范本是学习和学术交流中的重要参考材料,我们不妨多收集一些。接下来,就让我们一起来欣赏一下小编为大家准备的这些范文范本吧。
教育工作者的公式法教案(通用20篇)篇一
引例讲解:将下列各式分解因式。
1、x2+6x+92、4x2-20x+25。
问题:这两题首先怎么分析?
生14:将9改写成32,6x正好是x与3的乘积的2倍。(学生回答,教师板书)。
生15:将4x2写成(2x)2,25写成52,20x写成2×2x×5。
x2+6x+9=x2+2×x×3+32=(x+3)2。
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2。
(联系字母表达式用箭头对应表示,加深学生印象。)。
生16:由符号来决定。
师:能不能具体点。
生16:由中间一项的符号决定,就是两个数乘积2倍这项的符号决定,是正,就是两个数的和;是负,就是两个数的差。
师:总之,在分解完全平方式时,要根据第二项的符号来选择运用哪一个完全平方公式。
例题1:把25x4+10x2+1分解因式。
师:这道题目能否运用以前所学的方法分解?就题目本身有什么特点?可以怎么分解?
生17:题目符合完全平方式的特点,可以将25x4改写成(5x2)2,1就是12,10x2改写成2×5x2×1。(此学生板演,过程略)。
例题2:把-x2-4y2+4xy分解因式。
师:按照常规我们首先怎么办?
生齐答:提取负号。〔教师板书:-(x2+4y2-4xy)〕以下过程学生板演。
师:如果是这道题:4xy-x2-4y2怎么分解呢?(教师改变刚才题型)。
提示:从项的特征进行考虑,怎样转化比较合理?四人小组讨论。
生18:同样还是将负号提取改变成完全平方式的形式。
师:从这里我们可以发现,只要三项式中能改写成平方的两项是同号,且另一项为两底数积的2倍,我们都能利用这个公式分解,若这两项同为正则可直接分解,若同为负则先提取负号再分解。
练习题:课本p21练习:第1题,学生板演,教师讲解,学生板演的同时,教师提示注意点、多项式的特征;第2题,学生口答。
例题3:把3ax2+6axy+3ay2分解因式。
师:先观察,再选择适当的方法。(学生板演,教师点评)。
练习:课本p22第3题分两组学生板演,教师评讲、适当提示注意点。
师:这一堂课我们一起研究了完全平方式的有关知识,同学们先自查一下自己的收获,然后请同学发表自己的见解。(学生小声讨论)。
生甲:我学到了如何将完全平方式分解因式,遇到三项式中有两项符号相同且能化成平方的形式,另一项为这两个数的积的2倍的形式,如果能化成平方项是负的,首先将负号提取再分解。第二项是正的就是两数的和的平方,第二项是负的就是两数差的平方。
生乙:有公因式可提取的先提取公因式,然后再分解,同时根据第二项的符号来选用合适的公式。
教师布置课堂作业:课本p23习题8.2a组4~5偶数题。
课外作业:课本p23习题8.2a组4~5奇数题。
下课!
