的方式进行说理。

第四层:引导学生总结规律

在学生自主探索的基础上,教师进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。

抽屉里的小故事篇七

上午,再一次听了明敏的课,总体来说,她的课有了很大的进步。不管是教态、教法、评价语言还是对整堂课的流程设计,进步还是满喜人的。因为我从来没有上过高段,对高段知识不是太了解,所以昨天问来了上课内容后,临阵磨枪找来教本和教师用书熟悉了一下教材。《抽屉原理》一课,是六年级下册数学广角的内容。本课与课前后知识点没有联系,比较孤立,惟一可以联系的是有余数的除法。抽屉原理很抽象,依靠学生的逻辑思维能力进行教学,对于师生而言,这节课比较难上。虽然不是很了解内容但是整体上说明敏的课在以下几方面做的很好。

课始明敏通过学生比较熟知的扑克牌入手,激发了学生的学习兴趣。当明敏说如果我拿出5张牌,我不用看也可以肯定其中至少有两张牌的花色是一样的,其实这个对于学生来说也是有经验的只是无法用数学的语言来描述罢了,这个时候明敏没有直接回答而是说:王老师为什么能做出如此准确的判断?道理是什么?这其中是不是蕴含着一个有趣的数学原理?引发了学生学习数学的求知欲,为学生学习抽屉原理作了很好的铺垫。

本节课明敏组织的教学结构紧凑,实施过程层层推进上的扎实有效,教师通过4支铅笔3个杯子,先让学生小组合作讨论,把所有情况摆出来,运用直观的方式,发现并描述:理解最简单的“抽屉原理”,举例后学生感知理解“铅笔比杯子多1时,不管怎么放,总有一个杯子至少有2支铅笔”。再让学生探究解决问题的简便方法,即“平均分”的方法,在这节课中,由于明敏提拱的数据较小,为学生自主探索和理解“抽屉原理”提供了很大的空间,特别是教师设问:到底是“至少数=商1”还是“商余数”?引发学生思维步步深入,并通过讨论,说理等活动,得出“至少数=商1”。使学生经历了一个初步的数学证明过程,培养了学生的'推理能力和初步的逻辑思维能力。

“抽屉原理”这一知识点,明敏让学生通过实验操作、观察、思考、推理的基础上理解和发现的,整堂课在她的精心安排和指导下,学生学的积极主动,课堂气氛非常活跃。

当然,不管是谁上的课总是有许多值得探讨的地方,更何况是一个刚走上工作岗位不足一年的新教师。整堂课下来,看起来气氛非常的好,学生讨论积极,发言大胆似乎都已经理解了这个抽屉原理,但是深究一下,不难发现其实这堂课的难点还是没有突破。学生对“至少”一词的理解还显得有些欠缺,学生仅仅理解了字面上的意思,对“至少”一词的指向性还不明确,就我理解,“至少”应该是指的在每一种情况中出现的最大数中的最小数,而学生对这个词语的理解非常的模糊不清。所以感觉孩子们对所学的知识像是没有根的浮萍不是很扎实,那么如何让学生的理解更准确,更深刻,还需要我们共同去探究的。

抽屉里的小故事篇八

我听了覃老师的《抽屉原理》一节课后,受益匪浅,本节课覃老师着眼于学生的发展,凸显数学学习的生活化;注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学,引导学生观察比较。同时,还注意学生获取知识的思维过程,体现教师的引导下学生的主动探究过程。

这一堂课中有以下几个亮点,是值得我学习的地方:

1.在新课的学习中,覃老师着力调动学生的学习积极性,让全体同学都主动参与到学习中,并给予学生上台操作演示的机会。在整个课堂教学中,覃老师并没有完整地小结公式之类的规律,更多的是引导学生学会学习,懂得思考问题的方式方法,从“无序”走向“有序”,激发了学生学习数学的参与热情,真正促进了学生思维的发展。

