心得体会是我们在遇到问题、挑战和困难时得出的宝贵经验,具有重要的参考价值。小编为大家整理了一些精心挑选的心得体会范文,希望能够对大家的写作和思考有所帮助。
精选考研数学课程心得体会大全(14篇)篇一
考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考20xx年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以平时复习要加强这类题型的训练。另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。
从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。
真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水平,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时强化知识和方法。最后,把近十五年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。
最后冲刺阶段,需要回归教材,把课本再认真梳理一遍,查遗补漏,将知识明确化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不要做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到“实战”的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩。
考研数学高效复习的建议
一、避免杂乱无章、毫无头绪
大家可以把知识点系统归类到整体的知识框架中可以避免杂乱无章、毫无头绪的现象。大家在复习每一章时应将这一部分的知识点做系统的梳理。近年考试中高等数学的命题呈现出明显的规律性,如求极限、中值定理、函数极值、重积分的计算等,都是每年试题中都会设计命题的重要知识点。这就要求大家在认真梳理考点的基础上着重对这些问题多下功夫彻底解决。此外,善于从做题中总结。高数题海无边,好多同学做很多题之后还是摸不到方向,新东方在线认为,主要症结还是在于没有在做题中认真总结方法、规律和技巧。这就要求大家在解题的时候遇到问题要及时总结归纳,熟练掌握各类重要题型解题的要领和关键。
二、线性代数抓好两条主线
线性代数复习总体而言需要抓好两条主线:一条主线是行列式、矩阵、向量组作为研究线性方程组的三大工具与线性方程组的解的关系以及它们之间的联系;另外一条抓显示特征值与特征向量、矩阵的对角化作为工具如何应用于二次型的标准化。同学们在复习时必须在掌握各部分的基本概念、原理、性质的基础上明确知识点之间的内在联系,有条有理地全面掌握这一学科的重要内容。
三、概率论与数理统计知识点吃透
概率论与数理统计对基本概念、原理的深入理解以及分析解决问题的能力要求较高,所以大家首先要做好的就是根据最新考试大纲规定的内容,将概率论与数理统计的内容再细细梳理一遍,将基本概念、基本理论和基本方法结合一定的基本题练习彻底吃透,这样才能在题目形式千变万化的情况下把握“万变不离其宗”的本质,做到灵活应变。专家提醒考生,大家要注意及时重要的公式、结论和一些对知识掌握和解题有帮助的规律,必定能使解题能力得到显着提高。
精选考研数学课程心得体会大全(14篇)篇二
作为考研的一员,我们不能忽视数学这个重要科目。这门学科在考研中占比很大,而且贯穿整个考试。那么,如何提高数学成绩呢?我在考研复习过程中积累了一些心得体会,现在分享给大家。
第一段:制定计划,不断练习。
在备考数学时,我发现计划非常必要。首先,我们需要把各个章节内容分配到时间轴上,合理安排时间,努力练习。我推荐选择一本数学较为系统的教材,系统复习所有知识点。考研不只是对各个知识点的梳理和记忆,更是对于知识点的掌握和应用。我们需要不断练习,切换各类题目,目的是熟练掌握知识点,巩固能力,提高解题水平和速度。
第二段:善用网络资源,找到差距。
我们在复习过程中,经常会遇到一些难点和问题。这时候,我们要学会善用网络资源,不断地向外寻求帮助,找到适合自己的解决方法。网络上有许多考研数学的高水平视频、直播以及各种学习资源,如“高数在线”、“考研数学社区”等等。我们通过对照所学资料和参考书,对自己的应试水平及知识点较弱之处进行较深的剖析与思考,找到差距。
第三段:灵活运用方法,提高解题技巧。
数学题目大多数都存在一定的规律,懂得规律,则解题套路灵活掌握,就会事半功倍,考试时举一反三。在学习过程中,我们要尽量学习各种解题方法,根据不同类型题目采取不同的方法。通过多练多思,熟练掌握所有的方法技巧,做到心中有数。同时,我们还要不断增加时间压力条件下快速解题的能力。
第四段:注重基础知识的巩固。
数学有一些基础知识是不可忽略的,对于我们之后的研究生甚至是博士研究,都有着非常重要的意义。我们需要善于总结、归纳所有基础知识,逐一复习,分类训练、分类练习,逐渐达到熟练掌握的目的。
第五段:考试前的心态调整。
在迎接考试的前一天或者前两天,我们需要放松自己,调整状态,从而进入一个更好的状态。拥有良好的心态是非常必要的,做到沉着冷静,在考试入场之前,做好充分的准备工作,查阅一些往届历年的真题,熟悉考试之前的各种流程,提前安排好出门的时间、考场的位置等等,让自己在考试前能够调整自己的状态,使精神状态达到最佳状态,在备考的这段时间能够深入思考考试的内容,从而得到提高。
总之,数学考研并不可怕,关键是在备考的过程中,我们需要保持一种积极的心态,严格按照计划复习、练习,灵活运用解题方法和技巧,注重基础知识的巩固,考前适度放松调整状态。只要我们坚持理性备考,下定决心,相信我们的数学成绩一定能够取得优异成就!