教育工作者的公式法教案(通用20篇)篇二
九九乘法表是小学生学习数学时一定要学习的内容,为小学生抄写一份九九乘法表也是不少家长的功课之一。其实用excel作一份乘法表也是一个不错的选择。it168曾经发表过一篇利用vba编程实现“九九乘法表”的文章,它就为我们指引了一条很不错的制作乘法表的道路,令我们很受启发。
在excel中,除了用vba编程来制作乘法表以外,我们还可以直接利用公式来写乘法表,效果也是不错的。下面我们以excel2007为例来说明。
一、建立乘法表。
首先我们在excel中建立一份空的表格,在b1:j1单元格区域分别填写数字1至9,在a2:a10单元格也分别填写数字1至9,得到如图1所示表格。
图1excel2007填写基本数字。
图2excel2007填充单元格。
在此公式中其实只用到了一个if函数。所写乘法表中被乘数是b1:j1中的数据,而乘数则是a2:a10单元格中的数据。我们所用公式的意思可以这样理解:首先判断被乘数是否小于或等于乘数,如果是,那么就输出结果,如果不是,那么在此单元格中就输出空值。
二、为乘法表格添加表格线。
感觉那乘法表有些简陋?不要紧,我们为表格加上表格线就好了,
当然,只为那些有内容的单元格添加表格线。办法吗?首先隐藏不必要的辅助数据,然后再用条件格式的方法为乘法表添加表格线。
先点击a列列标选中a列全部单元格,点击右键,在弹出菜单中点击“隐藏”命令,然后再点击第一行的行号,选中全部第一行的单元格,再点击右键,在弹出菜单中点击“隐藏”命令,这样,辅助数据就不见了。
现在,我们再选中b2单元格,然后点击功能区“开始”选项卡“样式”功能组“条件格式”按钮,在弹出的菜单中点击“新建规则”命令,打开“新建格式规则”对话框。然后在“选择规则类型”列表中选择“使用公式确定要设置格式的单元格”命令,然后在“为符合此公式的值设置格式”下方的输入框中输入公式“=b2“””,如图3所示。
图3excel2007编辑格式规则。
再点击下方的“格式”按钮,打开“设置单元格格式”对话框,在“边框”选项卡中设置单元格的边框格式,如图4所示。当然,我们还可以做出其它的设置。确定后,b2单元格就会添加有边框了。
图4excel2007设置单元格格式。
再选中b2单元格,然后点击功能区“开始”选项卡“剪贴板”功能组中“格式刷”按钮,然后“刷取”b2:j10单元格区域复制格式,那么,在乘法表中非空的那些单元格就会自动添加边框线,而没有内容的那些单元格则不会有任何变化。如图5所示。
图5excel2007添加边框线。
好了,不多说了,有兴趣自己试试吧。
教育工作者的公式法教案(通用20篇)篇三
1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。
2、掌握运用完全平方公式分解因式的`方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)。
教学方法:对比发现法课型新授课教具投影仪。
教师活动:学生活动。
新课讲解:
(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2。
a2-8a+16=a2-2×4a+42=(a-4)2。
(要强调注意符号)。
首先我们来试一试:(投影:牛刀小试)。
1.把下列各式分解因式:
(1)x2+8x+16;;(2)25a4+10a2+1。
(3)(m+n)2-4(m+n)+4。
(教师强调步骤的重要性,注意发现学生易错点,及时纠正)。
2.把81x4-72x2y2+16y4分解因式。
(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)。
将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。
练习:第88页练一练第1、2题。
教育工作者的公式法教案(通用20篇)篇四
2.注意培养学生分析、综合和抽象、概括以及运算能力.
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式.
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.
在此基础上,让学生用语言叙述公式.
二、运用举例变式练习。
例1计算(1+2x)(1-2x).
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.
例2计算(b2+2a3)(2a3-b2).
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);。
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
例3计算(-4a-1)(-4a+1).
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.
课堂练习。
1.口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);。
(3)(-a-b)(-a+b);(4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);。
