力学建模论文大全(24篇)

时间:2025-01-27 作者:雅蕊

范文作为一种示范和标杆,可以帮助我们更好地掌握写作技巧。以下是小编为大家整理的一些范文范本,供大家参考和学习。

力学建模论文大全(24篇)篇一

高校数学教育是高等教育的基础学科,占据重要的一席之地。如何改变学生对数学枯燥乏味的学习状态,让学生轻松愉快地参与到数学学习中,是当前高校数学教学者面临的一个重要课题。在高校数学教学中开展数学建模竞赛,不仅能培养学生的创新思维,还能有效提高提高学生的创新能力、综合素质和对数学的应用能力。本文对高校开展数学建模竞赛与创新思维培养进行了分析阐述,并对此进行了一定的思考。

数学建模是一种融合数学逻辑思想的思考方法,通过运用抽象性的数学语言和数学逻辑思考方法,创造性的解决数学问题。当前很多高校中开始引入数学建模思想来加强学生创新能力的培养,可以使学生的逻辑思维能力和运用数学逻辑创新解决问题的能力得到提升。数学建模竞赛起源于1985年的美国,几年后国内几所高校数学建模教师组织学生开始参与美国的数学建模大赛,促进了数学建模思维的快速发展。直到1992中国首届数学建模大赛召开,而后一发不可收拾,至今仍以每年20%左右的速度增长,呈现一派繁荣景象。

2.1数学建模竞赛自主性较强。自主性首先体现在在数学建模过程中学生可以根据自己的建模需要通过一切可以利用的资源、工具来进行资料查阅和收集,建模比赛队员可以根据自己的意见和思维进行灵活自由解答,形式不拘一格。其次体现在数学建模竞赛的组织形式呈现多元化特点,组织制度上也较为灵活多样,数学建模主要侧重于分析思想,没有标准答案可以参考分享。2.2建模队伍呈日益燎原之势。1992年首届中国数学建模大赛开展以来,其影响力与日俱增,高校和社会各界对数学建模颇为重视,参赛队伍、参赛学生的质量一直处于上升状态,数学模型也日渐合理科学,学生团队在国际数学建模大赛中屡创骄人战绩。2.3组织培训日益加强。数学建模竞赛对学生数学知识的掌握及灵活运用、口套表达、语言逻辑思维、综合素质都有着非常高的要求,因此高校遴选参赛选手都投入了很大的精力,组织培训的时间很长,培训内容也很丰富,为数学建模竞赛取得好成绩奠定了坚实的基础。

3.1学生的团队协作能力和意识得到增强。数学建模竞赛的团队组织形式活泼自由,通常采用学生组队模式开展,数学建模竞赛队伍形成一个团结战斗的整体,代表着不仅仅是学校的声誉,还一定程度上展示着国家的形象。经过长时间的培训,对数学模型的研究和分析,根据学生训练中的优势和特长,进行合理科学的小组分工,让学生快速高效地完成整个数学建模,在建模过程中学生统筹协作、密切配合,发挥各自的优势和长处,确保数学建模取得最大效用,学生的团队协作能力和意识得到锻炼,责任感和荣誉感进一步增强,通过建模竞赛彰显团队的合作能力和中国数学建模方面的发展。

3.2高校学生参赛积极性高涨。近年来大学生数学建模竞赛的参与性高涨,参赛人数保持着20%左右的上涨幅度,参赛成绩也较为理想,创新能力得到了较好的锻炼和培养,综合素质得到提高,数学的应用能力提升。

3.3高校学生数学逻辑思维能力和灵活运用知识的能力得到提升。数学建模竞赛充满着刺激性和挑战性,是学生各方面综合能力的一个展示。在数学建模竞赛中,学生不仅要需要扎实丰厚的数学知识储备,还需要具备清晰的数学逻辑思维和语言表达能力。同时要有机智的临场发挥能力和应变能力,不怯场、不惊慌,有充分的思想准备,能轻松应对其他参赛选手和评委的提问,能组织条理性、逻辑性的语言进行表述,将参赛小组数学模型的含义和设计清晰完整的传达给评委和其他参赛选手。在这个过程中,无疑会使学生的数学逻辑思维和语言表达能力及灵活运用数学知识的能力有一个较大的提升。