精选考研数学课程心得体会大全(14篇)篇三
数学考研,对于绝大多数人而言都是一份巨大的挑战,需要经过长期的努力学习才能够顺利通过考试。对于我来说,参加数学考研也是一段充满挑战和机遇的经历,我从中收获了很多的经验和教训,也结交了不少志同道合的朋友,以下是我的数学考研心得体会。
第二段。
在我准备考研的过程中,我主要通过做题的方式来提升数学能力。我通过不断地做题来加强我的记忆和理解能力,同时还可以查漏补缺。另外,我也经常参加线上或线下培训和讲座,以此来获取更多的信息和经验,同时也可以结交更多志同道合的同学。我还通过模拟考试来检验自己的学习成果,这样可以及时调整自己的学习计划和方法。
第三段。
数学考研的科目比较繁杂,需要掌握的知识点也比较多,所以我在准备考试的过程中也付出了很多的努力与心血。对于我而言,我主要通过记忆和理解两个方面来掌握知识点。在记忆方面,我经常使用记忆卡片来帮助我记忆,这样可以加深我对知识点的记忆和理解。在理解方面,我则会通过查阅资料和和其他同学的讨论,来更加深入地理解知识点。
第四段。
对于数学专业来说,数学分析和代数基础是很重要的知识点。在我准备考试的过程中,我不断加强这些基础,同时也在扩展其他知识领域。我尝试了更多的题型和难度,以此来拓宽自己的数学知识面,并为考试做好更完善的准备。此外,我也更加强调细节和逻辑的对接,这样可以提高我的做题能力和解题能力。
第五段。
在考试期间,心态也是至关重要的一个方面。我在考试前会适度地放松自己,以充分调整自己的状态,同时也尽量避免心理担心和压力。在考试中,我也时刻保持冷静和清醒,积极应对题目,并注意时间控制。在考试结束后,我也会及时复盘,并总结自己的考试经验和不足,并制定相应的改进计划,以此提高自己的数学能力和学习水平。
总之,数学考研对于我而言是一份充满挑战和机遇的经验,我从中收获了很多的经验和教训,也结交了不少志同道合的朋友。我通过不断地学习和努力,成功地完成了自己的考试目标,并在这个过程中充分感受到了成长的快乐和满足感。我相信,在未来的人生道路中,我会不断地保持这份努力学习的精神,并通过不懈的努力,迎接更多的挑战和机遇。
精选考研数学课程心得体会大全(14篇)篇四
1、函数、极限与连续。主要考查极限的计算或已知极限确定原式中的常数、讨论函数连续性和判断间断点类型、无穷小阶的比较、讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,关键是要对这些概念有本质的理解,在此基础上找习题强化。
2、一元函数微分学。主要考查导数与微分的定义、各种函数导数与微分的计算、利用洛比达法则求不定式极限、函数极值、方程的的个数、证明函数不等式、与中值定理相关的证明、最大值、最小值在物理、经济等方面实际应用、用导数研究函数性态和描绘函数图形、求曲线渐近线。求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3、一元函数积分学。主要考查不定积分、定积分及广义积分的计算、变上限积分的求导、极限等、积分中值定理和积分性质的证明、定积分的应用,如计算旋转面面积、旋转体体积、变力作功等计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。这一部分主要以计算应用题出现,只需多加练习即可。
4、向量代数和空间解析几何。计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
5、多元函数的微分学。主要考查偏导数存在、可微、连续的判断、多元函数和隐函数的一阶、二阶偏导数、多元函数极值或条件极值在与经济上的应用、二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,在复习时要引起注意,可以找一些题目做做,找找这类题目的感觉。
6、多元函数的积分学。包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。二重、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线积分、曲面积分计算;第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;第二型(对坐标)曲面积分的计算,高斯公式及其应用;梯度、散度、旋度的综合计算;重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7、微分方程。主要考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法。求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,求线性常系数齐次和非齐次方程的特解或通解;根据实际问题或给定的条件建立微分方程并求解;综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。
现在这个阶段,我们的一阶高等数学已经结束了,而关于空间向量与解析几何的相关知识是考研中数一独有的部分,这一部分边角知识也是要求我们同学们掌握的。
建立平面方程、建立直线方程、研究平面与直线间的关系、建立旋转曲面方程、求曲面的切平面方程、求曲线的切线方程等,这些知识点再考研当中大多以填空和选择的形式出现,题目难度中等偏难。
上世纪90年代就考过平面方程和直线与平面的关系的题目,90年考的是求过一定点和一定直线垂直的平面方程,96年考的是过原点和定点以及一定平面相垂直的平面方程,都是以填空题的形式出现的,是利用的是平面的点法式方程来解决的,93年考的是一道选择题,考察的是直线与平面的关系。到了新世纪,在06年的时候考了一道关于点到平面距离以及建立曲面的切平面方程的题目。这些题都是以填空和选择的形式出现的,由于这一块知识点,我们大部分考数一的同学不是很熟悉,也不是很重视,因此,当我们在考试中碰到这种题目时会不自主害怕,以至于会有种感觉很难的错觉。其实对于这一部分问题,同学们只要把空间曲面曲线以及直线和平面的相关方程的知识掌握了,也就会做了,而关于这一部分比较难的部分应该是求旋转曲面方程的问题,关于求旋转曲面方程的问题,同学们一定要掌握求其方程,然后再练几道题就可以了。
空间向量和解析几何是数学一单考的内容,希望数学一的同学能够好好把有关这一章节的所以知识点都要熟悉。希望同学们继续努力,考研,我们是认真的,加油!
