《函数的奇偶性》说课稿北师大版(五篇)

时间:2024-12-22 作者:储xy

每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

《函数的奇偶性》说课稿北师大版篇一

函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。

二。教学目标

1.知识目标:

理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性。

2.能力目标:

通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。

3.情感目标:

通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力。

三。教学重点和难点

教学重点:函数的奇偶性及其几何意义。

教学难点:判断函数的奇偶性的方法与格式。

四、教学方法

为了实现本节课的教学目标,在教法上我采取:

1、通过学生熟悉的函数知识引入课题,为概念学习创设情境,拉近未知与

已知的距离,激发学生求知欲,()调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

五、学习方法

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

六。教学程序

(一)创设情景,揭示课题

"对称"是大自然的一种美,这种"对称美"在数学中也有大量的反映,让我们看看下列各函数有什么共性?

观察下列函数的图象,总结各函数之间的共性。

f(x)= x2 f(x)=x

x

通过讨论归纳:函数 是定义域为全体实数的抛物线;函数f(x)=x是定义域为全体实数的直线;各函数之间的共性为图象关于 轴对称。观察一对关于 轴对称的点的坐标有什么关系?

归纳:若点 在函数图象上,则相应的点 也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等。

(二)互动交流 研讨新知

函数的奇偶性定义:

1.偶函数

一般地,对于函数 的定义域内的任意一个 ,都有 ,那么 就叫做偶函数。(学生活动)依照偶函数的定义给出奇函数的定义。

2.奇函数

一般地,对于函数 的定义域的任意一个 ,都有 ,那么 就叫做奇函数。

注意:

1.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质。

2.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个 ,则 也一定是定义域内的一个自变量(即定义域关于原点对称)。

3.具有奇偶性的函数的图象的特征

偶函数的图象关于 轴对称;奇函数的图象关于原点对称。

(三)质疑答辩,排难解惑,发展思维。

例1.判断下列函数是否是偶函数。

(1)

(2)

解:函数 不是偶函数,因为它的定义域关于原点不对称。

函数 也不是偶函数,因为它的定义域为 ,并不关于原点对称。

例2.判断下列函数的奇偶性

(1) (2) (3) (4)

解:(略)

小结:利用定义判断函数奇偶性的格式步骤:

①首先确定函数的定义域,并判断其定义域是否关于原点对称;

②确定 ;

③作出相应结论:

若 ;

若 .

例3.判断下列函数的奇偶性:

分析:先验证函数定义域的对称性,再考察 .

解:(1) >0且 > = < < ,它具有对称性。因为 ,所以 是偶函数,不是奇函数。

(2)当 >0时,-<0,于是

当<0时,->0,于是

综上可知,在r-∪r+上, 是奇函数。

例4.利用函数的奇偶性补全函数的图象。

教材p41思考题:

规律:偶函数的图象关于 轴对称;奇函数的图象关于原点对称。

说明:这也可以作为判断函数奇偶性的依据。

例5.已知 是奇函数,在(0,+∞)上是增函数。

证明: 在(-∞,0)上也是增函数。

证明:(略)

小结:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致。

(四)巩固深化,反馈矫正

(1)课本p42 练习1.2 p46 b组题的1.2.3

(2)判断下列函数的奇偶性,并说明理由。

(五)归纳小结,整体认识

本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质。

(六)设置问题,留下悬念

1.书面作业:课本p46习题a组1.3.9.10题

2.设 >0时,

试问:当<0时, 的表达式是什么?

《函数的奇偶性》说课稿北师大版篇二

《数的奇偶性》是义务教育课程标准实验教科书数学(北师大版)五年级上册第一单元的内容,教材在学习了数的特征的基础上,安排了多个数学活动,让学生探索和理解数的奇偶性,尝试运用“列表”和“画示意图”等解决问题的策略,发现规律,解决生活中的一些问题。让学生经历探索加法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,体验研究方法,提高推理能力。

五年级学生在学习过程中已经具备一定的观察能力,分析交流等能力。进行小组合作和交流时,大多数学生能较清晰地表达出自己的主张和见解。绝大部分学生愿意通过自主思考,小组内和全班范围内交流的学习方式来提升自己对问题的认识。

为适应数学学科“实践与应用”的需求,根据培养学生的求知欲和自我实现的需要,这节课我以学生自主合作探究为主要教学策略,扶放结合,把课堂中更多的时间留给学生去探究和发现,使他们能自主的总结规律、解决问题。

1、通过动手操作,运用列表法和画图法发现数的奇偶性变化规律。

2、运用观察、猜测、验证方法得出结论,探索加法中奇偶的变化的过程,在过程中发现规律。

1、在具体情境中,通过实际操作,尝试运用“列表”“画示意图”等方法发现数的奇偶性规律,并运用其解决生活中的一些简单问题。

2、经历探索加减法中数的奇偶性变化的过程,在活动中发现数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

1、掌握加法中数的奇偶性的变化规律。

2、能应用数的奇偶性分析和解释生活中一些简单问题。

(一)、旧知回顾:

1、什么是奇数?什么是偶数?