3.4学生的自学能力和意志力得到锻。数学建模竞赛对参赛学生的综合知识和能力要求非常高,难度也非常大,需要与众不同的智慧和能力。可以说数学建模过程中,有许多高深的知识难于理解,有的日常学习过程中根本接触不到,需要数学建模参赛小组成员的互助合作,充分发挥各自优势和平时培训中的知识积淀,通过借助大量的工具书及参考资料,加上团队的`理解分析去摸索,探寻数学建模所需要的基础知识,无疑这对学生的自学能力培养是一个很好的锻炼。另外,搜寻资料、学习数学建模知识的过程是枯燥乏味的,需要长久的耐力和信心,无疑这对学生的坚毅不畏难的品质是一个很好的培养和磨炼。

3.5创新思维与能力得到有效提升。经过艰苦复杂的数学建模训练,高校学生信息收集与处理复杂问题的能力得到培养锻炼,学生数量观念得到增强,能够养成敏锐观察事物数量变化的能力,数学的严谨推导也使学生养成认真细心、一丝不苟的习惯,逻辑思维能力得到提高,思路变得更加富有条理性,能灵活地处理各种复杂问题,有效解决数学疑难,数学理论能更好第应用于实践,数学素养进一步得到提升。

综上所述,高校学生数学建模竞赛的开展,能较高地提升学生的创新能力和综合素养,团队合作能力、竞争能力、表达交流能力、逻辑思维能力、意志品质能力等都能得到良好的塑造。高校要积极组织和开展数学建模竞赛,使学生的综合素质得到发展和锻炼。学校用重视和鼓励全体学生参与数学建模竞赛,通过竞赛实现学生各方面能力尤其是创新能力的培养。

[1]赵刚.高校数学建模竞赛与创新思维培养探究[j].才智,20xx(06).

[2]陈羽,徐小红,房少梅.数学建模实践及其对培养学生创新思维的影响分析[j].科技创业月刊,20xx(08).

[3]赵建英.数学建模竞赛对高校创新人才培养的促进作用分析[j].科技展望,20xx(08)5.

[4]毕波,杜辉.关于高校开展数学建模竞赛与创新思维培养的思考[j].中国校外教育,20xx(12).

力学建模论文大全(24篇)篇二

为了培养小学生良好的数学学习兴趣,激发他们的数学潜能,教师需要采取必要的措施注重数学建模思想的有效培养,促进学生的全面发展。在制定相关培养策略的过程中,教师应充分考虑小学生的性格特点,提高数学建模思想培养的有效性。基于此,文章将从不同的方面对小学生数学建模思想的培养策略进行初步的探讨。

作为小学数学教学中的重要组成部分,数学建模思想的渗透及相关教学活动的顺利开展,有利于提高复杂数学问题的处理效率,保持数学课堂教学的高效性。要实现这样的发展目标,增强小学生数学建模思想的实际培养效果,需要加强对学生动手实践能力的培养,激发学生的更高兴趣。建模的过程涉及问题表述、求解、必要解释及有效验证,在这四个环节中,可能会存在一定的问题,影响着数学教学计划的实施。因此,教师需要利用学生动手实践能力的作用,实现数学建模思想的有效培养,促使小学生能够在数学建模过程中享受到更多的快乐。比如,在讲解“认识角”知识的过程中,某些学生认为边越长角度也越大。为了使学生能够对其中的知识点有更加正确而全面的认识,教师可以通过在黑板上设置一些能够活动的三角板,让学生亲自动手操作,以此得出角与边长的正确关系,为后续教学计划的实施打下坚实的基础。通过这种教学方法的合理运用,可以激发出学生们在数学建模学习中的更高兴趣,丰富他们的想象力,从而使他们对数学建模思想有一定的了解,在未来学习过程中能够保持良好的`数学建模能力。