认真分析考试大纲,抓住考试重点
考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考20xx年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以平时复习要加强这类题型的训练。另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。
加强对基本概念、基本性质的理解
从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。
重视真题的训练
真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。第一步,做套题,这样一是可以检验复习的水平,发现概念和内容上不熟悉的地方,另外为真正的考试积累经验。第二步,按照章节分类解析,在第一步基础上,有些题目有可能会做错,把它们记下来,在进行各个章节专题训练时强化知识和方法。最后,把近十五年的真题再研究一下,弄清楚常考的是哪些内容,把考试题型彻底熟悉,并且要会正确解答。一定不要过多的花时间去理解其它无关或者非重点内容。
回顾知识点,进行适当的模拟“实战”
最后冲刺阶段,需要回归教材,把课本再认真梳理一遍,查遗补漏,将知识明确化、系统化。另外,可以做几套模拟试卷。从知识点到做题思路,解题技巧,答题顺序等各个方面进行强化训练,千万不要做太难太偏的模拟题,不然会做无用功,甚至对考试失去信心,也起不到“实战”的价值。考前两天将重要公式回顾一遍。通过完整的复习,形成最终的竞争力,考出最好的成绩。
精选考研数学课程心得体会大全(14篇)篇五
学习了马云鹏教授关于20xx版新课标的解读后,我对如何“聚焦核心概念,落实核心素养”有了新的认识。让我印象最深的是:核心素养统领下的内容结构化。20xx版新课标,对课程内容做了一些调整,重点是对内容进行结构化整合,探索发展学生核心素养的路径。要求重视数学结果的形成过程,处理好过程与结果的关系;重视数学内容的直观表述,处理好直观与抽象的关系;重视学生直接经验的形成,处理好直接经验与间接经验的.关系。其中,新课标对学习主题进行了结构化整合,以“综合与实践”主题为例,将“量与计量”移至“综合与实践”板块,以主题学习的方式出现,更注重学生数学活动经验的积累,强调将知识内容融入学习之中,倡导跨学科的主题学习。这一改变,也对我们教师做出了挑战,我们应当用整体性、一致性的眼光看待小学数学的知识体系,精准把握教学,促进学生对数学教学内容的整体理解与把握,逐步培养学生的核心素养。
精选考研数学课程心得体会大全(14篇)篇六
考研数学是考生们备战考研的重点科目之一,也是很多考生感到头疼的科目之一。作为一名考研数学的学习者,我在备战考研的过程中积累了一些心得体会,希望能对即将备战考研的同学们有所帮助。以下是我对考研数学的心得体会。
首先,在备考过程中,要明确自己的目标并制定计划。考研数学涉及的知识点众多、题目类型繁杂,对于初学者来说很容易感到迷茫。所以,我们需要明确自己的目标,比如要达到的分数线和学校要求的数学成绩,然后根据目标制定学习计划。合理的计划可以帮助我们更好地安排学习时间,合理分配各个知识点的学习、习题的练习和模拟考试。
其次,在学习过程中,要注重基础知识的打牢。考研数学的知识点是由各种各样的基础知识组成的,如果基础知识掌握不扎实,很容易在解题中出现错误。所以,在开始备考前,一定要将高中和本科阶段的数学基础知识巩固好,了解各个知识点之间的联系和规律。然后再根据自己的需求和学校的要求,进行有针对性的学习和深入理解。
此外,在习题的练习中,要注意思维的转变和灵活性的培养。考研数学不仅要求我们对知识点的掌握和理解,更加注重我们的思维能力和解题思路。所以,我们要经常进行习题的练习,尤其是一些难度大、代数性强的题目。在解题的过程中,我们要培养灵活多样的思维方式和方法,善于运用各种数学思维工具,比如图像思维、代数思维和概率思维等,以便能够迅速准确地解答题目。
另外,切勿只偏重于机械记忆,要理解题目背后的数学本质。有时候,我们会感到数学题目十分晦涩难懂,甚至怀疑这些题目与实际解决问题的数学有关系吗?这时候,我们需要抛开题目的表面迷雾,站在高处去看这个知识点的本质。通过深入理解数学的定义和定理,我们能够更好地理解题目之间的联系,从而顺利解答题目。
最后,要保持积极乐观的心态和坚持不懈的毅力。备考考研数学的过程是艰难而繁重的,我们可能会遇到让人望而却步的难题、迟迟没有突破的瓶颈期,也会遇到时间紧迫压力巨大的情况。但是,我们不能退缩,更不能灰心丧气。坚持不懈努力,保持积极乐观的心态,相信自己的能力和努力一定会取得成功。