2、下面的数哪些是奇数?哪些是偶数?(课件出示)

3、判断:自然数不是奇数就是偶数。

在此处设计导语:在我们研究的自然数中,可以把它们按奇偶性分为奇数和偶数两类,我们还可以用这些数的奇偶性来解决生活中的简单问题呢。这节课我们就来上一节数学活动课,继续探究一下有关“数的奇偶性”的问题(板书课题)

(二)、创设情景,引出问题。

师:同学们,在南方的水乡,有很多地方的交通工具是船,有很多人以摆渡为生,请看王伯伯的船,最初小船在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。船摆渡11次后,船停在南岸还是北岸?

探究小船所在的位置:

师:你准备用什么方法来分析。(生口答)

师:请同学们选出其中一种分析方法,把分析过程写在草稿纸上。

小组交流,汇报。

《函数的奇偶性》说课稿北师大版篇三

1.使学生理解奇函数、偶函数的概念;

2.使学生掌握判断某些函数奇偶性的方法;

3.培养学生判断、推理的能力、加强化归转化能力的训练;

函数奇偶性的概念

函数奇偶性的判断

讲授法

教具装备

幻灯片3张

第一张:上节课幻灯片a。

第二张:课本p58图2—8(记作b)。

第三张:本课时作业中的预习内容及提纲。

(i)复习回顾

师:上节课我们学习了函数单调性的概念,请同学们回忆一下:增函数、减函数的定义,并复述证明函数单调性的步骤。

生:(略)

师:这节课我们来研究函数的另外一个性质——奇偶性(导入课题,板书课题)。

(ii)讲授新课

(打出幻灯片a)

师:请同学们观察图形,说出函数y=x2的图象有怎样的对称性?

生:(关于y轴对称)。

师:从函数y=f(x)=x2本身来说,其特点是什么?

生:(当自变量取一对相反数时,函数y取同一值)。

师:(举例),例如:

f(-2)=4, f(2)=4,即f(-2)= f(-2);

f(-1)=1,f(1)=1,即f(-1)= f(1);

……

由于(-x)2=x2 ∴f(-x)= f(x).

以上情况反映在图象上就是:如果点(x,y)是函数y=x2的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=x2的图象上,这时,我们说函数y=x2是偶函数。

一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。

例如:函数f(x)=x2+1, f(x)=x4-2等都是偶函数。

(打出幻灯片b)

师:观察函数y=x3的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?

生:(也是一对相反数)

师:这个事实反映在图象上,说明函数的图象有怎样的对称性呢?

生:(函数的图象关于原点对称)。

师:也就是说,如果点(x,y)是函数y=x3的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=x3的图象上,这时,我们说函数y=x3是奇函数。

一般地,(板书)如果对于函数f(x)的定义域内任意一个x,都有f(-x) =-f(x),那么函数f(x)就叫做奇函数。

例如:函数f(x)=x,f(x) =都是奇函数。

如果函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性。

注意:从函数奇偶性的定义可以看出,具有奇偶性的函数:

(1)其定义域关于原点对称;

(2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判断某一函数的奇偶性时。

首先看其定义域是否关于原点对称,若对称,再计算f(-x),看是等于f(x)还是等于- f(x),然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

(iii)例题分析

课本p61例4,让学生自看去领悟注意的问题并判断的方法。

注意:函数中有奇函数,也有偶函数,但是还有些函数既不是奇函数也不是偶函数,唯有f(x)=0(x∈r或x∈(-a,a).a>0)既是奇函数又是偶函数。

(iv)课堂练习:课本p63练习1。

(v)课时小结

本节课我们学习了函数奇偶性的定义及判断函数奇偶性的方法。特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。

(vi)课后作业

一、课本p65习题2.3 7。

二、预习:课本p62例5、例6。预习提纲:

1.请自己理一下例5的证题思路。

2.奇偶函数的图角各有什么特征?

