解决高校档案管理问题的策略(优秀18篇)

时间:2024-11-22 作者:雅蕊

范文范本可以帮助我们认识到不同类型作文的特点和要素,以便我们有针对性地进行写作训练。总结是对过去一段时间内工作或学习的回顾和总结,以下是一些范文供大家参考。

解决高校档案管理问题的策略(优秀18篇)篇一

理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。

【过程与方法】。

通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。

【情感、态度与价值观】。

在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。

二、教学重难点。

【重点】用转化策略比较不规则图形的面积。

【难点】转化的方法及应用。

三、教学过程。

(一)导入新课。

大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。

教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。

(二)讲解新知。

1。问题探究。

大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?

学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的比较方法。

学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。

教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。

教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。

2。方法总结。

教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。

教师总结学生回答:

(1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;

(2)图形转化可通过平移、旋转、翻折、拼接等方法;

(3)经过转化之后将无解变得可解,将复杂问题变成简单问题。

教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。

教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。

(三)课堂练习。

算一算下列三个图形中阴影部分面积占整个面积的几分之几。

(四)小结作业。

小结:总结本节课学习内容。

作业:课后练一练。

解决高校档案管理问题的策略(优秀18篇)篇二

教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。

教学目标:

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:让学生体会替换策略的优越性。

教学难点:对替换前后数量关系的把握。

教学准备:

课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。

课前给学生合作要求纸。正面题目1和要求,反面自编题目。

打开课件。

教学过程:

一、创设情景导入:

有谁带了钢笔吗?(学生举手)。

老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?

要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。

(严肃,让学生觉得真换)。

怎么啦?(学生说说)。

是啊!

那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?

为什么?(老师:成交!)。

用铅笔换钢笔依据。

那你说说看为什么非要老师用十支铅笔才肯换呢?

(引导学生说出价钱差不多)。

紧接板书:价格相当。

十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。

板书:依据。

二、温故知新:

课件打开到曹冲称象图片。

(他用什么替换了什么?)。

你能联系上面情节讲一讲它替换的依据是什么呢?

(鼓励性评价:真聪明)。

石头和大象的重量相同作为替换的依据。

那曹冲是怎样来保证石头和大象的重量相同呢?

板书:添上----替换两字。

三、协作创新。

曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。

三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。

(简略介绍其中的走舸和楼船。)。

题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。

生一起读题。

你知道了哪些信息?

这道题目能用“替换”的策略解决吗?

接下来请同学们按照题目下面的要求,来亲身体验一下替换。

同桌合作:

1用什么替换什么?(把题目中替换的双方圈一圈)。

2替换的依据是什么?(在题目关键句的下面画一画)。

3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。

小组交流:

知道怎么替换了的同学请举手。

你们在替换的时候,有没有想到替换有什么好处啊?

请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?

1替换有什么好处?

2你替换的方法和其他同学完全一样吗?

结合课件画面讲解,板书。

一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。

课件展示:

替换前。

(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。

替换后。

(15走舸,出示数量关系:15艘走舸一共装了105名士兵)。

让学生计算。并讲一讲过程(数量关系)。

(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。

两种方法都讲解完后,让学生说说替换的好处。

四、巩固立新:

俗话说得好:兵马未动,粮草先行。

请学生说说如何替换?

板书:一条运粮船----------替换----------(一辆马车+15袋)。

让学生在自备本上用自己喜欢的方式画一画。

实物投影展示替换方法。(最好选文字和图画各一份)。

数学是需要简洁和凝练的,看赵老师怎么来做。。。

强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?

课件演示思考过程。

同桌之间互相说说:替换前后的数量关系分别是什么?

学生自己列算式解答。

请学生说说替换的好处。

五、博古通今:

学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。

学生独立完成。

让一学生上黑板进行板演(力求作出示意图)。

全班交流。

引导学生把四大名著换成三国演义。

并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。

六、自编自演:

大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。

请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。

七、课堂小结:

今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。

解决高校档案管理问题的策略(优秀18篇)篇三

单元教材分析。

单元目标要求。

教学用列表的策略解决实际问题。

单元设计意图。

1让学生把信息填入表格,学习整理信息的方法,体会对解决问题的作用。

(1)把已知条件和要求的问题全部填进表里。

(2)根据要解决的问题,选择相关的条件填入表格。

教材在编写上有以下特点。

第一, 选择相关的条件填入表格。

第二,利用表格、紧扣问题,设计解题步骤。

2让学生在解决实际问题的过程中,逐渐养成整理信息的习惯。

(1)从有形地整理到无形地整理。

第一,改变例题的教学观念。

单元目标达成分析。

时间:   年     月     日。

板块。

教师活动。

学生活动。

教学目标及达成情况。

小明。

3本。

18元。

小华。

5本。

( )元。

小军。

( )本。

42元。

时间:   年     月     日。

板块。

教师活动。

学生活动。

教学目标及达成情况。

桃  树。

3 行。

每行7棵。

梨 树4 行。

桃   树。

3 行每行7棵。

苹果树。

8 行每行6棵你能根据题目呈现的信息,自己提问题,再设计表格填表并解答吗?选择典型题展示共同交流(让其他学生猜一猜被展示者的分析思路)比较小结1、用列表的方法,来算算,用这些栅栏还可以围成长是几米的长方形?长(米)8765宽(米)1234面积(平方米)8141820想一想,如何围面积最大?独立列表整理,互相交流分析数量关系的方法,独立列式解答检查订正3×7=21(棵) 8×6=48(棵)48-21=27(棵)独立提问题,设计表格,填表列式解答 互相交流引导观察:刚才我们用18根1米长的栅栏围成一个长方形,可以围出很多种情况。指出:在确定长方形周长后,长和宽越接近,面积就越大。 2、“想想做做”第1、3题说明:1、重点突出板块设计;     2、备课时重点突出教学设计(包括教师与学生活动设计)     3、教学反思在“活动目标及达成情况”栏填写。

解决高校档案管理问题的策略(优秀18篇)篇四

经历四则混合运算、解决问题的策略知识系统复习与整理,基本技能巩固和提高的过程。

进一步认识和掌握四则混合运算、解决问题的策略的计算方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

培养自主复习与整理知识的良好习惯。发现学习中的问题,提高学习效果,增强学好数学的自信心。

1课时。

进一步认识四则混合运算、解决问题的策略,掌握四则混合运算、解决问题的策略的方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

(一)知识梳理。

1、在没有括号的算式里,有乘、除法和加减法,要先算()法,再算()法。

2、算式里有小括号的,要先算()里面的;如果括号里既有乘除法又有加减法,也要先算(),再算()。

3、在一个算式里,既有小括号,又有中括号的,要先算()里面的,再算()里面的。

4、中括号和小括号在算式的作用是()。

(二)题型、方法归纳与典例精讲。

1、四则混合运算计算。

例:计算下面各题。

方法归纳:在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

方法归纳:先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

方法归纳:弄清题意,理清题里的数量关系,根据数量关系提出问题并解答。

(三)归纳小结。

在没有括号的'算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

(四)随堂检测。

1、计算下面各题。

赵阿姨从12只河蚌里剖出432颗珍珠。

如果每72颗珍珠穿成一条项链,那么赵阿姨剖出的珍珠能穿成多少条项链?