综上所述,备考考研数学是一个需要认真对待和持续努力的过程。我们要明确目标,制定计划,打牢基础知识,灵活运用解题思维,理解数学本质,坚持不懈地努力。相信只要我们付出足够的努力和智慧,就一定能够在考研数学中取得不俗的成绩。希望这些心得体会能够对即将备考考研的同学们有所帮助。
精选考研数学课程心得体会大全(14篇)篇七
第一段:引言(100字)。
数学是一门重要的学科,它培养我们的逻辑思维和问题解决能力。近年来,随着新课程的推出,数学教育也进行了一系列的改革和创新。我很庆幸能够亲身体验这一全新的数学学习方式,并从中受益良多。
第二段:多样化的教学方式(200字)。
新课程将学生放在学习的中心地位,提供了丰富多样的教学方式。在过去,数学课堂上主要是老师讲,学生听,但现在我们能够积极参与,通过小组合作、讨论和实践等方式,亲自动手解决问题。这样的学习方式不仅培养了我们的合作精神和团队意识,还提高了学习的主动性和积极性。
第三段:培养创新思维(300字)。
新课程注重培养学生的创新思维,使我们从被动的接受变成主动的思考。数学课堂上,老师提出问题,我们要自己动脑筋,寻找解决办法。这样的学习方式激发了我们的求知欲和好奇心,培养了我们的观察力和分析能力。通过创新思维的培养,我们能够更好地适应社会的发展和变化。
第四段:实用性的数学知识(300字)。
新课程注重将数学知识与实际生活相结合,使我们能够更好地应用所学知识解决实际问题。通过案例分析和模拟实验等方式,我们能够将抽象的数学知识转化为具体的实用技能。这让我们看到了数学的实际应用,并且增加了我们对数学的兴趣和学习动力。
第五段:结语(200字)。
总之,新课程给予了我们更多、更好的学习机会,让我们能够掌握更多的数学知识和技能。通过多样化的教学方式,培养了我们的合作精神和团队意识;通过创新思维的培养,培养了我们的观察力和分析能力;通过将数学与实际生活结合,增加了我们对数学的兴趣和学习动力。新课程心得体会数学的过程中,我不仅收获了知识,还锻炼了自己的思维能力和解决问题的能力,这将对我的未来学习和生活产生重要的影响。
精选考研数学课程心得体会大全(14篇)篇八
为了更好地理解课程标准的要求,探索数学学科核心素养的真谛与培养途径,x月x日下午,在分管数学教学的xxx副校长带领下,全体数学教师开展了《数学课程标准(20xx版)》的学习,全面了解课标的整体修订情况,更加明晰了当前的数学教育的发展形势以及肩上的责任。
数学新课标提出数学课程要培养学生核心素养,让学生会用数学的眼光观察现实世界、会用数学的思维思考现实世界、会用数学的语言表达现实世界。在小学阶段,核心素养侧重对经验的感悟。通过学习,我们还了解到新课标的变化有以下几点:
1、义务教育阶段将党的教育方针具体细化为本课程应着力培养的学生核心素养,体现“四基”、“四能”以及正确价值观的培养与发展。
3、制定了学业质量标准。
4、增强了指导性。课程标准针对“内容要求”提出“学业要求”“教学提示”,细化了评价与考试命题建议,注重实现教、学、考的一致性,增加了教学、评价案例,不仅明确了“为什么教”“教什么”“教到什么程度”,而且强化了“怎么教”的具体指导,做到好用、管用。
5、注重“幼小衔接”,基于对学生在健康、语言、社会、科学、艺术领域发展水平的评估,合理设计小学一至二年级课程,注重活动化、游戏化、生活化的'学习设计。
课程标准是教学的纲,一系列的变化必然会带来教学理念的更新和教学行为的改变,这一切让我倍感压力。我将以此次活动为契机,进一步细致地去研读课程标准、解读课程标准,用新课标理念来指导教学,从而落实学科核心素养。
精选考研数学课程心得体会大全(14篇)篇九
从整体来看,今年的试题线性代数部分在数一、数二、数三中的考试内容是一致的,虽然数一没有单独考查向量空间,但与大纲要求也是相符的。今年的线性代数试题整体看来难度不大,计算量也不是很大。其实线性代数最注重各个章节之间的联系,这点我们考研的数学老师在授课的时候一直强调。事实上,今年的线性代数命题人也是按这个思路命制考题的。