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.
三、小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;。
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.
四、作业。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);。
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);。
2.计算:
(3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
教育工作者的公式法教案(通用20篇)篇五
九九乘法表是小学生学习数学时一定要学习的内容,为小学生抄写一份九九乘法表也是不少家长的功课之一。其实用excel作一份乘法表也是一个不错的选择。it168曾经发表过一篇利用vba编程实现“九九乘法表”的文章,它就为我们指引了一条很不错的制作乘法表的道路,令我们很受启发。
在excel中,除了用vba编程来制作乘法表以外,我们还可以直接利用公式来写乘法表,效果也是不错的。下面我们以excel2007为例来说明。
一、建立乘法表。
首先我们在excel中建立一份空的表格,在b1:j1单元格区域分别填写数字1至9,在a2:a10单元格也分别填写数字1至9,得到如图1所示表格。
图1excel2007填写基本数字。
图2excel2007填充单元格。
在此公式中其实只用到了一个if函数。所写乘法表中被乘数是b1:j1中的数据,而乘数则是a2:a10单元格中的数据。我们所用公式的意思可以这样理解:首先判断被乘数是否小于或等于乘数,如果是,那么就输出结果,如果不是,那么在此单元格中就输出空值。
二、为乘法表格添加表格线。
感觉那乘法表有些简陋?不要紧,我们为表格加上表格线就好了,
当然,只为那些有内容的单元格添加表格线。办法吗?首先隐藏不必要的辅助数据,然后再用条件格式的方法为乘法表添加表格线。
先点击a列列标选中a列全部单元格,点击右键,在弹出菜单中点击“隐藏”命令,然后再点击第一行的行号,选中全部第一行的单元格,再点击右键,在弹出菜单中点击“隐藏”命令,这样,辅助数据就不见了。
现在,我们再选中b2单元格,然后点击功能区“开始”选项卡“样式”功能组“条件格式”按钮,在弹出的菜单中点击“新建规则”命令,打开“新建格式规则”对话框。然后在“选择规则类型”列表中选择“使用公式确定要设置格式的单元格”命令,然后在“为符合此公式的值设置格式”下方的输入框中输入公式“=b2“””,如图3所示。
图3excel2007编辑格式规则。
再点击下方的“格式”按钮,打开“设置单元格格式”对话框,在“边框”选项卡中设置单元格的边框格式,如图4所示。当然,我们还可以做出其它的设置。确定后,b2单元格就会添加有边框了。
图4excel2007设置单元格格式。
再选中b2单元格,然后点击功能区“开始”选项卡“剪贴板”功能组中“格式刷”按钮,然后“刷取”b2:j10单元格区域复制格式,那么,在乘法表中非空的那些单元格就会自动添加边框线,而没有内容的那些单元格则不会有任何变化。如图5所示。
图5excel2007添加边框线。
好了,不多说了,有兴趣自己试试吧。
将本文的word文档下载到电脑,方便收藏和打印。
教育工作者的公式法教案(通用20篇)篇六
情景设置:
同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成电视墙,计算图中这些电视墙的面积。
(每一个小长方形的长为a,宽为b)。
我们可以看到,电视墙是一个长方形,由9个小长方形组成。
从整体上看,电视墙的面积为长方形的长与宽的积:3a3b;
从局部看,电视墙中的每个小长方形的.面积都是ab,电视墙的面积是这些小长方形的面积和:9ab。
于是,我们有:3a3b=9ab.
新课讲解:
1.探索研究。
请学生回答,教师加以总结归纳:
两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a3b=(33)(ab)=9ab.
4ab5b这两个单项式的积是20ab。
同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。
2.例题。
计算:(1)a(6ab);
(2)(2x)(-3xy).
解:(1)a(6ab)。
=(6)(aa)b。
=2ab;(教师规范格式)。
(2)(2x)(-3xy).
=8x(-3xy)。
=【8(-3)】(xx)y。
=-24xy.
教育工作者的公式法教案(通用20篇)篇七
掌握和运用自我暗示的原理,向潜意识发出指令,将自己的想法同一个或多个积极的情绪联系起来,反复重复这一过程。
清空显意识中所有的其他想法。经过短暂的训练,你将能够把自己的注意力完全集中在自己想要集中的主题上。这就是目标专注。
带着想要实现目标的炽热愿望,在脑海中将专注的目标形象化。在这一过程中,你应该完全相信自己可以实现这一目标。