板书设计

课题

奇偶函数的定义

注意:

判断函数奇偶性的方法步骤。

小结:

教学后记

《函数的奇偶性》说课稿北师大版篇四

各位老师,大家好!

今天我说课的课题是高中数学人教a版必修一第一章第三节"函数的基本性质"中的"函数的奇偶性",下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。

一、教材分析

(一)教材特点、教材的地位与作用

本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点

1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标

1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;

2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析

1.教学方法:启发引导式

结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构。使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性。

2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。让每一位学生都能参与研究,并最终学会学习。

三、教辅手段

以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学

四、教学过程

为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。指导观察,形成概念。学生探索、发展思维。知识应用,巩固提高。归纳小结,布置作业。

(一)设疑导入,观图激趣

让学生感受生活中的美:展示图片蝴蝶,雪花

学生举例生活中的对称现象

折纸:取一张纸,在其上画出直角坐标系,并在第一象限任画一函数的图象,以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形。

问题:将第一象限和第二象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点

以y轴为折痕将纸对折,然后以x 轴为折痕将纸对折,在纸的背面(即第三象限)画出第二象限内图象的痕迹,然后将纸展开。观察坐标喜之中的图形:

问题:将第一象限和第三象限的图形看成一个整体,观察图象上相应的点的坐标有什么特点

(二)指导观察,形成概念

这节课我们首先从两类对称:轴对称和中心对称展开研究。

思考:请同学们作出函数y=x2的图象,并观察这两个函数图象的对称性如何

给出图象,然后问学生初中是怎样判断图象关于 轴对称呢此时提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律

借助课件演示,学生会回答自变量互为相反数,函数值相等。接着再让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。

思考:由于对任一x,必须有一-x与之对应,因此函数的定义域有什么特征

引导学生发现函数的定义域一定关于原点对称。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

(1)函数f(x)的定义域为a,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢 (同时打出 y=1/x的图象让学生观察研究)

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义:

(2)函数f(x)的定义域为a,且关于原点对称,如果有f(-x)=f(x), 则称f(x)为奇函数

强调注意点:"定义域关于原点对称"的条件必不可少。

接着再探究函数奇偶性的判断方法,根据前面所授知识,归纳步骤:

(1)求出函数的定义域,并判断是否关于原点对称

(2)验证f(-x)=f(x)或f(-x)=-f(x) 3)得出结论

给出例题,加深理解:

例1,利用定义,判断下列函数的奇偶性:

(1)f(x)= x2+1

(2)f(x)=x3-x

(3)f(x)=x4-3x2-1

(4)f(x)=1/x3+1

提出新问题:在例1中的函数中有奇函数,也有偶函数,但象(4)这样的是什么函数呢?

得到注意点:既不是奇函数也不是偶函数的称为非奇非偶函数

接着进行课堂巩固,强调非奇非偶函数的原因有两种,一是定义域不关于原点对称,二是定义域虽关于原点对称,但不满足f(-x)=f(x)或f(-x)=-f(x)

然后根据前面引入知识中,继续探究函数奇偶性的第二种判断方法:图象法:

函数f(x)是奇函数=图象关于原点对称

函数f(x)是偶函数=图象关于y轴对称

给出例2:书p63例3,再进行当堂巩固,

1,书p65ex2

2,说出下列函数的奇偶性:

y=x4 ; y=x-1 ;y=x ;y=x-2 ;y=x5 ;y=x-3

归纳:对形如:y=xn的函数,若n为偶数则它为偶函数,若n为奇数,则它为奇函数

(三)学生探索,发展思维。

思考:1,函数y=2是什么函数

2,函数y=0有是什么函数

(四)布置作业: 课本p39 习题1.3(a组) 第6题, b组第3

五、板书设计

《函数的奇偶性》说课稿北师大版篇五

《数的奇偶性》是北师大版教材五年级上册第一单元《倍数与因数》最后一课时;是在学生掌握奇数、偶数特点等知识基础之上的一次延伸;是让学生学会用数学策略解决生活问题的一次尝试。因此,本课时教学资源的使用目的主要是帮助学会解决问题的策略,体验猜想结果—举例验证—得出结论这种数学研究方式。农远资源我主要应用于课前的情境创设;教学中对学生体验猜想结果—举例验证—得出结论数学研究方式的辅助;以及学生应用数学模型解决问题中的游戏等环节。