我们来看看线性代数的两个解答题,即是数一、数三的21、22题,数二的22、23题。我们先看一下第一大题,这是一道有关线性方程组解的判定与求解问题。此题形式上是一个矩阵方程的问题,并且未知矩阵出现了两次,这在往年的试题中是不多见的。本题的关键是将的元素都设为未知数,利用矩阵乘法将其转化为线性方程组的求解。第二大题考查二次型,其中第一小题很简单,大家可以直接将所给的二次型对三项和的平方展开化简,然后按定义即可将二次型的矩阵写出,写出矩阵也就完成了第一小题的证明;也可以按矩阵乘法将所给二次型表达成矩阵形式,直接从矩阵形式写出二次型对应的矩阵。第二小题主要是利用特征值、特征向量的定义求出二次型的特征值,另外还要仔细观察题目中所给的已知条件,充分利用起来;此外,考生也可以求出与题中正交的单位向量(实际上是证明这个的存在即可),以它们为行向量作正交变换(即),从而可以直接将原二次型中的两个三项和改写成与。本题也考查了二次型的标准形,这里考生只需知道在正交变换下得到的标准形中的系数就是二次型矩阵的特征值即可。
我们再来看看线性代数的三个选择、填空题,即是数一、数三的5、6、13题,数二的7、8、14题。第一题考查分块矩阵的的运算与向量组的线性表示,第二题考查矩阵的相似(这里是实对称矩阵的特殊情况),第三题考查伴随矩阵与矩阵的行列式,考查内容简单明确、覆盖面广,与解答题互为补充。
从今年的线性代数部分的出题情况我们可以看出,线性代数题的难度不大,都是一些基础的知识,但是由于计算比较复杂,极易出现错误,考生因为粗心大意而算错的概率很大。在此,我们给20xx届的考生提出如下建议。
基本概念、基本方法、基本性质一直是考研数学的重点。线性代数的概念比较抽象,方法与性质也有相应的适用条件。有些同学在考场上,不知道试题要考查什么,该怎样下手,不知道该用哪个公式。我们建议考生在复习中一定要重视基础知识,要复习所有的定义、定理、公式,做足够多的基础题来帮助巩固基本知识。
线性代数的知识点是三大科目里最少的,但基本概念和性质较多,他们之间的联系也比较紧密。考生特别要根据历年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:线性方程组的三种形式之间的联系与转换;行列式的计算与矩阵运算之间的联系与差别;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家处理其他低分值试题也是有助益的。
大纲作为指导性文件,对命题、应试双方都是有约束力的。数学的复习要强化基础,随时参考适当的教科书,比如同济版的《线性代数》(第三版)或北大版的《高等代数》(上册)。有的考生认为复习到这个阶段就可以抛开课本搞题海战术了,这是舍本逐末。建议大家要边看书、边做题,通过做题来巩固概念、方法。同时,考生最好选择一本考研复习资料参照着学习,这样有利于知识能力的迁移,有助于在全面复习的基础上掌握重点。
近十年特别是近三年的研究生入学考试试题,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。建议在打好基础的同时,加强常见题型的训练(历年真题是很好的训练材料),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握,这样才能够做到举一反三,全面地应付试题的变化。
总之,考生在复习线性代数的时候要注重基础,打好基本功,并结合一些综合性的试题培养自己的分析解决问题能力,加深对知识的理解。一些考生在复习时过分追求难题,而对基本概念,基本方法和基本性质重视不够,投入不足,考研的老师警醒大家这样做是不对的,应该及时纠正。
此外,数学的学习不是看明白资料就行的,必须独立完成足够量的习题。此外,做完题后不要急不可耐地对答案,要养成勤于思考的习惯。拿到题时,应该整理出明确的思路,问问自己:命题人用这道题考什么,以前我在这个知识点上出错过吗?遇到一时无法独立解决的问题,应该有针对性地与学友讨论或者请教老师。
精选考研数学课程心得体会大全(14篇)篇十
近年来,随着考研热的不断升温,考研课程讲座也越来越受到广大考生的关注。我有幸参加了一次高质量的考研课程讲座,让我收获颇丰。在这次讲座中,我深刻体会到了考研的重要性,同时也受到了良好的激励和指导。以下是我对这次讲座的心得体会。
首先,这次考研课程讲座让我充分认识到了考研的重要性。在讲座中,讲师详细介绍了考研的背景和现状,阐述了考研在提高个人职业竞争力、深造学术研究、实现人生自我价值等方面的重要性。通过资料的展示和实例的分析,清晰地描述了考研能给我们带来的机遇和好处。我认识到,只有通过不懈努力,才能在激烈的职场竞争中脱颖而出,才能实现自己的职业规划。
其次,这次讲座给予了我良好的激励和指导。讲师在讲座中引用了许多成功考研者的经验故事,这些鲜活的案例让我深受鼓舞。同时,讲师还分享了一些科学的学习方法和应对考试的技巧。例如,在备考过程中,要有明确的目标和计划,要注重扎实的基础知识的积累以及技巧的磨练。这些建议对我来说非常珍贵,帮助我确立了明确的学习方向,并提供了宝贵的备考经验。