当发现自己不能完全专注于自己的目标时,将思绪倒回去,再次重复将注意力集中在自己的目标上,直到你能很好地控制自己的思想,将无关的想法完全摒弃在外。在专注时一定要掺入自己的情感,否则你的心中所想就无法被记录在潜意识当中。
当你处在一个安静、没有干扰的环境中时,专注的效果最好。
当你怀着极大的热情专注于某一想法、计划或目标时,潜意识最容易受到影响。热情可以唤起你的创造性想象力,并将之付诸行动。
现在,让我们再回到起点。只要主观上愿意,你就可以摆脱过去不良习惯所造成的影响,按照自己想要的方式来创造生活。同样,因为自己规定了占据头脑的主导思想,所以你可以做想做的自己。
一个想法、计划、目的或销售目标如何能被植入到头脑之中呢?答案是:通过不断地在头脑中将愿望形象化,任何想法、计划或目标都能被植入到头脑里。这也是我们希望你将自己的愿望、目的或销售目标写下来的原因,把它们写出来,然后用心记住,不断地大声诵读,日复一日,直到这些目标进入到你的潜意识当中。
1.在开始创造性想象之前,先清楚地写下自己想要赚的钱的数额。在心中记住这一确切的数额。仅仅说“我要赚很多钱”,这样是不行的。一定要有确切的数额(要求这样准确是有心理学原因的)。
2.决定自己愿意付出什么来换取想要赚取的钱(不劳而获是不现实的)。
3.为实现自己的愿望设定一个明确的日期。
为此,我将尽最大的努力来做好自己的工作。作为xx商品的推销员,我将保质保量地为顾客提供最好的服务。
我相信自己能够赚到这笔钱。我的自信是如此的强烈,仿佛现在我就能看到钱在我的眼前,甚至可以用手摸到它。它正等着我用劳动去换取。我正在等待达成这一目标的计划的出现,一旦出现,我将坚定不移地去执行它。
每天至少要把这段话念两遍。找一个无人打扰的安静地方,闭上眼睛,大声重复你想赚的钱的数额(大声是为了你能听见自己的话)。晚上睡觉前念一次,早上起床后念一次。
当专注于自己的目标的时候,想象自己在1年、3年、5年甚至后会怎么样。在想象中,看到自己有了想要赚到的钱;看到自己住在用自己推销赚来的钱买的房子里;看到自己在银行存下的丰厚的养老金;看到自己因为善于推销自己,而成为一个有影响力的人;看到自己从事着一份令人羡慕的职业,再不用担心会失去自己的职位。
用想象力清晰地绘制出这幅图画,这将是你的愿望形象的体现。
当你开始“在心中记住这一确切的数额”时,闭上你的眼睛,将注意力集中在钱的数额上,直到你能真实地看到这笔钱。每天至少这么做一次。
你也许会认为,在真正得到这笔钱之前,一个人是不可能看到“自己有了钱”的。这里就需要殷切希望的帮助了。如果你十分强烈地想要实现自己的愿望,甚至已经达到狂热的程度,你就可以轻易地说服自己会达成目标的。
让自己相信你必须赚到这笔钱。让你的潜意识相信,这笔钱正等着你去拿呢。这样,潜意识就会为你提供获取这笔钱的切实计划了。
当在脑海中想象这笔钱的同时,想象为换取这笔钱,自己正在提供相应的服务或推销相应的产品。
在第4个步骤中,提到你要“制订实现自己愿望的详细计划,并立刻开始实施”、“将这一计划付诸行动”。在制订赚钱的计划的时候,不要相信自己的“理性”,只要马上开始想象自己已经有了这笔钱,要求和期待你的潜意识给你送来需要的计划。当计划出现时,它们很可能会以灵感或直觉的形式在大脑中一闪而过。
在第一次尝试的时候,如果你不能控制和引导自己的情绪,请不要气馁。要知道,没有人可以不劳而获。你不能弄虚作假,哪怕你想这么做。要获得影响潜意识的能力的代价就是不断地练习以上的方法。你自己要决定你的收获是否值得你所付出的努力。
使用自我暗示的创造性想象方法的能力,在很大程度上取决于你专注于某一特定愿望并将之清晰化、形象化的能力,甚至将这一愿望变为一种“狂热”的能力。
摘自《如何在人生中推销自己》,[美]拿破仑?希尔/著。
教育工作者的公式法教案(通用20篇)篇八
(l)(2)(3)(4)。
学生活动:学生分组讨论,选代表解答.。
练习三。
甲的计算过程是:原式。
乙的计算过程是:原式。
丙的计算过程是:原式。
丁的计算过程是:原式。
(2)想一想,与相等吗?为什么?
与相等吗?为什么?
学生活动:观察、思考后,回答问题.。
练习四。
(l)(2)。
(3)(4)。
(四)总结、扩展。
这节课我们学习了乘法公式中的完全平方公式.。
引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.。
八、布置作业。
p1331,2.(3)(4).。
参考答案。
略.。
教育工作者的公式法教案(通用20篇)篇九
教学目标:
1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;。
1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;。
2.会用完全平方公式进行运算.教学难点:会用完全平方公式进行运算教学过程:
一、探索练习:
一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)。
用不同的形式表示实验田的总面积,并进行比较你发现了什么?
观察得到的式子,想一想:
(1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?