照这样计算,赵阿姨从26只河蚌里能剖出多少棵珍珠?

板书设计。

在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

解决问题时,先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

作业布置。

1、甲、乙两列火车分别从东、西两地同时相对开出,5小时后相遇。甲车速度是110千米/时,乙车速度是100千米/时。求东、西两地间的路程。

预习102页有关内容。

解决高校档案管理问题的策略(优秀18篇)篇五

单元教材分析。

单元目标要求。

1、 使学生在解决问题的过程中初步学会应用替换和假设的策略分析数量关系,确定解题思路,并有效地解决问题。2、 使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、 使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学习数学的信心。

单元设计意图。

单元目标达成分析。

板块。

教师活动。

学生活动。

小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?2、提问:大杯和小杯的容量有着什么样的关系呢(小杯的容量是大杯的1/3)?根据这句话你能想到什么呢?教师追问:在替换的过程中什么变了,什么没有变?引导学生进一步理解“替换”的策略:杯子的数量发生了变化,但总容量没有发生变化。.3、小结策略。

虽然是两种不同的替换方法,但它们有什么共同的地方?(两种不同的物体根据它们之间的关系替换成一种物体。)。

4、怎样检验结果是否正确?学生口头检验。

集体交流小结。

指导学生做练习十七的第1题。

学生思考说说。学生说说数量关系后口答列式。学生读题,结合学生提出的已有经验,学生可能出现的情况是:a.把大杯换成小杯b.把小杯换成大杯学生自己操作(可以用画图等方法)学生独立完成,请两名学生板演,集体评讲每种方法的解题思路和方法。比较有什么不同和相同之处。学生检验结果,从两个方面进行,一是算一算总量是否是72毫升;二是算一算两个数量是否是1/3的关系。学生读题后,自己画图分析,解答。集体评讲不同方法的解题思路。比较有什么相同和不同之处。学生试着用替换的策略尝试着计算。集体交流学生明确:例题是倍比关系:替换时总量不变,数量会变;练一练是差比关系:替换时总量变了,数量不变。激活学生的生活经验,为学习新知作铺垫。学会用“替换”的策略通过理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤和方法。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。通过解决生活中的一些实际问题,进一步巩固用“替换”策略来分析题意,理解数量关系,提高学生的分析、解题的能力。课题:解决问题的策略——假设第2课时教学目标:1、在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。

2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。

板块。

教师活动。

学生活动。

教学目标及达成情况。

一、激趣导入。二、新知探究。三、巩固发展。四、课堂总结。

(1)组织学生思考:有没有巧妙的办法,能很快的找到答案?

(2)组织学生把找到的答案和方法与同桌同学进行交流。

(3)组织学生进行全班交流解决问题的方法。

(1)针对学生提出几种问题解决的不同的方法,如把10条船全部看作大(小)船,把一部分船看作大船,一部分看作小船等画图、列表方法,利用课件组织学生进一步观察讨论,交流和体会“假设——比较——调整”替换策略思想方法。

(2)引导学生对所得结论进行检验。

(3)结合学生交流过程,整理小结例2的问题解决策略及推理过程。

1.组织学生完成练习第1题。

(1)组织学生用自己的方式“画一画,算一算”等进行问题解决。

(2)组织学生交流讨论问题解决的过程,进一步体会“替换”策略。

2.组织学生完成练习第2题(结合实际有所调整改编)。

3.组织学生完成练习第3题。

4.组织学生完成练习第4题。

5.感受数学文化。

组织学生阅读我国古代的数学名题——“鸡兔同笼”问题。  组织学生交流本课学习收获,进一步感受用“假设”解决问题策略。学生思考交流想法,说说判断结论。

学生观察,审理问题信息。

学生画图思考,可以把答案先与同桌进行交流,再集体交流。学生完成练习第1题。

可以用自己的方式“画一画,算一算”等进行问题解决。

完成练习第2题(结合实际有所调整改。学生独立完成后进行交流。学生独立完成后进行交流。学生独立完成后进行交流。在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。

2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。通过解决生活中的实际问题,巩固用假设的策略来分析题意,进一步发展学生分析、综合和简单推理的能力。课题:解决问题的策略(练习题)。

第三课时。

板块。

教师活动。

学生活动。

教学目标及达成情况。

解决高校档案管理问题的策略(优秀18篇)篇六

你能根据题意自己独立画线段图整理。

展示学生的线段图,并让学生说说自己是怎样想的。

补充合适的问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。

2、比较两题,找联系。

说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。

什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的`速度再算总的路程。……)

1、先画图整理,再解答。

2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。

3、读题后问:这道题和例题有什么联系?你会解答吗?

解决高校档案管理问题的策略(优秀18篇)篇七

【教材分析】例题用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。而通过课件利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的,教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。再引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

【教学目标】。

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤。

2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

【教学重点】。

用等量替换的方法实现问题的简单化,并相应的解决问题。

【教学过程】。

一、曹冲称象导入。

师:同学们,你们听过“曹冲称象”这个故事吧?好,下面我们一起来看曹冲他是怎么称象的。(点击播放)。

播放结束后提问:曹冲称象,为什么不直接称大象而要称石头?(生自由回答)。

生:当时还没有这种技术。

了不起。其实,他就是运用了“替换”这种方法解决了问题。(板书“替换”)。

二、教学例题1。

师:大臣们的问题大致是(口述):把720毫升果汁倒入7个杯子,正好都倒满,杯子的容量各是多少毫升?你会列式吗?(课件没有出示杯子)。

生自由说。

师:720÷7?真的这么简单?就能难倒聪明的曹冲?看看,大臣们给的到底是什么样的杯子。(出示杯子)。

师:看,这样的杯子,能用720÷7吗?生:不能。

师:为什么?

生:(因为杯子的大小不一样)――可以多问几个学生。

师:是的,杯子不一样,所以我们就不能直接用720÷7。那如果,装满的都是?

让生答:装满的都是小杯或者都是大杯,我们就可以直接算出每个杯子的容量了。

师:好,我们一起来看看大臣们出的问题具体是:(课件出示:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的1/3。大杯和小杯的容量是多少毫升?)。请同学们把题目读一读。

师:你从题目中获得到什么信息?

(720毫升果汁、6个小杯、1个大杯)(师板书)。

理解关键句。

师:你是怎么理解小杯的容量是大杯的1/3这句话的?(多问几个同学)。

(预设之一:把大杯当做标准量,小杯是比较量;反过来那如果把小杯当作标准量(单位一)那大杯的容量是可以说一个大杯的容量相当于3个小杯的容量,也可以说3个小杯的总容量等于1个大杯的容量)。

师:其实,也就是一个大杯的容量相当于3个小杯的容量。

独立思考,合作探究。

1、师:那你想用什么策略解决这个问题?把你的想法和你的同桌说一说,然后把你的解题过程写出来。

同桌讨论,生列算式的过程中(师巡视指导,并请两位学生上台板演。)。

2、师:好,同学们请看:(指着算式)做对了吗?你来解释一下你的解题过程!3、课件演示学生所回答的思路。

师:老师听明白了,你们呢?(演示):他是把1个大杯换成3个小杯,这时候就有??(生:9个小杯)现在就可以先求出??(小杯的容量),然后我们再根据大杯和小杯之间的关系,求出大杯的容量。

4、板书小结:

师:简单的说就是把1个大杯替换成3个小杯,再加上原来的6个小杯,一共就有9个小杯。

5、请学生说第二种方法的思路。

师:诶?这组算式呢?对吗?谁知道他的想法?生回答。

6、学生讲完第二种方法后,课件演示。(也要问到点子上,比如:你是根据)。

师:真不错,是把每三个小杯换成一个大杯,这么一替换,得到的就是(大杯)。就可以求出??(大杯的容量),我们在根据大杯和小杯之间的关系求出小杯的容量。

7、完成板书:

师:是的,我们还可以把6个小杯替换成2个大杯,再加上原来的1个小杯,一共就有3个大杯。

师:你们也都像他们这样解决吗?