再次,这次讲座拓宽了我的知识,启迪了我的思维。讲师在讲座中讲解了多个科研领域的前沿动态和热点问题,从跨学科的角度探讨了现代科学的发展趋势和未来方向。这让我认识到考研不仅仅是为了一个文凭,更是为了进一步拓宽自己的眼界和知识面。通过跨学科的学习,可以更好地融会贯通各个学科,从而在本专业中具有独特的思考和分析能力。
最后,这次讲座让我意识到了考研的压力和困难。在讲座中,讲师提到了备考过程中要面对的各种困难和挑战,如时间管理、学习困难等。通过讲解这些困难以及如何应对的方法,我从中感受到备考的压力和挑战并非不可逾越,只要认真对待,付出努力,就一定能够取得好成绩。这让我对备考时的困境有了更明确的认知,也让我更有信心去面对考研路上的困难。
综上所述,这次考研课程讲座给予了我很大的收获和启发。我认识到了考研的重要性,受到了良好的激励和指导,拓宽了知识面,同时也意识到了备考的困难和压力。通过这次讲座,我对考研有了更深刻的认识和理解,相信在未来的备考过程中,我能够以更科学、高效的态度去面对。我将按照讲座中的指导,制定合理的学习计划,注重基础知识的理解和掌握,加强实践和技巧的训练。我相信,只要我坚持努力,就一定能够顺利实现我的考研目标,迈向成功的大学生活。
精选考研数学课程心得体会大全(14篇)篇十一
对于大部分学生而言,数学在大学课程中都学习过,但是由于在大一时高数学习得较浅,再加上学完时间较长,很多知识点都已遗忘。所以第一遍的基础复习一定要抱着一种重新学习的态度,认认真真重新再把大学课程中学习过的教材复习一遍,把遗忘的知识点一一捡起来。复习时,对于例题和课后习题一定要动手做一遍,多思考多总结做题的思路和方法。
数学水平的高低是通过解题来检测的,而基本概念、方法、理论也只有在解题中才能真正理解和巩固。试题千变万化,但其知识点及知识体系却基本相同,考试的题型也相对固定,一般题型都存在一定的解题规律。通过做题可以切实提高数学的解题能力,做到面对任何试题都能有条不紊地分析和计算。
数学学习不能死记硬背,死搬硬套。对于每一个知识点,按照老师教授的和自己做题的体会结合起来深刻理解知识点,不能光注重答案。遇到自己实在不会做的题目,不能看看答案解析就完事了,不能认为自己看明白的题目应该就会做了。一定要抛掉答案解析,自己再重新做一遍。只有自己真正会做了,才能理解此题考查的是哪个知识点,该知识点是如何考查的。
在学习过程中一定要把自己的心得或体会以标注的形式写在书上或笔记本上。对于一些比较好的例题,尽量挖掘题目的内涵,这一点很重要,并且要贯穿到整个考研复习中去。或是自己的易错题,易混淆的知识点或概念,可以总结在笔记本上。尤其是在最后的冲刺阶段,考前的半个月,我们可以把前面整理的笔记本认真复习一遍。
对于大纲中要求的考点,要求同学们全面复习到位。不能因为有些知识点是冷点(即考频率不高的知识点或是近年考试中没考过的知识点),就主观断定这个知识点今年可能还是不考,没必要复习了。只要是考纲中出现的`考点,我们就全力以赴地复习到位。
1、实战做题寻找感觉
复习完数学基础知识后,可以取一套真题,模拟真是场景进行实战训练。这样,在做题的过程中会有紧张的感觉,能检测自己的基础知识和应试能力,还能帮助有效利用时间。
2、查漏补缺
数学真题由于全面,可以帮助广大考生实际了解大纲要求的知识点,查明自己在哪些地方还没有完全掌握。因此,做完题之后一定要养成总结的习惯,总结错题的原因,题目的考察要点,用到的原理和公式等。
3、制定有效的学习计划
由于做真题得出了学习中的遗漏点,因此,总结错题之后可以适当调整自己的学习计划,使复习更加高效。通常情况下是针对真题中出现的问题,对相应科目和章节重点的进行复习安排。
4、总结循环规律
真题的每道试题都有自己的出题规律,数学也不例外,它一定是有几个知识点,相互关联,互相推导,或互相替换,最后得到另一个知识点的,只要你认真研究,就不难能发现这些真题的了出题规律。
精选考研数学课程心得体会大全(14篇)篇十二
第一段:介绍考研课程的重要性和挑战性(大约200字)。
考研是许多大学生的梦想和追求,同时也是一段充满挑战性的旅程。考研课程作为考研备战的核心内容,对于考生来说至关重要。在这段时间里,我们不仅需要掌握各科目的知识,还需要培养解题的能力和思维的灵活性。通过参加考研课程,我们不仅能够系统地学习各科目的知识,还能够提前适应考试的节奏和要求,为考研之路打下坚实的基础。
第二段:认识考研课程的重要性(大约200字)。
