每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。
小数的近似数教学反思篇一
教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的`思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。
小数的近似数教学反思篇二
《商的近似数》教学反思
“商的近似数”这一内容主要让学生经历用“四舍五入”的方法求商的近似数的过程,体验迁移应用的学习方法,激发学生的学习兴趣,培养学生学数学、用数学的良好习惯。本节课我从生活的“真实”入手,从自然引入,还情境为生活本来的面貌,给学生自主思考的时间,自由表达的空间,让学生情入生活、心入生活,在真实化的情境中体验、感悟数学知识,收到了良好的教学效果。
一、学生自主探究,策略多样。
我在教学《商的近似值》一课时,对教材进行处理,我有意识地开发生活资源。首先我讲述生活中的实例,当我刚想提出要求时,发现有的学生已经做了起来。我并没有阻止,而是继续让学生在计算中发现问题。算了一会后,发现有的学生抓耳挠腮,有的学生小声的嘀咕,还有的干脆停下了笔看同桌的。当问题产生以后,解决问题便成为了学生学习的目标。但由于我没有提供解决问题的统一方法,学生缺少了模仿和依赖的基础,整个探究空间也有了较大的自由度。学生既可以结合已经有的知识经验解决这一问题,也可以“创造”出一种新的方法来解决,在解决问题中体现了策略的多样性。
二、创设了轻松,自由探索的课堂氛围。
举出生活实例后,我出示例6:爸爸给王鹏新买了1筒羽毛球。一筒羽毛球是12个,这筒羽毛球是19.4元,买一个大约要多少钱?并以自学的方式引出数学问题,营造一种有利于学生学习的氛围,使其积极主动地学习。同时体现了数学来源于生活。学生自学完毕,我问:“实际计算钱数时,通常只算到‘分’,应该保留几位小数?除的时候应该怎么办?(生:应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)听后,同学们都明白了保留两位小数的道理,使学生学会了根据实际生活需要用四舍五入法求商的近似数。在这一环节中,学生自主探索,发现问题,合作学习,让学生经历求商的近似数的过程,培养学生的自学能力,发现问题,解决问题的能力,同时也让他们尝到自学的成果。
三、设计贴近生活,学以致用的练习。
教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学以致用。因此,在设计练习时,我设计了一系列与生活相关的题目,使学生体会点到“求商的近似值”在生活中的用处,增强学习数学的兴趣,解决问题的策略也就因真实的生活变得丰富多样,让学生拓展思维得到发展。
通过复习求一个小数的近似数,为新课学习做好铺垫,通过复习求积的近似数,唤起了学生用“四舍五入”法取近似数的知识经验。这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法,同时也结合实例让他们体会了商的近似数的实际意义,通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。
《商的近似数》教学反思
《商的近似数》教学反思
近似数教学反思
近似数的教学反思
小数的近似数教学反思篇三
1、教学目标要明确,内容要准确。这是基础,学生做题出现问题跟教师有直接关系。
2、教师要明确自己的角色,地位。教师要有自己的威严,要严慈相济;教师是教学活动的指导者,处于主导地位,把控课堂活动,要顾及全体学生,不能只看回答问题的学生。
3、发挥学生的主体地位。学生自己积极主动的探讨,不要满堂灌。
4、备课要全面。备教材,备学生。对于知识体系有关全面的了解,知道学生已有的知识水平,对于新授课程有铺垫的作用;尤其是学生的了解,可能直接决定教学方式的选择。
5、主副板书使用要合理,主板书部分要留给新授例题。
6、小组活动探究或者学生自己做练习时,教师要下面巡视,掌握学生知识掌握情况和易错点和共性问题,做到心里有数。
7、教师之间可以相互学习,相互借鉴,取其精华,转变成适合自己的模式。
小数的近似数教学反思篇四
本节课的知识是在学习了小数除法的基础上教学的。在小数除法中经常出现除不尽,或者商的小数位数较多的情况,但是在实际生活和工作中,并不总是需要求出很多位小数的商,这就需要求商的近似数了。
成功之处:
1.创设情境,突出取近似值的意义。在例6的教学中,主要解决这样两个问题:一是体会求商的近似数的必要性;二是掌握取商的近似值的方法。学生通过计算每个羽毛球大约多少钱,计算的结果是1.616元,可以让学生体会到计算到这里计算的是钱数,实际生活中不需要三位小数,最多可以保留两位小数,表示精确到分,而在超市付钱时可以保留一位小数,表示精确到角。由此可以使学生想到:解决问题时,即使能除尽,有时也需要根据实际情况取近似值,如价钱、人数、个数等。
2.联系旧知,横向比较。在学习商的近似值时联系积的近似值,找出它们的相同点,都是把比保留的小数位数多一位的数进行四舍五入。
不足之处:
学生在计算中还是存在计算速度慢,计算不准确的现象,特别是商中间有0的除法计算出错率特别高。
再教设计:
在教学小数除法时还是需要复习试商的方法,特别是特殊的数。如同头无除商8或9,余数是除数的一半商5等。在学习商的近似值时,也可以根据学生的学习程度,适当介绍简便方法,也就是除到要保留的小数位数后,不用再继续除,只要把余数同除数比较,若余数比除数的一半小,就说明求出下一位的商小于5,直接舍去;若余数等于或大于除数的一半,就说明求出下一位的商等于或大于5,就在已经求得的商的末位上加1。
小数的近似数教学反思篇五
通过本节课的教学,有如下感想:
教师有意制造“添0继续除还是除不尽”的矛盾冲突,把学生推到自主探究的前台。教师适时引导学生求一个多位数的近似数,使学生获得解决问题的钥匙。学生亲历了“做数学”的过程,学会了用旧知识解决新问题的策略,体验到了学习数学的快乐。
除到小数位数的哪一位是求商的近似值的关键,教师以同一问题“还要继续除下去吗?”充分开发和利用教学中的人力资源,加强生生之间的互动,在对比中探寻取值方法,把教学建立在更广阔的交流背景之上,为课堂教学注入新的活力。特别是生1的不同看法,不迷信于书本,在交流中与全班同学分享,变成了全班同学的共同财富。
充分利用课堂这一阵地,致力于学生反思意识的培养,有利于学生把零碎的知识串联起来,建构自己的知识系统;让每一位学生站在认知的高度重新审视自己的学习方式,这既是对知识本身的反思,更是对整个学习过程的反思,对知识、情感、能力、方法等各个方面的反思,这无论是培养学生从小养成良好的学习品质,还是对学生的终身发展都有着重要的意义。
小数的近似数教学反思篇六
教学本例,教师只提出了两个问题:(1)你怎样才能知道自己走一步的长度呢?(2)你解答这道题时有什么想法?在这两个问题的引导下,出示例题、解决问题都顺势而出,在极其自然的情形下学生就完成了新知的学习,效果还比较好。我这样设计,有以下思考:
学生从数学中学到的知识有时会不知道在什么情况下使用,因此学到的知识就变成了僵化的知识。为了避免知识僵化,有必要使学生在大脑里储存知识时,将所学知识与该知识应用的“触发”条件结合起来,形成条件化知识。在学习知识的同时,掌握这些知识在什么条件下使用。上面教学片断中教师提出的第一个问题,就利用学生的生活经验和数学经验,把数学知识在生活中的实际应用情境化,在学生掌握解题思路和方法的同时,了解了这一知识在课堂之外的背景中的应用条件。这也让数学问题的出示自然而不露痕迹。
英国著名数学家斯根普在其名著《数学学习心理学》中指出:“逻辑推理所展现的只不过是数学产品,而不能告诉学习者这些结果是如何一步步被揭开、发展出来的。它只教数学技巧,而不是教数学思考。”由此可见,要教会学生思考数学问题,一定要引导学习者经历结果是如何得到的过程。在这个过程中,靠教师灌输,学生只会被动接受,只有给学生自主学习的时空、教会学生自主学习的方法,才能使学生学会主动创造。上例中的第二问,就为学生提供了自主学习时空,让他们在经历计算、取值、思考、回答的过程中再次深入思考,学生的汇报展示了知识形成的整个过程。教学中,教师没有讲,完全由学生“再创造”出这些知识。
数学真正的组成部分是问题和解,其中问题是数学的心脏。要通过“解决问题”而使学生获得知识、方法、思想上的全面发展,使孩子变得越来越聪明,首先要有一个“好”问题,因为学生数学素质是通过这些“问题”上以及“解决”过程之中发展起来的。
现代“问题解决”研究的先驱g.波利亚主张:“与其穷于应付繁琐的教学内容和过量的题目,还不如选择一个有意义但又不太复杂的题目,去帮助学生深入发掘题目的各个侧面,使学生通过这道题目,就如同通过一道大门进入一个崭新的天地”。
上例中的两个问题不符合“问题解决”中问题的要求。之所以写下这一段,在于我感觉到,设计并提出一两个“好”问题确能优化教学过程,优化学生的数学思考,比之“满堂问”,学习的效果会好许多。希望在以后的教学中有“好问题”产生,把握数学的心脏就把握住了数学课堂的核心。
改造数学“问题”,促进学习方式的有效改变——以“问”促学,会有更多的体验与收获。