检验。

师:到底正不正确呢?我们还要对它进行?

生:检验。

师:怎么检验呢?试一试!(留给学生检验的时间)好,谁来说?生:用240+80=720ml所以正确。

师:哦,你是验证了一个大杯和6个小杯的容量等于720毫升这个条件,但是请你们好好思考思考,只符合这个条件就可以了吗?(240÷80=3)。

师:所以,我们在检验时不能只考虑一个方面,要从整体去思考。总结:

师:刚才我们用什么策略帮助曹冲解决难题的?生:替换师:对,替换就是解决问题的一种策略。(板书课题:解决问题的策略)。

师:那为什么要替换?

生:因为杯子不同,替换了就能变成同一种杯子,问题变得简单了。师:你替换的依据是?

生:小杯是大杯的三分之一。

师小结:是的,解这道题的时,我们先把两种不同的杯子替换成同一种杯子,也就是说把两种不同的量替换成同一种量来解决问题。这样,复杂的问题就简单化了!(板书:两种不同的量替换同一种量)。

师:看来呀,替换真是一种有效的解决问题的策略。那咱们继续用“替换”这种策略来解决生活中的一些问题。请看:(出示练习)。

三、巩固应用。

师:你打算填几?跟你的同桌说一说。学生思考后,指名回答。

从题目中,我们知道小杯的容量是大杯的(),也可以理解为1个大杯的容量等于()个小杯的容量。

如果把小杯替换成大杯,那么8个小杯的容量+2个大杯的容量=()个大杯的容量。

如果把大杯替换成小杯,那么8个小杯的容量+2个大杯的容量=()个小杯的容量。

2、有2个大箱和4个小箱,每个小箱的容量是大箱的1/2,1个大箱可以换成()个小箱,4个小箱可以换()个大箱,如果把大箱都换成小箱,则共有()个小箱。

3、买15支铅笔和4支钢笔共50元,5支铅笔可以换2支钢笔,每支铅笔和钢笔各是多少元?(留足够的时间给学生做题,展示学生作业时,要问:这个算式表示什么?算得的又是什么?每个数字各表示什么等。)。

四、全课总结:

师:你觉得这种替换的策略神奇吗?你有什么样的感想说一说,和大家分享分享。

师:像这样的问题,我们也可以用替换的策略来解决。只要我们从不同的角度去分析和思考,我想:我们将会有许多不同的收获和发现,韦老师期待着,那我们下一节课再一起来探讨。

解决高校档案管理问题的策略(优秀18篇)篇八

教学目标:

1.能根据解决问题的需要,恰当选用不同的策略进行思考;能根据具体的问题灵活确定解题思路,合理选择解题方法,有效解决问题。

2.在运用策略解决问题的过程中进行合理灵活的思考,并清晰地表述自己的想法;具有主动运用策略解决问题的意识,体验解决问题策略的多样性,提升对解题策略价值的认识。

教学过程:

一、理一理。

1.列表。

用列表的方法收集、整理信息,便于分析数量关系。

2.画图。

在解决问题的过程中,有时可以用画图的方法整理相关信息,如:可以用画“示意图”的方法解决有关面积计算的实际问题;可以用画“线段图”的方法解决有关行程问题的实际问题。

3.在具体的问题情境下,还可以用一一列举、还原、替换、假设、转化等策略寻求解决问题的思路。

二、练一练。

1.王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?

学生用一一列举的方法找出不同的围法,然后交流,再要求学生算出每个围成的长方形的面积,说说自己的发现。

学生用不同的方法来解决这一题,然后交流。

学生用替换的策略解决问题,然后交流解题思路,教师及时小结。

学生用假设法来解决,然后交流解题思路,教师及时小结。

学生用“转化”的策略解决这一题,然后交流不同的解题思路,教师及时小结。

三、补充练习。

1.小明有5元和2元两种人民币若干张,他要拿37元,有多少种不同的拿法?

6.一套西服840元,其中裤子的价格是上衣的2/5。上衣比裤子贵多少元?

课后反思:

本课时内容与后一课时内容合并为一课时进行了复习。从复习情况看,大部分学生还是掌握了以前学习的这些内容。难度不大的有关找规律或是用假设、替换等策略解决一些简单的实际问题时,学生也都能正确解答。在运用假设法或替换法解决实际问题后,检验也很重要,课上结合一些实际问题,我请学生在列式计算后再进行检验,看看是否符合已知信息。

和沈老师一样,感到学生之间存在较大的差异,复习中学习困难生就感到困难重重,体验不到学习的快乐。

课后反思:

总的来说,大部分学生完成的不错,补充习题的第3题和第4题学生错的比较多,可以理解,在之前学习的时候,第3小题也是学生有错误的。而第4小题主要是让学生知道用替换的策略解决问题时,分倍数和差数关系,题中如果告诉我们的是倍数关系,则总量是不变的,如果是差数关系,则总量要发生变化。另外对于一些有困难的学生,有时候判断不出用替换还是假设的策略解决问题时,则可以让学生用列方程来解答。而且在练习的过程中也有不少学生采用了列方程的方法,在没有明确用哪种方法解答时,这也未尝不可。

解决高校档案管理问题的策略(优秀18篇)篇九

p63~64例题和试一试、p65“想想做做”

(1)让学生学习有画图和列表的方法收集、整理信息,并在画图和列表的过程中分析数量关系,寻找解决问题的有效方法。

(2)使学生在自主探索合作交流中体验成功的`愉悦,进一步树立学习数学的自信心,发展对数学学习的积极情感,提高主动学习和独立思考的积极性。

一、导入新课

(学生说出不同的方法)哪些方法可取,比较好?

遇到问题如何解决,就要找到解决问题的策略,今天这节课学习“解决问题的策略”(板书课题)

二、新授

1、出示场景

(1)说一说图中提供了哪些信息。

(2)根据提供信息,你能提出哪些问题?

2、出示问题:

(1)小华买5本需要多少元?

(2)小军用42元可以买多少本?