考研课程对于考生来说至关重要。首先,考研课程能够帮助我们系统地学习各科目的知识。考研所涉及的学科范围广泛,对于我们平时掌握的知识也需有更深的理解,而参加考研课程可以保证我们有系统性地学习各科目的内容,提高对知识点的理解和掌握。其次,考研课程还能够培养我们的解题能力和思维灵活性。考研的题目一般都会涉及到一定的难点,而通过参加考研课程,我们可以在老师的指导下,学习解题的方法和技巧,提高我们解题的能力和思维的灵活性。最后,考研课程还可以帮助我们适应考试的节奏和要求。考研考试的时间紧迫,压力较大,而参加考研课程可以帮助我们提前适应考试的节奏和要求,增加我们的筹备时间,提高我们的备考效率。
第三段:分享参加考研课程的收获和体验(大约300字)。
我在之前考研备考过程中参加了一些考研课程,从中获得了很多收获和体验。首先,参加考研课程让我拓宽了知识面。在课堂上,老师会讲解一些平时容易忽略的重要知识点和难点,通过听课可以及时补充自己的知识盲点,提高答题的准确性。其次,考研课程让我明确了备考的方向和目标。在课堂上,老师会分析大纲和考试的动态,告诉我们备考的重点和注意事项,这让我能够更加明确备考的方向和目标,不再为备考的内容感到迷茫。最后,考研课程让我结识了一群志同道合的朋友。在课堂上,我们一起学习、交流,相互帮助,共同进步。这个过程不仅加强了我们的学习氛围,还为我们提供了宝贵的学习资源和经验。
第四段:总结考研课程的意义和价值(大约200字)。
考研课程不仅仅是单纯的知识学习,更是一次全面提高自己能力和素质的过程。通过参加考研课程,我们可以系统地学习各科目的知识,提高解题能力和思维灵活性,适应考试的节奏和要求。这些都将为我们的考研之路打下坚实的基础,提高我们的备考效果。同时,考研课程还可以促进我们与他人的交流和合作,结识一群志同道合的朋友,共同成长和进步。因此,参加考研课程对于我们的学习和发展有着重要的意义和价值。
第五段:对未来考研课程的展望(大约200字)。
通过参加考研课程,我深刻认识到了它的重要性和价值,并获得了很多收获和体验。未来,我将更加认真学习和参加考研课程,深化对知识的理解和掌握,提高自己的解题能力和思维灵活性,适应考试的节奏和要求。同时,我也期望通过参加考研课程,结识更多优秀的同学和老师,加强交流和合作,相互学习和促进共同进步。我相信,通过不懈的努力和坚持,我一定能够实现我的考研梦想,走上属于自己的成功之路。
精选考研数学课程心得体会大全(14篇)篇十三
拿到试卷以后不要着急做题,花一两分钟时间把卷子通篇看一下,检查一下考研数学试卷是不是23道题目,大致都是什么题型的题目。这样做有两个好处:一是可以有效防止因粗心大意而漏掉一些题目,漏题就太可惜了;二是可以加强自己的信心,稳定心情,通过长达一年时间的复习,看了这么多参考书,听了那么多考研课程,相信试卷中肯定有不少题型你是非常熟悉的,看了这些题目以后,你会感到非常高兴,自信心倍增,原本紧张的心情也会放轻松,这样才能正常发挥。
二、按序做题,先易后难
考研数学题量都是23道题目,其中选择题8道,填空题6道,解答题9道。题目类型也是固定的,数学一和数学三1~4题是高数选择题,5~6题是线代选择题,7~8题是概率选择题;9~12题是高数填空题,13题是线代填空题,14题是概率填空题,15~19题是高数解答题,20~21题是线代解答题,22~23题是概率解答题。数学二1~6题是高数选择题,7~8题是线代选择题;9~13是高数填空题,14题是线代填空题,15~21题是高数解答题,22~23题线代解答题。
选择题和填空题主要考察的是基本概念、基本公式、基本定理和基本运算,解答题包括计算题和证明题考察内容比较综合,往往一个题目考查多个知识点,从近些年的试卷特点,题型都比较常见,难度不算大,我们最好按题目顺序做,这样能稳定心情,很快进入状态,也不容易漏做题目,如果遇到自己不熟悉的题目也不要发慌,可以暂时放下接着做下一个题目。等容易的题目有把握的题目都做完之后,再静心研究有疑问的题目,但如果实在没有思路也要学会放弃,留出时间检查自己会做的题目,争取会做的题目不丢分,因为数学的分数最依赖的还是能否将会做的题都做对。
此外,有些同学喜欢先做高数,再做线代,这样的做题顺序也可以,关键是看你平时训练时是如何训练的,选择适合自己的就是最好的,但在此提醒一下大家一定不要漏做题。
三、合理分配答题时间
根据以往考生的经验,一道客观题控制在3分钟左右,最多不要超过5分钟,解答题一般10分钟左右,根据难易程度适当调整。最后至少留出30分钟时间检查,确保会做的题目计算正确。
考研线性代数考点预测:向量的数学定义
