在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
倍数和因数教学设计及反思篇一
由于这节的概念较多,因此有不少是由老师直接告知的,但这并不意味着学生完全被动的接受。如让学生思考:你觉得4和24、6和24之间有什么关系呢?(对乘除法学生有着相当丰富的经验,因此不少学生能说出倍数关系,可能说得不很到位,但那是学生自己的东西)。当学生认识了倍数之后,我进行了设问:24是4的倍数,那反过来4和24是什么关系呢?尽管学生无法回答,但却给了他思考和接受“因数”的空间,使学生体会到24是4的倍数,反过来4就是24的因数,接下来就是6和24的关系,同学们都争者要回答。
如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:
①用什么方法找36的因数。
②如何找不重复也不遗漏。
通过在小组交流的过程中,学生与学生之间对自己刚才的方法进行反思,吸收同伴中好的方法,这比老师给予有效得多。学生就这样轻松、愉快的学习了因数、倍数的有关知识。
倍数和因数教学设计及反思篇二
我在教学时做到了以下几点:
(1)密切联系生活中的数学,帮助学生理解概念间的关系。
今天在教学前,我让学生学说话,就是培养学生对语言的概括能力和对事物间关系的理解能力。于是我利用课前谈话让学生在找找生活中的相互依存关系,课中迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,又帮助学生理解了倍数因数之间的相互依存关系,从而使学生更深一步的认识倍数与因数的关系,
(2)改动呈现倍数和因数概念的方式。我改变了例题,用杯子翻动的次数与杯口朝上的次数之间的关系,列出乘法算式,初步感知倍数关系的存在,从而引出倍数和因数的概念,并为下面学习如何找一个数的倍数奠定了良好的基础。这样不仅沟通了乘法和除法的关系,也让学生很容易感悟到不管是根据乘法还是除法算式都可以找到因数和倍数。
(3)根据学生的实际情况,教学找一个数的因数的方法,虽然学生不能有序地找出来,但是基本能全部找到,再此基础上让体会有序找一个数因数的办法学生容易接受,这样的设计由易到难,由浅入深,我觉得能起到巩固新知,发展思维的效果。
(4)设计有趣游戏活动,扩大学生思维的空间,培养学生发散思维的能力。譬如“找朋友”游戏,答案不唯一,学生思考问题的空间很大,培养了学生的发散思维能力。我手里拿了5、17、38几张数字卡片,让学生判断自己的学号数是哪些数的倍数,是哪些数的因数,,如果学生的学号数是老师出示卡片的'倍数或因数就可以站起来。最后问能不能想个办法让所有的学生都站起来。出示地卡片应该是几,找的朋友应该是倍数还是因数?学生面对问题积极思考,享受了数学思维的快乐。
倍数和因数教学设计及反思篇三
《倍数和因数》,由于之前没上过这册内容,在看完教材后就和同组的老师说,这个内容好像挺简单的。不过上完这节课后这个想法却烟消云散,根本没有想象的那么容易上,而且在课堂中存在了很多在预设中没有想到的问题,下面对自己的课堂做一些反思:
1、在第一个环节认识倍数和因数的意义中,首先让学生用12个同样大小的小正方形摆成一个长方形,并用乘法算式来表示你是怎么摆的,有几种不同的摆法?通过让学生动手操作实践,体现了以学生为本,而且能唤醒学生已有的知识经验,抽象为具体讨论的数学问题。在抽象出三个不同的乘法算式后,我以第一个乘法算式4×3=12为例,介绍倍数和因数的关系,本来以为说:“4和3是12的因数,12是4和3的倍数”应该是很简单的两句话,学生应该会说,可是当请学生来自己选择一个乘法算式来说一说时,好几个学生却被卡住了,还有的说成了4是12的倍数。
针对学生出现的问题,我觉得可能是自己在介绍时运用的不到位,一个是比较小,后面的同学都没能看清楚;另一方面我预想的比较简单,所以说了一遍后也没请学生再复述一遍。在说到“谁是谁的倍数,谁是谁的因数”时应该在中相继出示这两句话,这样的话让学生看着说印象会更深刻,相信学生说的也会比较好。
2、第二个环节是探求找一个数的倍数的方法,从上一个环节我最后出示的除法算式中引入:我们知道了18是3的倍数,那3的倍数是不是只有18呢?通过疑问来激发学生找出3的倍数有哪些?学生很快能找到,但是并没有找全,于是再问,那又什么办法把3的倍数找全呢?学生自然想到去乘1,乘2,乘3……也就按顺序找到了3的倍数。在分别找到了2和5的倍数后我问学生:观察上面这几个例子,你有什么发现?请了好几个学生都没能找到,最后还是老师告诉了学生倍数最小是?最大呢?
针对最后请学生找一找发现倍数的共同特点这一问题,我觉得我在设计时问题提得太大,太笼统。学生听到问题后可能无从下手,不知道该找什么。可以问:刚才找了2,3,5的倍数,观察这几个数的倍数,他们有什么共同特点?这样学生就会比较有针对性地去寻找结果。
3、第三个环节是探求找一个数因数的方法,找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找一个数的因数,对于刚刚对倍数因数有个感性认识的学生来说有是一定困难的,而这个环节我处理的也不到位,学生对找一个数因数的方法掌握的不够好。
我一开始设计请学生自主找36的因数,在巡视时发现有一部分学生没有头绪,无从下手,时间倒是花去了不少。所以我觉得是否可以先从12下手,因为前面一开始已经找过12的因数了,如果这里能用12做一下铺垫,可能找36的因数时就会好一些。
在学生自主探索完36的因数有哪些后,交流不同学生的结果,有一位出现了1,36;2,18;3,12;4,9;6,6我就问你是怎么找到的?学生说是用除法找到的,于是就用36分别去除1,2,3……得到了36的因数。其实这里除了用除法来找之外,还可以用乘的方法来找,而乘的方法似乎对于学生来说在找得时候还更简单一点。更重要的是我觉得一对对的找对于找全一个数的因数是一个很重要的方法,而我却把这个方法忽略了,所以学生对于找一个数的因数的方法不够深刻,在练习中也发现做的不理想。
4、第四个环节是巩固练习,我设计了2个小游戏。一个是看谁反应快,符合要求的请学生起立,这个游戏学生参与面广,学生也感兴趣,还从中发现了找谁的学号是几的因数,1每次都会起立,就更好的巩固了一个数的因数最小是1。但是也有个别学生反应比较慢。第二个小游戏是猜一猜老师的手机号码是多少?但是由于前面时间用的比较多,所以没来得及做。
原本认为简单的课却一点都不简单,每个细小环节的把握都要求我去仔细的钻研教材,设计好每一步,这样才能上好一节课。