解决高校档案管理问题的策略(优秀18篇)篇十

课次。

1

授课课题。

教   学基本内容。

教学目的。

和要求。

1、让学生在解决问题的过程中体验列举的策略,会用这种策略解决一些相关的实际问题,能通过不遗漏、不重复的列举找到符合要求的所有答案。2、培养学生思考数学问题的条理性、有序性,体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学好数学的信心。

教学重点。

教学方法及手段。

有条理,有序的思考问题。

学法指导。

一一列举。

板书设计。

执行情况与教学思。

课次。

2

授课课题。

教   学基本内容。

教科书65页例3及“练一练”练习十一4-5。

教学目的。

和要求1、让学生继续在解决问题的过程中体验并掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。2、进一步培养学生思考数学问题的条理性、有序性,进一步体会解决数学问题方法的多样性、灵活性,发展学生的思维能力。3、进一步培养学生的探索意识、策略意识和合作意识,让学生进一步感受数学与现实生活的联系。

教学重点及难点。

掌握列举的策略,会用这种策略解决一些稍复杂的实际问题。

教学方法及手段。

列表整理。

学法指导。

有序列举。

计一、导入新课提问:上节课我们学习了一种新的解决问题的策略,是什么?运用这种策略时要注意什么问题?谈话:这节课我们继续学习用列举的策略来解决数学问题。(板书课题:解决问题的策略)。

二、创设情景,讲授新知1、谈话 2、教学例3。题目告诉我们哪些信息?括号里的话是什么意思?要我们解决什么问题?你打算用什么策略来解决这个问题?3、这道题很适合用列举的策略来解决,我们知道列举要有条理、有顺序。想一想,按怎样的顺序列举会不重复不遗漏?在小组里讨论一下。4、大家都认为,可以按3人间由少到多的顺序来列举,也可以按2人间由少到多的顺序来列举。我们先按3人间由少到多的顺序来列举,为了方便记录和观察,我们可以先画个表格。(出示表格)从只住1个3人间想起,还需要多少个2人间?你是怎样想的?教师板书:板书算式:23-3=20(人),20/2=10(间),并在表里填写1和10。接下去,如果住2个3人间,还需要多少个2人间?请计算出来。教师板书:3*2=6(人),23-6=17(人),17/2=8(间)……1(人)提问:这样2人间怎样安排?符合题目要求吗?谈话:这种情况是不符合要求的,那么这次列举的内容要否定掉。可以在2人间里对应的格子里画“—“,表示否定。(板书:—)谈话:你们会这样列举了吗?接下去应该怎样想?在小组里讨论。注意:组内每个人至少要说一种。指名说答案,教师板书。

6、比较:两次列举有什么相同和不同的地方?你认为哪种列举比较简便?让学生把答句填写完整。

板书设计。

执行情况与教学思。

课次。

3

授课课题。

教   学基本内容。

教科书练习十一6-9。

教学目的。

和要求。

教学重点及难点。

具体情境中能用列举法解决实际问题。

教学方法及手段。

优化方法。

学法指导。

有序的列举。

板书设计。

执行。

情况。

与教学反思。

解决高校档案管理问题的策略(优秀18篇)篇十一

教学目标:

1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。

2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:让学生体会替换策略的优越性。

教学难点:对替换前后数量关系的把握。

教学过程:

一、创设情景导入:

有谁带了钢笔吗?

老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?

要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。

(严肃,让学生觉得真换)。

怎么啦?(学生说说)。

是啊!

那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?

为什么?(老师:成交!)。

用铅笔换钢笔依据。

板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔(价格相当)。

那你说说看为什么非要老师用十支铅笔才肯换呢?

(引导学生说出价钱差不多)。

紧接板书:价格相当。

十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。

板书:依据。

二、温故知新:

课件打开到曹冲称象图片。

(他用什么替换了什么?)。

你能联系上面情节讲一讲它替换的依据是什么呢?

(鼓励性评价:真聪明)。

石头和大象的重量相同作为替换的依据。

那曹冲是怎样来保证石头和大象的重量相同呢?

板书:一堆石头---------替换----------一头大象(重量相同)。

曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。

板书:添上----替换两字。

三、协作创新。

曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。

三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。

(简略介绍其中的走舸和楼船。)。

题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。

生一起读题。

你知道了哪些信息?

这道题目能用“替换”的策略解决吗?

接下来请同学们按照题目下面的要求,来亲身体验一下替换。

同桌合作:

1用什么替换什么?(把题目中替换的双方圈一圈)。

2替换的依据是什么?(在题目关键句的下面画一画)。

3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。

小组交流:

知道怎么替换了的同学请举手。

你们在替换的时候,有没有想到替换有什么好处啊?

请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?

1替换有什么好处?

2你替换的.方法和其他同学完全一样吗?

结合课件画面讲解,板书。

一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。

课件展示:

替换前。

(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。

替换后。

(15走舸,出示数量关系:15艘走舸一共装了105名士兵)让学生计算。并讲一讲过程(数量关系)。

(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。

两种方法都讲解完后,让学生说说替换的好处。

四、巩固立新:

俗话说得好:兵马未动,粮草先行。

请学生说说如何替换?

板书:一条运粮船----------替换----------(一辆马车+15袋)。

让学生在自备本上用自己喜欢的方式画一画。

实物投影展示替换方法。(最好选文字和图画各一份)。

数学是需要简洁和凝练的,看赵老师怎么来做。。。

强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?

课件演示思考过程。

同桌之间互相说说:替换前后的数量关系分别是什么?

学生自己列算式解答。

请学生说说替换的好处。

五、博古通今:

学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。

学生独立完成。

让一学生上黑板进行板演(力求作出示意图)。

全班交流。

引导学生把四大名著换成三国演义。

并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。

六、自编自演:

大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。

请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。

七、课堂小结:

今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。

解决高校档案管理问题的策略(优秀18篇)篇十二

今天我说课的内容是苏教版义务教育课程标准实验教材五年级数学(下册)第九单元《解决问题的策略》-倒推法。本单元是在学生已经学习了用画图和列表的策略解决问题的基础上,教学用“倒推法”的策略解决相关实际问题。“倒推法”是一种应用于特定问题情境下的解题策略。教材首先通过两道例题让学生解决具体的问题,体会适合用“倒推法”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程 ;再在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒推法”的策略意义及其适用性,提高解决实际问题的能力。

2.教学目标和重难点

根据课程标准与教学内容,结合学生的实际情况,我确定了以下的教学目标和重难点:

(1)使学生在解决实际问题的过程中学会用“倒推法”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题方法。

(2)使学生在对解决实际问题过程的不断反思中,感受“倒推法”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

(3)使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数数学的信心。

教学重点:学生学会运用“倒推法”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题方法和步骤。

本节课力求借助传统媒体与现代媒体相结合的手段再现具体的生活情境,我主要采用直观教学法、观察比较法、启发教学法等教学方法,有意识地培养学生自主探究,合作学习的能力,教会学生学会通过观察、分析、归纳了解并掌握用“倒推法”的策略解决实际问题。

在整个教学设计上,力求充分体现“以学生发展为本”的教学理念,我将教学思路拟定为以下四个方面:

(一)自学质疑,建立模型

(二)交流展示,初步感知

在学生自学的基础上,让学生在交流展示中说出自己的想法,也在听取别人意见的同时梳理自己的思路。这样能帮助学生再次理顺问题思路,初步感知倒推来解决问题的方法。

(三)自主探究,深入理解

例1是通过在两个杯子之间倒果汁这样一个操作性强,过程清晰的问题情景,让学生初步理解并感悟“倒推法”的策略和列表格解决问题的方法。此时的学生并没有真的掌握倒推法解决问题的策略,于是要进一步设计类似的问题,让学生根据感知的方法尝试自主探究这一策略,这一部分以学生的分析为主,让学生相互补充,力求说具体,说完整。

