在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
八年级上学期数学教学反思篇一
《矩形的判定》一课,是在学习了《平行四边形的判定》以后提出的。因为有了学习平行四边形的判定方法做为基础,所以本节课采用了“类比学习”的方法,引导学生通过“类比学习”的方法进行新知的`探索与学习。在设计中,通过平行四边形的演示活动引出主题“矩形”,运用回忆的方法,对“矩形的定义及性质”进行了预备知识检测,再对矩形的判定方法进行猜想与验证,紧接下来设计了几道练习题让学生学以致用,最后用一流程图进行了小结。
在设计中,我一直想要抓住发展学生数学思维,让学生有足够的时间去思索猜想新知验证新知,课堂上也看到了学生们在积极认真的思考问题,但是因部分学生的基础比较差,对于探索证明的方法还是有些欠缺,加上课堂上关于逻辑思维的证明引导的不够充分彻底,不能够为学生做好充分的铺垫,所以部分学生感觉推理困难,这是最遗憾的地方。在学生应用判定定理做习题中,也没有能够有足够的时间汇总巡视学生做题中出现的共性问题进行讨论,只是做个别指导。等等的问题,在今后教学中,自己一定要更加的注意这些问题的出现并想办法解决,让教学中的“遗憾”少一些。
八年级上学期数学教学反思篇二
教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的`解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。
讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。
八年级
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
八年级上学期数学教学反思篇三
1、本节课在改革教法,优化教法方面作了一些尝试。在教学中,采用了“观察——猜想——验证”的方法,让定理的教学充分展现知识的.发生、发展过程,既对定理的产生有探索过程,又对论证方法有发现过程,既教发现,又教证明。
2、在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨,给学生留有较充分的时间去探究各个性质定理,进一步提高学生分析问题、解决问题的能力。由于定理是学生自己探讨发现的,因此,学生用起来更加得心应手。而后通过对比练习,再次熟悉,使学生的认识不断深化,提高层次,逐步提高学生的知识水平和能力水平。
3、在以后的几课时里,由学生讨论课本例、习题,或独立作业,教师适当点拨。在证明命题的过程中,学生自然将各条性质进行对比和选择,或对一题进行多解,便于思维发散,不把思路局限在某一性质上的运用上。学生在不同题目的对比中,在一题不同解法的对比中,能力真正得到提高。
八年级上学期数学教学反思篇四
在教学中,我先通过生活中的实物图形引出梯形的定义,并由学生介绍梯形的有关概念。我们学习平行四边形时,通常会通过添加辅助线转化为三角形。
在例题处理上,我以题组训练的方式出现。从学生熟悉的一个图形出发,放手让学生独立完成对该题目的分析和证明,老师在中间又可以把相关的基本知识点做些复习和回顾。在熟悉图形的基础上,注重图形中所隐含的其它结论。让学生学会不要用孤立的眼光去看一道题,而是要学会去观察出结论之间的相互联系,能用联系的眼光去解决新的问题。这是几何学习中一种非常重要的方法。
本节课的练习环节,我设计了让学生思维跳跃的部分。进行几何题基本条件的`变更,及一题的多种添加辅助线方法证明,对于学生的思维能力有一个非常高的要求。同时也在告知学生:几何的学习是永无止尽的,希望同学们学习几何不要仅仅是为了完成一道道题,而是应该从不同的角度去考虑问题。
上完课后,我发觉自己在教学上还有许多需要改进的地方
八年级上学期数学教学反思篇五
学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:新知识的接受,数学能力的培养主要在课堂上进行,所以要特别重视课堂的学习效率,寻求正确的学习方法。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
教师在教学中要注意培养差生的自信心外,更应该充分利用优等生这个教育资源,进行好生差生配对,这也是合作学习的一种方式,它从以人为本的理念出发,关注了差生的发展,构建了团结,合作共同发展的`良好的,和谐的学习环境。同时它也弥补了教师课后辅导时间不足的缺陷。
八年级上学期数学教学反思篇六
我们常有这样的困惑:不仅仅是讲了,而且是讲了多遍,但是学生的解题潜力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这就应引起我们的反思了。
例题千万道,解后抛九霄”难以到达提高解题潜力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对潜力的提高和思维的发展是大有裨益的。
透过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;透过例题解法多变的教学则有利于帮忙学生构成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
学生的知识背景、思维方式、情感体验往往和成人不一样,而其表达方式可能又不准确,这就难免有”错”。例题教学若能从此切入,进行解后反思,则往往能找到”病根”,进而对症下药,常能收到事半功倍的效果!
总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清”庐山真面目”而逐渐成熟起来;在反思中学会了独立思考。
八年级上学期数学教学反思篇七
结合数学内容,布置有个性发展的兴趣作业,培养学生的创新能力。
在初二上期,同学们对乘方知识掌握比较牢固之时,我给学生留了一道作业:
观察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
…
猜想:当有n项立方相加时的计算结果是_________。
第二天过去了,没人应答;第三天过去了,没人应答;第四天,有几位同学找到我,递给我答案:
当我点头示意时,他们竟高兴得欢呼起来,甚至有一个同学竟哽咽起来。是啊!同学要通过观察、思考,再通过猜想,探索规律,从而完成从特殊到一般的创新过程,而且跟应该注意到学生这方面的数学基础,很大程度都还不具备,但却能超出个人能力完成任务,实属不易。更难能可贵的是,学生的创新意识得到突破,创新能力得到了提高,这是何等的重要啊!
兴趣就是最好的老师。让学生通过自己钻研所得到的结果肯定是印象深刻的,以往的经验告诉我很多学生之所以害怕学习数学,就是因为他们经常体验不到成功的喜悦,没有成就感,只是在感受到学习数学的失败,无论家长、老师如何引导,学生都会产生强烈的自卑感,数学学习无法正常进行。我本人也欣赏成功教学模式,让每一个层次的.学生都能够感受到学习的成就感,课堂上的一个小问题可能就会点燃学生思维的火炬。
八年级上学期数学教学反思篇八
我们常有这样的困惑:不仅仅是讲了,而且是讲了多遍,但是学生的解题潜力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这就应引起我们的反思了。
例题千万道,解后抛九霄”难以到达提高解题潜力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的'辐射面,无疑对潜力的提高和思维的发展是大有裨益的。
透过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;透过例题解法多变的教学则有利于帮忙学生构成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
学生的知识背景、思维方式、情感体验往往和成人不一样,而其表达方式可能又不准确,这就难免有”错”。例题教学若能从此切入,进行解后反思,则往往能找到”病根”,进而对症下药,常能收到事半功倍的效果!
总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清”庐山真面目”而逐渐成熟起来;在反思中学会了独立思考。