2.努力培养学生的数学情感,让学生学习生活中的数学,做到让数学生活化,使学生从生活开始、在生活中学、到生活中用。同时又不乏情趣调动学生学习积极性和主动性,以此培养学习数学的兴趣。

根据学生生活经验,教学中选取了学生熟知的身边的实例活动,密切了数学与学生现实生活的联系,调动了学生原有的生活经验,使学生觉得数学就在自己的身边。这样就激发了学生探究问题的强烈欲望,激活了学生的思维,发挥了学生的主动性。引导学生把所学知识运用到日常生活中,并延伸到课堂外,让学生继续探寻知识,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。

根据教学设计多媒体课件应用恰当好处。教学中,覃老师通过演示形象生动的课件,让学生理解6只鸽子飞进5个鸽舍,至少有一个鸽舍里有2只鸽子。既成功地突破了教学的重点与难点,又激发学生学习的兴趣,并在应用规律解决问题中获得成功的情感体验。

不足之处:课堂中对学生的评价不够,这样对学生的学习积极性有所打击。

相关范文推荐

    2023年如何写好工作计划和目标(模板8篇)

    编辑是对知识进行归纳和提炼的过程,可以使文章更加凝练易懂。小编为大家准备了一些精心设计的药师工作计划范文,供大家参考与学习。如何写好工作计划和目标篇一以_为指导

    2023年大学校园消防安全的心得体会(汇总8篇)

    培训心得的写作可以提高自己的表达能力和思维能力,让自己更加清晰地认识和把握所学知识。以下是小编为大家整理的一些工作心得范文,供大家参考。希望这些范文能够帮助大家

    四年级语文期末教育教学工作总结 四年级语文教育教学工作总结(大全8篇)

    护师总结是在一段时间内对护理工作进行总结和概括的一种书面资料,它可以帮助护士思考自己的工作表现,发现问题并改进工作方法。小编整理了一些单位的组织架构和职能设置,

    最新财务专业的自我评价(大全17篇)

    拥有理想可以让我们不断成长和进步,不停止追求。理想文章中要注意积极向上的态度,不要流于消极和抱怨。接下来,让我们一起欣赏一些振奋人心的理想范文,激励我们不断追寻

    最新幼儿小班体育游戏教案吹泡泡(大全10篇)

    教案的设计应该贴近学生的实际生活,能够激发他们对知识的探索和学习的兴趣。掌握一些优秀的高二教案范文,对于提高教学水平有很大的帮助,以下是小编为大家整理的一些范文

    这是我想要的美好人生诗歌(汇总14篇)

    在找工作的过程中,我们需要了解不同公司的招聘要求和岗位需求。在就职后,如何与同事们建立良好的合作关系?在下面,我们将为大家介绍一些就职的常见问题和解决方法,供大

    最新经验交流活动总结(通用8篇)

    考试总结是对自己在一段时间内的学习和考试表现进行总结和概括的一种重要方式,它可以帮助我们发现自己的不足和问题。以下是小编为大家整理的一些考试总结范文,供大家参考

    2023年未来的交通 科素课堂未来交通心得体会(精选20篇)

    辩论是一项能培养辩证思维和表达能力的活动,有助于培养学生的逻辑思维和论证能力。那么我们应该如何准备并展开一场有力的辩论?小编整理了一些经典的辩论案例和学术论文,

    中班美术教案我的小手设计意图(模板12篇)

    教师在编写初三教案时,还需要结合学生的实际情况和学校的教学要求,制定出符合教学大纲的教学计划。通过阅读范文可以了解常见的小班教案类型和不同的教学设计思路。中班美

    2023年观察玫瑰花的观察日记(通用12篇)

    即兴创作要求我们敏锐地捕捉灵感,并立即将其转化为行动。在即兴创作中,我们需要有足够的自信和勇气来表达自己的想法和情感。不同作者的即兴作品展示了不同的创作风格,欢