我从知识与技能角度确立目标一:尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性分析和解释生活中的一些简单问题。从过程与方法角度确立目标二:通过活动让学生经历猜想结果—举例验证—得出结论的探究过程,并在活动中发现加法中数的奇偶性的变化规律,掌握数的奇偶性特征。从情感、态度和价值观角度确立目标三:让学生在活动中体验研究方法,感悟解决问题的不同策略,提高推理能力。

本课我是四个方面进行设计的。

第一,我从故事引入,创设一个以摆渡为生的船夫想请学生们帮他解决一个问题这一情境。学生遇到这样一个以前从未见过的问题,便产生认知上的冲突,激发了学生的学习兴趣,也调动了学生学习的积极性,在情境创设中,多媒体资源的辅助使用,有效的调动了学生的求知欲,牢牢地把学生吸引在对未知内容的探究之上了。

第二,我组织学生分小组合作,动手操作,感受数的奇偶性,理解解决问题的不同策略,经历猜想结果—举例验证—得出结论这一数学研究方式。

这部分内容是本课教学的重点也是难点,我安排三个活动,层层推进,帮助学生学习。

活动一:对于船夫提出的划11次船在南岸还是北岸这一问题,我组织学生讨论,寻找解决问题的办法。引导学生尝试用不同的方法来解决,全班汇报交流时,利用媒体展示“列表”、“画示意图”等方式让学生理解解决问题的不同策略。

活动二:让学生翻动自己准备的纸杯子,通过动手操作进一步发现数的奇偶性规律,同时让学生想若把“杯子”换成“硬币”你能提出怎样的问题,并试着回答这些问题,再用硬币操作验证。安排这一活动目的是培养学生提出假设问题—猜想结果—再实践验证的数学研究习惯,发展学生主动探究能力。

活动三:是让学生合作探究加法中数的奇偶性,让学生体验猜想结果—举例验证—得出结论的`数学研究方式。本活动主要是让学生相互之间加强交流,形成自主、合作、探究的数学学习课堂。的使用有效的帮助学生建构出数学模型。

第三,运用数学模型,解决实际问题。

这一部分我安排三个内容。第一个内容是出示几个算式,让学生判断结果是奇数还是偶数。这一内容在学生已有数的奇偶性特征这一数学模型经验之后,独立完成已经没有障碍。第二个内容是有3个杯子全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转使得3个杯子全部杯口朝下。这一内容是对前面同一问题的拓展,目的是让学生进一步理解奇偶性,同时培养学生动手实践能力。第三个内容,我安排的是一个游戏,也是一个实际问题,游戏是用骰子掷一次得到一个点数,从a点开始,连续走两次,走到哪一格,那一格的奖品归你。通过这个游戏让学生明白无论掷几,走两次都是偶数,而奖品都在奇数区域里,所以不论怎样都不能获得奖品。让学生运用学过的数学知识解开其中的奥秘,获得情感体验。

第四,总结反思,交流收获,同时进一步拓展知识视野,让学生将学习的知识与生活实际联系起来,培养学生初步的数学应用能力。

以上四步骤,让学生经历从情境创设到建构数学模型,再到运用模型解决解决问题三个阶段,三种层次。学生学会用自己的策略解决问题。媒体资源的辅助使用,让学生的体验更深刻,教学效果更显著,完全实现了课前确立的教学目标

相关范文推荐

    中国传统文化手抄报 中国传统文化手抄报简单(大全10篇)

    在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?接下来小编就给

    最新年的故事绘本教案 年的故事教案设计意图优秀(十四篇)

    作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下我给大家

    我的观察日记一年级 一年级观察日记狗(优秀10篇)

    在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。我的观

    2023年小学元旦主持词开场白(十四篇)

    每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。写范文的时候需要注意什么呢?有哪些格式需要注意呢?这里

    2023年开展经典诵读活动总结(10篇)

    总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。相信许多人会觉得总结很难写?以下

    跳舞的句子21句5篇(实用)

    在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们

    2023年大班教案《手拉手》活动反思十一篇(大全)

    作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么问题来了,教案应该怎么写?以下是小编收集整理的教案范文,仅供参考,希望能够帮助到大家。

    十二生肖教案反思大班(十四篇)

    作为一名教师,通常需要准备好一份教案,编写教案助于积累教学经验,不断提高教学质量。那么我们该如何写一篇较为完美的教案呢?下面我帮大家找寻并整理了一些优秀的教案范

    最新鸡宝宝教案反思优质(十四篇)

    作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?这里我给大家分享一些最新

    2023年母鸡教案教学反思9篇(通用)

    作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一