通过对小学阶段各种数学实践教学活动实际概况的深入分析,可知构建良好的数学模型有利于加深学生对各知识(福建省莆田市秀屿区东峤前江小学,福建莆田351164)点的深入理解,增强其主动参与数学建模教学活动的积极性。因此,为了使小学生数学建模思想培养能够达到预期的效果,教师需要结合实际的教学内容,建立必要的数学参考模型,提升学生对数学建模思想的整体认知水平。比如,在讲授“异分母分数加减法”这部分知识的过程中,可以设置“0.8千克+300克”“1.6千克-400克”等问题,向学生提问是否可以直接计算,并说出原因。当学生通过对问题的深入思考,总结出“单位不同不能直接计算”的结论后,继续向学生提问小数计算中为什么每一位都要对齐,实现“计数单位统一后才能计算”这一数学模型的构建。在这样的教学过程中,学生可以加深对知识点的理解,实现数学建模思想的有效培养。

加强小学生数学建模思想的有效培养,需要在具体的教学活动开展中注重对数学思想的灵活运用,增强相关模型构建的可靠性,促使学生在长期的数学学习中能够不断提高自身的数学能力,运用各种数学知识处理实际问题。比如,在“角的度量”这部分内容讲解的过程中,为了提高学生对角的分类及画角相关知识点的深入理解,教师可以将所有的学生分为不同的小组,让学生们通过小组讨论的方式,对角的正确分类及如何画角有一定的了解,并让每个小组代表在讲台上演示画角的过程。此时,教师可以通过对多媒体教学设备的合理运用,利用动态化的文字与图片对其中的知识要点进行展示,确保学生们能够在良好的教学模式中提升自身的认知水平,并在不断的思考过程中逐渐形成良好的创造性思维,强化自身的创新意识。比如,在讲解“图形变换”中的轴对称、旋转知识点的过程中,教师应通过对学生的正确引导,运用三角板、圆柱等教学辅助工具,让学生从不同的角度对各种轴对称图形、旋转后得到的图形进行深入思考,提高自身数学建模过程中的创新能力,从不同的角度深入理解图像变换过程,对这部分内容有更多的了解。因此,教师应注重小学生数学建模思想培养中多方位思考方式的针对性培养,提高学生的创新能力,优化学生的思维方式,全面提升小学数学建模教学水平。

总之,加强小学生数学建模思想培养策略的制定与实施,有利于满足素质教育的更高要求,实现对小学生数学能力的有效锻炼,确保相关的教学计划能够在规定的时间内顺利地完成。与此同时,结合当前小学数学教育教学的实际发展概况,可知灵活运用各种科学的数学建模思想培养策略,有利于满足学生数学建模学习中的多样化需求,为相关教学目标的顺利实现提供可靠的保障。

[1]童小艳.小学数学教学中培养学生建模思想的策略[j].学子(教育新理念),20xx(6).

[2]白宁.先学而后教——小学生数学建模思想培养的捷径[j].数学学习与研究,20xx(16).

力学建模论文大全(24篇)篇三

将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。

1当前应用数学的发展现状以及未来发展趋势。

数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。

2开展数学建模的意义。

数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。

3渗透建模思想的对策措施。

3.1充分重视建模的桥梁作用。

建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。

3.2将建模的方法以及相关理论引入到数学教学中来。

我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。

3.3积极参加“数学模型”课等相关课程与活动。

数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。“数学实验”课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。