(2)(a-b)2等于什么?小颖写出了如下的算式:
(a-b)2=[a+(b)]2.
她是怎么想的?你能继续做下去吗?
(a+b)2=a2+2ab+b2。
(a-b)2=a22ab+b2。
教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.
(1)(2x-3)2。
解:(2x-3)2。
=(2x)2-2(2x)3+32。
=4x12x+9。
二、巩固练习:
1.下列各式中哪些可以运用完全平方公式计算_______________。
(1);(2);。
(3);(4).
2.计算下列各式:
(1);(2);(3);。
(4);(5);。
(6).
4.填空:
(1)_____________;(2);。
(3);三、提高练习:
1.求的值,其中。
2.若。
对公式的真正理解有待加强.
教育工作者的公式法教案(通用20篇)篇十
他是怎么办到的呢?原来,这个聪明人考虑到小岛所处的地点正好有日期变更线南北贯通,而他把自己的商店就设在此线通过的地方,在东西两面各开一个门面。大家都知道,在日期变更线的东西两侧,时间要相差一天。这个商人在东边礼拜天时,就关东门开西门;在西边礼拜天时,就关西门开东门。由于岛上其他商店总有一天不能营业,顾客只好到他的店里买东西,因此他的生意越做越红火。
这个小店主就是利用了岛上特殊的地方及与时间的联系,解决了__规定礼拜天不允许营业的问题,从而生意越做越好。像这样一种充分发挥自己在地理环境方面的长处,从而产生使人意想不到的效果的动脑方法,就叫做地利运用法。早在多年以前,孟轲就提出了遇事成功的三要素:天时、地利、人和。地利就是其中的一个重要因素。
我们每个人时时刻刻都处在一定的地理环境之中,只要我们善于发现,就一定能运用地利来帮助解决我们所遇到的问题。我国首都北京争办第十一届亚运会的成功便是运用了这一思考问题的方法的结果。
在国际上,能举办一次大型运动会,是显示一个国家实力、提高主办国家国际地位的大好时机。所以第十届亚运会还没有结束,亚洲各国都争相申请下届亚运会的主办权。其中最有竞争力的是日本广岛市。然而,谁也没有想到亚奥理事会代表大会的投票结果竟是北京,而促成举世瞩目的第十一届亚运会在北京举行的“功臣”竟是一部电视片!
1983年,经中央同意,中国奥委会正式向亚奥理事会提出申请,在北京举办第十一届亚运会。1984年秋,国家体委副主任何振梁和北京市副市长张百发飞往南朝鲜的汉城,参加决定第十一届亚运会东道主的亚奥理事会代表大会。
日本对这次会议极为重视,广岛市派出以市长为首的十四人代表团,会上会下,积极游说,想夺到举办机会,而我国只有两个人。亚奥理事会主席想帮中国的忙,出面做日本工作,但日本方面执意不让。
在这关键的时刻,汉城电视台放映了一部中国电视片。那部电视片的名字叫《北京欢迎您》。北京悠久的历史,秀丽的风景,宏伟的古建筑,又融合了现代化都市的迷人风采。这些得天独厚的优势和神韵,是广岛市无法比拟的。电视片深深地吸引了大会代表。
第二天,一些亚洲国家代表对中国代表说:“北京太美了,我们赞成在北京举办第十一届亚运会。”当大会最后以无记名投票方式决定举办国时,许多国家代表都投了中国的票。结果,大会以压倒多数的票数同意在中国北京举办第十一届亚运会。
一部电视片换来了一届亚运会东道主地位。那么,为什么一部电视片有这样大的魅力呢?原来,它是介绍我国首都北京独特面貌的风光片。这也就是说,正是由于北京的独特风光才争取到亚运会在北京召开的。在整个申请与竞争中,我国代表团充分运用举办地的地利优势,以北京的独特风貌添加了申办的重要砝码。这也是一种运用地利的思考方法。
那么,怎样才能更好地运用地利来思考问题、巧动脑筋呢?