(四)精讲点拨,突破难点

引导通过比较解决这两个问题过程的相同点和不同点,让学生再次体会倒推的策略以及明确什么样的情况下适合用倒推的策略来解决问题。在学生充分理解后,我还设计了让学生检验答案是否正确。从而比较解决问题的思路和检验的思路又什么不同。解决问题的思路是从现在到原来,是倒推的策略;检验的思路是从原来到现在,是按题意进行顺推。

(五)矫正反馈 ,拓展延伸

俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。通过学生熟悉的生活情境,在解决问题的过程中,激活学生思维,让学生初步学会用“倒推”的策略解决实际问题。

( 六)课堂总结,课外运用

学生说一说本节课有哪些收获?还有哪些疑问?教师引导学生总结一下本节课的内容,再次重申学习的解决问题的倒推策略。

总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流,做到“先学后教,以学定教,能学不教”;练习体现了层次性,体现数学与生活的密切联系,增强学生学好数学的信心。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。

解决高校档案管理问题的策略(优秀18篇)篇十三

进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。

教学过程:

一、积累铺垫。

4.从图中你能求出什么?

二、初步感知。

2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。

4.现在图有了,你能根据图来求出原来操场的面积吗?

(1)学生尝试,教师巡视。(2)讨论交流:

三、再次体验。

四、深入体验。

(一)第四关:

1.引入:应用画图的策略,我们来闯第四关。

2.分层出示:

到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。

3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?

(二)第五关:

1.引入:第四关我们都闯过了,下面我们要挑战——第五关!

(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。

五、全课总结。

解决高校档案管理问题的策略(优秀18篇)篇十四

我今天说课的内容是国标版六年级下册第六单元的《用转化的策略解决问题》。这是在学生已经学习了用画图、列表、一一列举、倒推、替换和假设等策略解决问题的基础上进行教学的。通过本课的教学,可以进一步增强学生的策略意识。

本课时教材安排了一道例题,一个试一试和一个练一练。例题通过引导学生将稍复杂的图形转化为简单的图形,感悟转化策略的便捷。然后引导学生回忆运用转化的策略曾经解决过哪些问题,体会转化策略可以化繁为简,化未知为已知。初步形成对转化策略的认识。试一试、练一练都是引导学生从不同的角度进行转化,使学生体会到了转化的价值。

通过以上对教材的理解,结合学生的已有经验,我拟定了这样的三维目标:

1、使学生初步学会用转化的策略分析问题,解决问题,并根据问题的特点确定具体的转化方法。

2、使学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

3、使学生进一步积累运用转化策略解决问题的经验,获得解决问题的成功体验,提高学好数学的信心。

本课的教学重点及难点是学会运用转化的策略分析问题,灵活确定解决问题的思路。

结合上述对教材和学生的分析情况,我预设如下,分四个教学环节:

第一环节:创设情境故事引入。

学生讨论后教师小结:找大人来救太慢,落水儿童可能有危险,换一种方式——砸缸,能更快的救出落水儿童,司马光真聪明。在我们数学研究的过程中,也常常把一种问题转化成另一种问题。揭题:今天我们就来研究转化这种解决问题的策略。

以司马光砸缸的故事导入新课,一方面可以激发学生的兴趣,另一方面可以使学生初步体会转化可以使问题更快得到解决。

第二环节:互助合作探究策略。

分三层,第一层:探索方法。

借助媒体显示例题图:下面两个图形的面积相等吗?

学生仔细观察两个图形面积是否相等,并在小组里交流自己的想法。教师巡视。

学生讨论得差不多之后,指名交流。学生可能会说用数方格的方法进行比较,此时教师要提醒学生先把图中的方格线补画完整再数;如果有学生直接说出分别把两个图形转化为长方形,那么就请学生来说说是怎样进行转化的,并根据学生说的情况在媒体上一步一步演示转化的过程。

学生交流后教师再让学生说说是怎么才能更快的比较这两个复杂图形的面积的。从而明确是因为把它们转化成了长方形,所以能很快比较。

这一层次,学生通过思考、交流,同时教师利用媒体的演示,和语言的归纳,使学生明确地感受到了转化的功能。

第二层:回忆价值。

教师引导学生回忆:在以往的学习中,我们曾经运用转化的策略解决过哪些问题呢?

首先学生回忆,并先在小组里交流。小组交流后全班交流,教师让学生充分发表自己的想法,同时选择性的板书,当学生提出实例后,让学生说一说转化的具体方法。

接着结合板书,教师提问:这些运用转化的策略解决问题的过程有什么共同点?容学生思考片刻,若学生说不出来,就教师说:这些都是把新的问题转化成熟悉的或已经解决过的问题。

那以后再遇到一个陌生的问题时,你会怎样想呢?可以让学生说一说。

本环节通过引导学生回忆转化策略在以往学习中的运用,体会转化通常是把一个稍复杂的、新的问题转化成简单的、已经解决的问题。

第三层:运用策略。

1、媒体出示试一试中的算式,提问:这道题可以怎样计算?这个算式有什么特点?

学生观察、交流,教师可以适当引导:这几个分数的分子都是1,分母分别是几个2的乘积。

接着媒体显示算式右边的正方形图,教师引导学生观察算式和图形,哪部分表示这几个数的和,建立数形对应的概念。学生仔细观察两者间的联系,明确,原来的算式可以转化成1-1/16进行计算。

2、媒体出示练一练方格纸上的两个图形,让学生思考怎样计算右边图形的周长比较简便。

学生先独立思考,再进行计算,交流时说说是怎样想的,运用了什么策略。

根据学生交流,教师小结:同学们这是把稍复杂的图形转化成简单的图形。

此环节通过引导学生解决不同转化类型的题目,使学生体会到转化的策略并不是一成不变的,而应从多角度灵活地分析问题。

第三环节:拓展练习巩固策略。

第一层:基础练习。

1、p74第2题,学生填好之后说说是怎样想的,说出转化的方法。这里我借助媒体演示重点引导学生讨论第3小题。

2、p74第3题,学生先说一说怎样转化再计算。

第二层:综合运用。

1、我改编p74第1题,16人参加乒乓球单打比赛,单场淘汰制,一共要进行多少场比赛才能产生冠军?先帮助学生理解单场淘汰制的含义。学生思考片刻后如有学生能说出来,就让他说完之后媒体再显示图像,如没有学生能说出来,就先显示图形,再引导学生思考:产生冠军就是要淘汰15人,所以要比16-1=15场。

先让学生思考,然后再交流。要说明白16人参加双打比赛,每2人一组,分成了8组,要淘汰7组,所以要进行7场比赛。

3、媒体显示一个不规则金属零件,要测量的体积,你有什么好的方法吗?