首先回顾一下,在中学我们是如何表示向量的。中学数学中主要讨论平面上的向量。平面上的向量是可以平行移动的。两个相互平行且长度相等的向量我们认为是相等的。好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。这时向量终点的坐标同时也是向量的坐标。这样,我们就可以用一个实数对表示一个平面向量了。
一个实数对实际是我们线性代数中的一个二维行向量。而线代中讨论的向量是任意n维的。所以线性代数中的向量可视为中学向量的推广。
下面是向量的数学定义:
由n个实数a1,a2,…,an构成的有序实数组(a1,a2,…,an)称为一个n维行向量。类似可定义列向量。
问个问题:向量和矩阵是什么关系?向量可视为特殊的矩阵(行数或列数为1的矩阵)。这是理解向量的一个很好的角度。因为学习向量时,我们已把矩阵讨论得很清楚了,所以通过矩阵理解向量就能省不少事。
知道了什么是向量,那什么是向量组呢?向量一般来说不是单独出现,而是成组出现的。我们把多个向量放在一起考虑,就构成了向量组。
当然向量组的严格数学定义也不难理解:由若干个同型向量构成的集合称为一个向量组。这里的“同型”可以理解成矩阵同型,也可以用向量的语言描述成:同为行向量或列向量且维数相同。
精选考研数学课程心得体会大全(14篇)篇十四
我的本科就读于北京师范大学信息科学与技术学院电子系,从高等数学(微积分)、离散数学、线性代数、概率论到基础物理学(可不是像名字那么基础,还讲相对论什么的)、电磁场,理工科目的基础课程基本上学了个遍:用编程语言将就是for循环遍历了一遍理工科这棵二叉树。不得不说,这么多的疑难课程,到考研的关键关头,很难再全部拿起来。但是又应该客观承认,多科目让我对数学这门基础课程从东南西北上下左右各个角度都审视了一番。我想,这就是在培养学科背景和学科感觉吧。我觉得本科真正学到手的理论还就是数学,其余都是技术……而考研初试注重的只能是理论,基本理论和基本方法,这些如果在大一大二就蒙混过关,那考研前的复习基本上就是从零开始,从绝望开始。
我和很多人一样,在大二大三时很不想考虑考研这件事。所有人都懂,保研的人过着猪的生活,工作的人过着狗一样的生活,考研的人则过着猪狗不如的生活。我的最大兴趣并不是本科这个专业,但是同许多平凡家庭一样,艺术、文艺这些高雅而挥霍金钱的事业注定和我无缘,只有选择理工科来“发家致富”。逼着自己学下去,保研还是功亏一篑。大三早早就准备考研,每天为自习室像猪狗一样四处游荡,突然有一天放出消息,如果比你排名高的人再有一个放弃保研出国去,你就能保!但是等啊等,终于等来了噩耗……但是等归等,我并没有从自习室和通往自习室的路上消失。只有这样,提早准备的.优势才不至于被小道消息所消解。
然后就来了关于选择的问题:报哪个学校、哪个专业?这段时间就是各种聊,各种传说,各种扯淡,各种不上自习……等真的决定了报什么、要不要跨专业,师姐师兄也找得差不多,这是可能就真的可以收心了,可以冲刺了。我觉得本科大学就不次而且没有什么病的(比如清华病、北大病)就不用再选别的地方了。考本校不仅本校很重视你,而且天时地利人和无一不占,大战之前这么好的作战条件真不是每个人都能得到的。
到最后一个月,要是觉得还天天有事情做、有题要做、有补习班要上,真的是挺不错的感觉。但更多的人在这时就松懈了,效率下降了。虽然仍然每天seven-eleven(7:00-11:00),但是明显感觉能做的事情不那么多了,有时看着看着书就发呆,像高考之前那样思绪起伏不定,神龙见首不见尾。会抽烟的就不住的往厕所里跑,不会抽烟的就不住的往嘴里塞东西,吃了中饭就觉得晚饭不远了,晚饭吃饱了就惦记11点回寝室后的宵夜。人真的太奇妙,虽说胜利机制那么像机器,但都是人,都不是机器,根本不是机器,不是输个输入就有响应的线性时不变系统……输入给放大10倍,输出就有可能给弄成自激了,自激不可怕,可怕的是自激后会一蹶不振,一蹶不振,虽然还是每天6、7点之间起,还是11、12点之间回。
结束了近似于发泄诉苦的考研生涯回顾之后,还是说点诲人不倦的关于数学考试的经验吧。仅限于数一的,但是数二数三可以借鉴,毕竟考数二数三的人号称数一并不比数二数三难。
决定了要考什么专业后,务必先确定是不是要考数学、考数几。然后就是要有一套权威的教材一遍翻阅求证,因为确实再多的辅导书的权威性都比不上正规的教材。高等数学(微积分)推荐绿皮儿的同济大学第五版(或之后更新的)《高等数学》,里面有大量对定理的证明过程;线性代数当然是清华的黄蓝相间的教材《线性代数》最权威,但千万别通读;而概率论首选浙江大学出版的《概率论与数理统计》,比较通俗易懂。之后就要有一本针对考研数学的总复习丛书。