第一,地理环境是客观存在,是不以人的意志为转移的,但是地理环境的有利方面(地利)却要靠人们自己去发现。所以要想找到有利的地理因素,必须动脑筋下功夫去寻找。
从前,有个孔掌柜欠了大财主牛文一笔债,总也还不清。牛文呢,看中了孔掌柜的漂亮女儿孔兰珍,便起了坏心,想让孔兰珍卖身抵债,逼了几次未能得逞,便企图用欺骗的手段达到目的。牛文跟孔掌柜抓阄打赌,他们约定在河滩上捡两颗小石子,一黑一白放到布袋里让孔掌柜抓。如果抓出黑石子便要孔掌柜用女儿抵债,如果抓出白石子债务便一笔勾销。
在往袋子里装石子时,牛文使了一个鬼花招,他装的两颗都是黑石子,这样无论孔掌柜抓到哪一颗都要以女儿抵债。牛财主耍的花招被细心的孔兰珍看破了,她瞄了眼沙滩便没有吱声。在开始抓阄时,聪明的姑娘抢先替父亲抓了颗石子,然后假装害怕的样子,将攥在手里的石子故意一抖,掉在了布满许多黑石子白石子的沙滩上,再也分辨不出刚才抓出的是哪一颗了。
要想知道孔兰珍抓出的是黑石子还是白石子,只有把布袋里的另一颗拿出来看看就知道了。众人打开布袋见里边剩下的是一颗黑石子,便一致推断孔兰珍刚才抓住的是白石子。于是按照事先的约定,孔掌柜欠牛财主的债就一笔勾销了。牛财主呢,自己做了亏心事,自然是“哑巴吃黄连,有苦说不出”了。
这里,沙滩上黑黑白白的石子本没有什么有利之处,但聪明的孔兰珍识破了牛财主的花招之后,善于发现,利用沙滩上的黑黑白白的石子来混淆摸出的黑石子,让人们分辨不出只好去看剩下的一颗。这样,牛财主的险恶用心就无法达成,自己也不用卖身抵债了。由此可见,孔兰珍的动脑是下了功夫的。
第二,地理环境的好坏,并不是一成不变的,必须以辩证思想对待,随条件的变化而变化思考。
鄂西北山区有座狮子山,山上的石头奇形怪状,质地松软。当地农民用钢钎、锤子开凿下来,运到城里去卖,6元钱一吨,年收入15000元。后来农民们发现,城里人用这种石头垒假山,一吨可得工艺费七八十元,于是他们也学着垒假山,一吨石头从6元提高到80元。他们又去北京考察,发现山上产的沙积石,1公斤竟价值好几元钱。眼界打开了,这些农民更加珍惜乡土资源了,他们研制的“电子超声喷雾盆景”,每盆卖260元,这个山区的农民都富了起来。
所有,有利的地理条件,是要靠人们动脑去发现,去寻找,去利用。
教育工作者的公式法教案(通用20篇)篇十一
教学设计示例。
――完全平方公式(1)。
教学目标。
2.理解完全平方式的意义和特点,培养学生的判断能力.
3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.。
4.通过分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。
教学重点和难点。
重点:运用完全平方式分解因式.
难点:灵活运用完全平方公式公解因式.
教学过程设计。
一、复习。
1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.
2.把下列各式分解因式:
(1)ax4-ax2(2)16m4-n4.
解(1)ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)。
(2)16m4-n4=(4m2)2-(n2)2。
=(4m2+n2)(4m2-n2)。
=(4m2+n2)(2m+n)(2m-n).
问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?
答:有完全平方公式.
请写出完全平方公式.
完全平方公式是:
(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.
这节课我们就来讨论如何运用完全平方公式把多项式因式分解.
二、新课。
和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到。
a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.
问:具备什么特征的多项是完全平方式?
答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.
问:下列多项式是否为完全平方式?为什么?
(1)x2+6x+9;(2)x2+xy+y2;
(3)25x4-10x2+1;(4)16a2+1.
答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以。
x2+6x+9=(x+3).
(2)不是完全平方式.因为第三部分必须是2xy.
(3)是完全平方式.25x=(5x),1=1,10x=2·5x·1,所以。
25x-10x+1=(5x-1).
(4)不是完全平方式.因为缺第三部分.
答:完全平方公式为:
其中a=3x,b=y,2ab=2·(3x)·y.
例1把25x4+10x2+1分解因式.
分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.
解25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.
例2把1-m+分解因式.
问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?