学生交流方法,最后教师肯定转化的策略。

整个练习过程,从基础的模仿训练到生活当中的综合运用,层层深入。激发学生从多角度灵活的运用转化的策略,确定转化的方法,能力得到了提升。

第四环节:全课总结感悟策略。

组织学生说说今天我们研究了什么策略,这种策略有什么优势。

学生交流、互补,明确运用转化的策略可以把问题化繁为简。

文档为doc格式。

解决高校档案管理问题的策略(优秀18篇)篇十五

在设计《倒推》课件时,本着的原则是简约。无论我的教学设计多么新颖,无论我的数学思考多么前卫,无论我的使用的媒体技术多么先进。呈现给学生的课件始终要能达到一目了然、豁然开朗的效果。

因此,我设计了如下的课件内容。

例1的动画设计力求体现真实。让学生在倒的动画演示中切身感受到两杯水中水的增减变化的真实。“将甲杯倒入乙杯40毫升,两杯水同样多。”才能在学生的数学思考中有效顿悟出“原来两杯果汁各有多少毫升?”的问题。可以说,这个问题之所以能够迅速呈现出来,是因为通过课件对现实的真实反映而激起了学生的学习欲望,同时也渗透了倒推来源于生活、数学来源于现实的思想。

从生活中我们顿悟了一些数学问题,用数学的方法怎么去解决呢?通过课件,把用画图和填表两种数学方法将倒水的结果展示在屏幕上,而且这里的“200毫升”、“从乙杯倒回甲杯40毫升”是学生通过小组合作交流探究出来的结果。再次通过课件演示,使学生又一次顿悟出:原来甲杯中的水应该比200毫升多40毫升,原来乙杯中的水应该比200毫升少40毫升。这里课件使用的妙处就在于将学生对整个倒推问题的思考过程进行了直观播放,也真正体现了课件在整个课堂教学中的支撑作用。

追求课堂教学的高效,有一点不得不提,就是对课堂教学时间的有效掌控。课件的有效作用就能帮助你实现这一目标。解决倒推问题可能有许多方法,但我认为,总有一种更具有“数学味”的解法,更抽象一些。课件将例2中解决问题的全过程展示给学生,使学生明白:倒推问题还可以这样解。帮助学生初步建立解决倒推问题的数学模型,为列式做铺垫。

例1和例2比较的设计主要是渗透倒推的基本思想:由现在到原来。

试一试和练习的课件设计除了是教学重、难点的需要外,主要作用是:(1)节约教学时间;(2)便于教学反馈、师生交流。另外,通过对练习题的分层设计,帮助学生巩固倒推的策略。

解决高校档案管理问题的策略(优秀18篇)篇十六

虽然这是苏教版数学教材五年级下册第七单元所安排的内容,但是孩子在之前的学习过程中早有接触,对于转化这一策略在孩子的认知上不是一张白纸,其实他们已经积累了丰富的用转化策略解决问题的经验,本课与其说是教策略,不如说是对过去学习中形成的认识和经验进行总结和提炼,并上升到策略的高度。为此,在教学过程中我对教材进行了重组与二度开,发促使孩子们在解决问题的过程中整理经验、提升认识,感受策略的价值,增强策略意识。

一、教学例题,感知“转化”

仔细研读教材,我们可以看出解决问题的策略的教学设计了两条线索,一是关于关于解决问题方法的线索,通过“创生方法——使用方法——用好方法——用活方法”,掌握解决问题的策略;二是关于解决问题策略的线索,通过“初步感知——再次感悟——反复体验”,逐渐形成策略。两条线索一明一暗,方法是明线,策略是暗线,两条线平行同步推进且相互交融。因此,在教学新知时我分成了这样三个版块:

第一版块:分数中的转化。我把练习十六第2题的前面两个小题前置,因为这样的题型孩子们并不陌生,他们能很快找到方法,从而解决问题,今天课上再次出现,我的意图是让孩子们认识到策略是在总结方法时提炼出来的,解题策略与解题方法同时存在。

第二版块:面积中的转化。在这个版块的教学中,我是依据例题1的思路按部就班进行活动,学生先是自主探究,找到比较方法与结果,然后再把自己的学习经验在小组中分享交流,使得学生间的思维发生碰撞,从而提升孩子们对于转化这一策略的认识,最后在我的组织下进行交流、梳理、总结。这一过程中,他们领悟的是转化策略的精髓,获得的是勇于创新的品质。

第三版块:周长中的转化。在这个板块中,我既安排了转化后周长不变的习题,又安排了转化后周长不相等的练习,这部分内容是我对教材的二度开发,意在让学生体会到在运用策略时也要仔细观察,用心思考,需要对具体问题具体分析、灵活运用。

二、回顾举例,体验“转化”

为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系,在这里我播放微课,调动孩子们的多种感官,全面感知转化这一策略的奇妙之处。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。

三、重组练习,运用“转化”

在练习时,我除了应用教材中的常规题型外,我还设计了这样一条题:2/9×4结果会是多少呢?这条题放在这儿,大多数老师肯定会有疑问:这题放在这里教学有意思吗?后面不是会重点教学吗?其实我是这样想的,一旦我们的孩子走出校园,若干年后他会遗忘大部分的知识与习题,但是你所交给他的学习方法是不会遗忘的,而转化就是我们学习数学的重要方法之一,纵观数学教学,我们总是不停的把新知转化成旧知,帮助孩子理解,便于孩子掌握。我想,这题安排在这儿会给孩子们的认知一个比较大的冲击,会把转化这一策略深深烙在心里。其实这也是国家课程校本化实施的一次小尝试。

解决高校档案管理问题的策略(优秀18篇)篇十七

今天我说课的内容是五年级下册第9单元解决问题的策略——倒推的第一课时。我想从下面几个方面来说课:

纵向看:《数学课程标准》在确定课程目标时特别提到了下面的要求。“形成解决问题的一些基本策略,体验解决问题策略多样性,发展实践能力和创新精神”。因此新编的苏教版国标本教材分六次安排了不同的解决问题的策略:有列表法、画图法、列举法、倒推法、替换法、转化法。这些策略既相互独立,一般都是在特定的问题情境下来解决特定的实际问题,同时他们又相互作用,比如倒推是解决问题的一种策略,运用时还需要其他策略相配合,尤其是四年级的列表整理条件和问题以及画图这些策略。

需要说明的是:解决问题的策略和解决问题的方法是不一样的。方法是可以教的,而策略则更注重学生自己去感悟!在教学中,应该着力引导学生感悟策略的价值,领会策略的真谛,不断提高对策略的本质认识。

横向看:本单元是在学生已经学习了画图和列表的策略基础上,教学用“倒过来推想”的策略解决问题。“倒过来推想”是一种应用于特定问题情境下的解题策略。我认为通过教学这部分内容更多的还是培养学生能够自觉的应用这种策略的意识,以达到不断丰富学生数学底蕴的目的。

教材首先通过两道例题让学生解决具体的问题,体会适合用“倒过来推想”的策略来解决的问题的特点,初步掌握运用这一策略解决问题的基本思考方法和过程;在接下来的练习中安排了不同的实际问题,让学生灵活运用学过的数学知识去解决,进一步体会“倒过来推想”这一策略的价值及其适用性,以提高学生解决实际问题的能力。

说教学目标、教学重难点:

根据课程标准和教学内容我认为这节课的教学要达到以下几个目标:

1、使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

2、使学生在对解决实际问题的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学生学好数学的信心。

教学重点:引导学生体验感受事物和数量的发展变化情况,从变化后的结果开始,

运用“倒推”的策略解决实际问题。

教学难点:知道什么情况下用“倒推”的策略解决问题,和怎样运用“倒推”的策略去解决问题。

(一)方法铺垫:

首先请一名学生依次说说她上学时主要经过哪几个地点,再请另一名学生如果她原路返回到家,会经过哪几个地点?从而使学生初步体会“倒推”的策略在生活中的价值,激起学生浓厚的学习兴趣。接着,出示练习十六中的第5题,让学生们尝试练习,因为这是学生们曾经练习过的形式,因此,虽然没有学习本课,但对于学生而言没有难度。

这样的设计从学生的可接受性入手,先带着学生进入学习的状态,从身边的事物开始,为后面知识的新授打下坚实的伏笔。

(二)探究新知:

在例1的讨论中,我着重从变与不变着手,“当甲杯倒入乙杯40毫升后,两杯果汁同样多”,这样一来,什么没变?什么变化了?是怎样变化的?引导学生分析得出,根据“现在两杯果汁各200毫升”,要想知道原来两杯的果汁容量,得把那40毫升倒还给甲杯;接下来,学生通过表格的填写反思“倒回去”的过程;通过课件的演示,丰富了对“倒推”的感性认识。

在例2的讨论中,首先让学生感到,这道题虽然与例1不同,但都要从现在的数量追溯到原来的数量;接着让学生用学过的方法简明扼要地将题目中的条件及问题呈现出来;然后启发学生逆着事情的变化顺序推想:送出的应要回,收集的应去掉。这样既降低了学习难度,有突出了倒推的思路。当然,为了鼓励学生富有个性的思考,发展学生的思维能力,这道题还可以有其他解法,教师要及时点评,同时可以将另一方法作为倒推结果的检验。

对于两个例题的学习,主要是让学生解决具体的问题,体会适用“倒推”的策略来解决的问题的特点,初步掌握运用这一策略解决实际问题的基本思考方法和过程。同时让学生认识到:倒推只是解决问题的一种策略,运用时还需要其他策略相配合,如:列表、摘录。

(三)巩固运用:

这个环节的题目主要来源于课本,对于课本中的练一练,我把主要力气花在指导学生体会数量变化的过程,即理解“一半多一张”。现场让学生拿一拿,送一送不失为一个好办法,学生在动手操作中,体会到要“先送一半,再送一张”。这样,这道题的难度大大被降低了,学生能很快地整理出事情从开始到结束的变化过程,排出各次变化的次序后再逆着事情的变化顺序推想出原来。

为了让学生彻底理解本道题,我紧随其后,将题目更改为“一半少一张”,这样不仅可以巩固对新知的理解,而且对倒推有了更深的认识,达到了把课堂上学习的内容内化为自己的技能的目的。

“练习十六”的1、2两题让学生灵活运用学过的数学知识去解决,进一步体会“倒推”策略的意义及其适用性,提高解决问题的能力。

(四)思维拓展:

为了让学生运用自己所学得只是解决生活中的实际问题,同时让学生感受到这一策略在日常生活中的巨大作用,我设计了以下的思维拓展。

二是生活中人们对倒推策略的思考:司马光救人是将“人如何离开水”变成“水如何能离开人”;破冰船是将如何让“从上往下施力”变成“从下往上施力”等等,这些都体现了倒推在生活中的应用。

本节课的教学安排主要基于以下两方面进行思考的:

1、形成一种观念——多种策略的综合运用。

本节课,我注重培养学生应用策略的意识,对于小学生而言,在抽象思维还未完全形成的时候理解倒推策略有一定难度;同时在什么样的题目中运用倒推策略也是部分学生的困惑。因此,借助于已学策略——列表、摘录,甚至画图,都成为帮助我们倒推的工具,在这些策略的扶助下,才能进一步体现解决这类题目倒推策略的优越性。

2、突出一条主线——倒推。

在这一课的教学中我更注重将倒推作为解题的需要。从例题到练习,都是在突出这根主线,使学生能真切的感受到对于这类题目,倒推确实是一种行之有效的解决问题策略。

学生在由浅入深的练习中,以及在同一题多种方法的比较中,多次感受到这一策略的优势,借助于简单明了的整理,不仅让学生理解题目的内涵,而且学生解决问题的能力得到了提高。

当然培养学生应用各种策略解决问题的意识,是一个长期而漫长的过程,需要我们教师不懈的努力。

解决高校档案管理问题的策略(优秀18篇)篇十八

根据教材编排要求,我以为本节课的教学目标有三点:一、知识目标:让学生回顾用转化策略解决问题的过程,通过解决具体问题,感悟转化的含义。二、能力目标:让学生在具体问题的解决过程中,进一步积累运用转化策略的经验,掌握一些常用方法和转化技巧。三、情感态度目标:让学生进一步增强解决问题的策略意识,体会运用转化的策略是解决问题的有效方法,增强克服困难的勇气,获得成功的体验。

说教学重点和难点:学生自主运用转化的策略解决问题。

结合教材和教学目标我将采用如下的教法和学法:

(1)合作探究法。教师通过设疑,引导学生合作学习,逐步启发学生探究用转化的方法来解决问题。增强学生探索的信心,体验成功。

(2)练习巩固法。力求突出重点、突破难点,使学生运用知识、解决问题的能力得到进一步的提高。

遵循小学数学课堂教学的现实性、趣味性、思考性和开放性,本着培养学生的数学意识和提升学生运用知识解决实际问题能力的设计思路,我将本节课的教学内容分为五个环节:

一、创设情境,揭示“转化”

数学是和生活密切联系的,课的开始,我先跟学生讲了一个爱迪生和他的助手测量灯泡体积的故事。助手花了几个小时的时间来计算灯泡的体积,也没有算出来,爱迪生能很快的算出来,让学生猜一猜爱迪生是用的什么方法?根据学生的回答,我适时小结:把灯泡的体积转化成水的体积,就是一种非常重要的解决问题的策略,叫做“转化”。通过故事情境导入新课,激发了学生的学习兴趣。

二、教学例题,感知“转化”

我首先出示例1的两幅图,让学生猜一猜这两幅图的面积大小,并且提问你们准备用什么方法来证明你的猜测?先让学生独立思考,然后四人小组交流各自己的想法。根据学生回答,教师配以课件演示。(将其转化成长方形比较)对照课件我继续追问:(1)第一个图形是怎样转化成长方形的?上面的半圆向什么方向平移了几格?(2)第二个图形是怎样转化成长方形的?左右两个半圆分别按什么方向旋转了多少度?指名回答后,我又再次用课件演示“转化”过程。一边演示,一边和同学共同叙述转化:第一幅图把半圆向下平移5格后转化成了长方形;第二幅图把左右两个半圆旋转180度后转化成了长方形;通过演示、回顾、叙述学生经历了转化的过程,丰富了感性认识,这时我又适时点拨:在图形的变化过程中形状发生变化,面积不变,都转化成相同的长方形,所以一、二两幅图的面积也相等。在“变与不变”的讨论中,让学生感受到:通过转化可以化繁为简,能清晰地比较出两个图形的大小。

在这个环节中,我未作铺垫直接出示例题,提出富有挑战性的问题,通过问题解决让学生在探索交流的基础上,借助多媒体课件的演示,使学生对图形的具体转化方法获得清晰的认识,感受转化是解决问题的一种好策略。

三、回顾举例,体验“转化”

为了进一步丰富学生对转化策略的认识,帮助学生从策略的角度进一步体会知识之间的联系。在完成了例1的教学任务后,我让学生回忆以前学过的知识中,在哪些地方都运用到了转化的策略?我先给学生一个交流的机会,让他们把回忆的内容给小组成员说说,然后全班交流汇报。通过讨论交流学生会联想到平面图形面积公式推导,体积公式推导,分数、小数的计算、不规则图形的周长计算等等……我让学生具体说一说推导过程。边演示边叙述,比如……课件演示一句话概括。为了引导学生把以往学习的一些具体的数学方法上升到转化策略的高度来认识,我又追问:我们在运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题)小结同学们的答案,并板书转化的核心作用“化繁为简、化新为旧”。这一环节的设计,有效地建立新旧知识之间联系,大量的学习材料,让学生感受到了转化的应用价值。

四、重组练习,运用“转化”

为了帮助学生掌握一些常用的转化方法和技巧,教材安排了多条练习。教学中我根据知识的体系,对练习的内容进行调整、归类、重组,加强整合力求体现练习的梯度和层次。让学生在巩固知识的同时,刷新解决的能力。我主要是从两个方面重练习:一、“空间与图形”领域的练习;第二是“数与代数”领域的练习。

在“空间与图形”方面,我设计了这样几道练习:(对照课件一两句话概括)。

在完成以上几道练习后,引导学生回顾小结,进一步体验,通过平移和旋转,我们把复杂图形变个形转化成简单图形,原来的问题就迎刃而解了,就象匈牙利著名数学家路莎彼得说过的那样:解题时,往往不对问题进行正面的攻击,而是将它不断变形,直至转化为已经能够解决的问题。

在“数与代数”领域,我设计这样几道练习:首先出示一道分数加法计算题1/2+1/4+1/8+1/16。如果用通分的方法,学生感觉很麻烦。顺势提问我们还可以借助什么策略来化繁为简呢?如果有困难,老师给一些提示:如果把这个大正方形看作“1”(点击)。

这些分数分别表示什么意义?教师配以课件演示。并强调单位“1”相同。

提问:求得是这些涂色部分一共是多少?你能转化成一个什么问题呢?引导学生说出从空白部分入手,把这个加法算式转化成一个减法算式也能求出它们的和。

学生豁然开朗,这时我给这题再添上一个加数,加一个1/32,和是多少?要求阴影部分的和可以从空白部分着想,看来用转化的思想解决问题也可以从反面入手。把抽象的数转化成图形,数形结合有助于思考,运用转化的策略解决问题时,让学生谈谈自己使用“转化”策略解决问题时候的体会和感想。

我以为通过这样的设计体现了数与形的转化和结合,深化了知识,帮助学生理解知识的形成过程。

其次,我还设计了这道练习,出示练习十四第一题,面对复杂的问题,学生往往感到束手无策,我根据学生的年龄特点,进行有效地引导:(课件演示)。

叙述:如果有4支球队比赛,第一轮像这样比一比,决出2个胜者;第二轮再2个胜者比一场,决出冠军。一共进行了3场比赛。

如果有8支球队比赛呢,第一轮像这样比一比,比了几场?淘汰了几支球队?(4支)第二轮再这样比一比,比了几场?又淘汰了几支球队?(2个)最后两个胜者比一比,就决出冠军。数一数,一共进行了几场比赛?(7场)。

那16支球队比赛,决出冠军要比几场呢?(电脑演示:16支球队出来)。

面对学生的成功喜悦,我又追问:如果从淘汰的角度,反过来思考,还可以选择转化成一道简单的减法算式?在不断地自我反思和追问中,学生发现还可以直接将问题转化成16—1的算式进行解决。

按照教材的编写意图对练习进行重组,尊重学生的学情、巧妙地体现知识体系,呈现形式灵活、多样。通过提问、交流,既调动了学生学习的积极性,提高了练习实效,又培养了学生解决问题、分析问题的能力。而多媒体的功能也在此环节中得以充分发挥,数字转化为图形或曲线转化为直线,都能淋漓尽致的表现出来,让学生能头、脑、眼、口、手并用,达到最佳学习状态。)。

五、故事小结,深化“转化”

1.数学文化渗透(曹冲称象)。

课的结尾,我会让学生讲一讲“曹冲称象”的故事,并指出曹冲是把大象的重量转化成了石头的重量。这样的设计照应了开头,同时也将学生的眼光从课堂再次拉向了现实生活,有利于学生自觉运用转化的策略解决生活中的问题。

最后我用著名数学家华罗庚的一句名言来结束全课。

“神奇化易是坦道,易化神奇不足提”————华罗庚。

意思是说,把复杂的问题转化成简单的一路平坦,而把简单的问题转化成复杂的就不值得提倡了。

相关范文推荐

    培训师的心得体会大全(15篇)

    培训心得体会可以以记叙、议论、抒情等不同的文体形式进行呈现,具有较大的表达空间。接下来,请大家一起来看看小编整理的培训心得体会范文。20xx年5月,我有幸参加了

    学生的白杨礼赞教学反思(模板24篇)

    教学反思需要教师保持开放的心态,接受各种意见与建议,不断完善自己的教学方式和方法。您将看到的是一篇精心编写的教学反思模板,希望能给您的教学工作带来些许启发。

    幼儿园教师管理幼儿园大班年级工作计划(优质18篇)

    幼儿园工作计划的评估和调整是保障教育质量的重要环节。接下来是一些幼儿园工作计划的实例,希望对大家的实际工作有所帮助和启示。时间过得真快,新学期又开始了,本学期我

    教育工作者的校长建议大全(13篇)

    范文范本是为了给大家提供写作参考而准备的一种文体,对于初学者来说是很有帮助的。下面是小编为大家整理的总结范本,它们都是经过精心挑选和排版的,可以供大家进行参考。

    小学英语教师工作总结大全(20篇)

    教师工作总结是对自己在教学工作中的表现进行回顾和总结的一种方式。以下是小编为大家整理的教师工作总结样例,希望对大家的写作有所帮助。小学英语教学难度大,教师需要

    感恩爸爸的父亲节礼物推荐(汇总21篇)

    感恩是一种积极向上的力量,一种能够让我们保持快乐和乐观的情感。小编为大家准备了一些感恩表达的参考,希望能够帮助到大家。以前,我只知道有母亲节,而不知道父亲节,觉

    学生实验心得体会(模板16篇)

    通过写心得体会,我们可以更加深入地了解自己的思考和成长过程。小编整理了一些关于心得体会的精选文章,供大家欣赏和学习。在学生的科学教育中,实验是一项重要的活动。通

    学生宿舍打牌规定大全(23篇)

    范文范本是我们学习与借鉴的对象,但我们也要注重培养自己的独立思考和创作能力。以下是小编为大家收集的范文范本,仅供参考,希望能对大家有所帮助。尊敬的班主任老师:您

    烟雨江南散文之美(汇总18篇)

    范文范本的作者经过深入研究和细致分析,为我们提供了一份宝贵的学习资源。以下是小编为大家收集的范文范本,供大家参考和学习。希望通过阅读这些范本,大家能够掌握一定的

    朋友聚会邀请函(汇总16篇)

    在起草邀请函时,要注意使用得体的语言和礼貌的措辞,以展示出邀请者的诚意和尊重。请大家参考下面的邀请函范文,希望你们能够写出一份有创意、贴心的邀请函。