答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“”是的平方,第二项“-m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.
解法11-m+=1-2·1·+()2=(1-)2.
解法2先提出,则。
1-m+=(16-8m+m2)。
=(42-2·4·m+m2)。
=(4-m)2.
第12页。
教育工作者的公式法教案(通用20篇)篇十二
教学目标:
一、知识与技能。
1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
二、过程与方法。
1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。
数学式子表达出,即给出公式。
2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。
号感和语言描述能力。
三、情感与态度。
以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.
教学重点:公式的简单运用。
教学难点:公式的推导。
教学方法:学生探索归纳与教师讲授结合。
课前准备:投影仪、幻灯片。
教育工作者的公式法教案(通用20篇)篇十三
2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点。
重点:平方差公式的应用。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计。
一、师生共同研究平方差公式。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
二、运用举例变式练习。
例1计算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习。
教育工作者的公式法教案(通用20篇)篇十四
学习目标:
1、能说出有序数对的定义。
2、能用有序数对表示实际生活中物体的位置。
学习重点:用有序数对表示位置。
学习难点:用有序数对表示位置。
学习过程:
自学过程:(一)、自学知识清单。
1、教材64页,在图7.1—1中找出参加数学问题讨论的同学。
小组内交流一下,看一看你们找的'位置相同吗?
思考:(2,4)和(4,2)在同一位置吗?为什么?
2、请回答教材65页:思考题。
3、我们把这种有顺序的______个数a与b组成的_______叫做_______,记作(,)。
(二)、自学反馈。
练习1、利用________________,可以准确地表示出一个位置,
如电影院的座号,“3排2号”、表示为(3,2),则“2排3号”可以表示为。
练习2、如图(1)所示,一方队正沿箭头所指的方向前进,a的位置为三列四行,表示为a(3,4),则b,c,d表示为b(,),c(,)。
d(,)。
练习3、完成课本第65页的练习。
练习4、用有序数对表示物体位置时,(3,2)与(2,3)表示的位置相同吗?请结合下面图形加以说明.
练习5、如图所示,a的位置为(2,6),小明从a出发,经。
教育工作者的公式法教案(通用20篇)篇十五
1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3、了解完全平方公式的几何背景,培养学生的数形结合意识。
4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;
探索讨论、归纳总结。
一、回顾与思考。
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
二、情境引入。
活动内容:提出问题:
用不同的形式表示实验田的总面积,并进行比较。
活动内容:
1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引导学生利用几何图形来验证两数差的完全平方公式。
3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。
结构特点:左边是二项式(两数和(差))的平方;
右边是两数的平方和加上(减去)这两数乘积的两倍。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍。
2、总结口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。
五、巩固练习:
一、学习目标。
1、会推导完全平方公式,并能运用公式进行简单的计算。
三、学习难点:理解完全平方公式的结构特征并能灵活应用公式进行计算。
四、学习设计。
(一)预习准备。
(1)预习书p23—26。
(2)思考:和的平方等于平方的和吗?
1、已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
(1)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代数式(x+2)—(3xy—y)的值。
1、(5—x2)2等于;
答案:25—10x2+x4。
解析:解答:(5—x2)2=25—10x2+x4。
2、(x—2y)2等于;
答案:x2—8xy+4y2。
解析:解答:(x—2y)2=x2—8xy+4y2。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2。
解析:解答:(3a—4b)2=9a2—24ab+16b2。
教育工作者的公式法教案(通用20篇)篇十六
平方差公式的教学已经是好几次了,旧教材总是定向于代数方法,新课程理念同几何意义探究,这也是对教学者的一次挑战,通过教学,我从中领会到它所蕴含的新的教学理念,新的教学方式和方法。
1、在教学设计时应提供充分探索与交流的空间,使学生进一步经历观察,实验、猜测、推理、交流、反思等活动,我在设计中让学生从计算花圃面积入手,要求学生找出不同的计算方法,学生欣然接受了挑战,通过交流,给出了两种方法,继而通过观察发现了面积的求法与乘法公式之间的吻合,激发了学生学习兴趣的同时也激活了学生的思维,所以这个探究过程是很有效的。
2、我知道培养学生数形结合思想方法和能力的重要性,通过几何意义说明平方差方式的探究过程,学生可以切实感受到两者之间的联系,学会一些探究的基本方法与思路,并体会到数学证明的灵巧间法与和谐美是很有必要的。
3、加强师生之间的活动也是必要的。在活动中,通过我的组织、引导和鼓励下,学生不断地思考和探究,并积极地进行交流,使活动有序进行,我始终以平等、欣赏、尊重的态度参与到学生活动中,营造出了一个和谐,宽松的教学环境。
教育工作者的公式法教案(通用20篇)篇十七
(4)(1-5y)(l+5y)。
例3计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
课堂练习。
1、口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。
三、小结。
1、什么是平方差公式?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
四、作业。
1、运用平方差公式计算:
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
教育工作者的公式法教案(通用20篇)篇十八
教学目标:
一、知识与技能。
1、参与探索平方差公式的过程,发展学生的推理能力2、会运用公式进行简单的乘法运算。
二、过程与方法。
1、经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的。
数学式子表达出,即给出公式。
2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符。
号感和语言描述能力。
三、情感与态度。
以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.
教学重点:公式的简单运用。
教学难点:公式的推导。
教学方法:学生探索归纳与教师讲授结合。
课前准备:投影仪、幻灯片。
教育工作者的公式法教案(通用20篇)篇十九
平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。
学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。
难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.。
教育工作者的公式法教案(通用20篇)篇二十
(二)、准备阶段:
师:我们先做一个小小的练习,造一个句子。
“我由_____想起了_________”。
下面请同学们把造好的句子念出来给大家听听,好吗?
[生]发言。
师:赞评。
(二)酝酿阶段:
打出课件:
w=x+y+z。
师:知道这是什么?
[生]:一个公式。
师:数、理、化有关这方面的公式多吗?请举例一下。
[生]:多------。
师:大家思考一下,看看你能否对这个公式有个认识。
[生]:思索。
w代表成功。
x代表勤奋y代表方法z代表惜时。
课件显示:
成功=勤奋+方法+惜时。
让我们齐读一遍,共同感受一下它深刻的内涵。
[生]:齐读。
(三)、成熟阶段:
师:一个简单的公式能够表达出如此深刻的含义,这多么有趣啊!
下面我们来试试进行公式演化的.训练,并由此进行联想。
打出课件:
1+1=1。
师:这个公式从数学上讲能成立么?
[生]:不能。
[生]:思考讨论。
提问回答:
师:评议。
备份课件打出:
a、一个南半球加上一个北半球就是我们的整个地球。
b、两根筷子合力能夹起一个鸡蛋。
c、一对夫妻只生一个孩子。
d、两个人的力量加在一起就是集体的强大力量。
师归纳:这说明只要我们转换思维方式,展开丰富联想,一定能赋予一个简单的公式许多生动有趣的含义。
那么就请大家展开丰富联想,列出你们感悟最深的公式来吧。
[生]:思考。
[生]:发言交流。
师:对学生的发言作点评。
插入课件一:
中考有7门,我语文成绩不好,若再不努力追赶,即使其他成绩再好,也是白搭,这叫“前功尽弃,一切趋于零。”所以我必须要加倍努力学好语文迎头赶上。
师问:这位同学的公式好不好?好在哪?
[生]评:这位同学联系自己的实际情况,为自己所列的公式赋予了很实在的内容,可谓恰如其分。
课件二:
13。
一个和尚有水吃,三个和尚没水吃。启示我们要团结和作,齐心协力。
师问[生]评:的确很不错。联想十分巧妙又有意义。
师:好,我们再来听听同学们的发言。
[生]:交流。
师:评。
(四)、归纳小结:
打出课件:
想象是作文的翅膀。
读书是作文的向导。
生活是作文的源泉。
听了同学们的发言,真令我感叹不已。本来枯燥无味的公式却能让大家赋予丰富的内涵,同学们的想法很了不起啊!
作文就是表现生活的,要表现生活,就必须要认识生活,而认识生活,靠的是我们对生活的感悟。善于感悟的人,联想、想象力一定是很强的,那么他写作能力也就不言而喻了。
四、布置作业:
写作:以本节课的内容或你所列的公式为题,写一篇不少于500字的文章。