上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。

力学建模论文大全(24篇)篇四

摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从小学数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高小学数学课堂效率及课堂质量的有效手段。小学数学是小学学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,小学数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于小学数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让小学数学教学质量也得到大幅度的提升。小学数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的将数学建模运用在小学数学教学过程中,是每个小学数学教师都值得思考的问题。

数学建模是为了解决数学中遇到的问题,数学本身特别是小学数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

二、提高学生想象力,用数学建模简化问题。

对于小学生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据小学生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的'数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

三、选择合适的题目作为建模案例。

在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到小学数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

四、引导学生主动进行数学建模。

在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于小学数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

力学建模论文大全(24篇)篇五

使学生的综合应用能力、实践创新能力和综合应用素质等多方面均能得到提升和发展。

对于医学专业的学生来说,在校所学的数学基础理论课程比较有限,并且学生对纯粹的数学知识与复杂的理论推导已经极为厌倦,如果数学建模还是以传统的“灌输式”和教师“主导型”为主、简单的应用案例为主要教学内容的话,其结果势必会使学生有一种再讲数学课和做应用题的感觉,既不能很好地激发学生的学习兴趣,也不能体现数学建模的思想方法和本质特色。

因此,如何使学生摆脱这种尴尬的现状已成为我们教学的一大难点。针对这种情况,在教学模式上,我们大胆尝试研究型教学模式,即采用“从实践中来,到实践中去”的教学理念。一方面,从最现实、最热门的医学话题出发,从学生最感兴趣的.问题入手,激发学生的学习兴趣和进一步学习的主动性,使他们从一开始就能进入到学习的角色中去;另一方面,通过开展多种方式的实践教学活动,使学生在实践中掌握数学建模的常用方法和基本技能,忽略繁琐的数学推导过程,让学生体会发现问题和思考问题的过程,培养学生解决问题的创新能力。

近些年来,我们开设的医药数学建模课受到了学生的一致好评,其关键之处在于我们一改传统的教学模式,通过组织数学建模兴趣研讨班,让每位同学都能充分地参与到研究中去并且使每位学生都有发言的机会。这些举措旨在进一步激发学生的创新意识,提高学生的数学建模实践能力。研讨班面向全校各类医学专业的学生,并以三人为单位,划分成若干个组,通过专题研讨的形式开展活动。实践证明:通过这种研讨过程,学生不仅对所学的医学知识有了更深刻的理解与认识,在文献资料查阅、计算机编程、语言表达能力等诸多方面也都有了显著的提高。通过这个过程的学习,为学生今后从事医学科研工作打下了良好的基础。

为了有效的培养学生综合应用能力和深层次学习的习惯与意识,我们在教学方法上一改往日的“讲透,讲懂”的方法,忽略纯理论的繁琐推导,突出知识的应用思想和应用意识,让学生带着问题上课,尝试在解决问题中与教师进行交流,下课带着问题回去。

在课堂教学中,重点讲解发现问题和解决问题的方法与技巧。通过课前作业,引导学生自我发现问题;通过课堂讲解和研讨,引导学生解决问题;通过课后作业,总结和巩固所学知识,学习应用与拓展知识。这种完全以学生为主,教师为辅的做法,有利于培养学生树立勇于探索求知的信心和探索新知识的能力与意识,提高学生的创新能力和敏锐的洞察力及想象力,从而提升学生的综合应用素质。

在现实生活中的实际问题是比较复杂的,往往单一的方法是难以解决的,通常是需要多种方法的综合应用方能解决。

因此,以实际问题驱动的教学模式,主要是引导学生如何将复杂的实际问题分解为一系列简单的小问题,在解决每一个小问题的过程中,让学生学习并掌握相关的数学知识与方法。这种在应用中学习的教学方法,在很大程度上解决了学生普遍存在的“学数学有什么用、学了数学不知怎么用”的困惑。

在整个教学过程中,贯穿以学生为主体,通过案例分析引导学生的思维方法,针对一个案例的解决过程和方法,要求实现举一反三,促使学生对所掌握的知识进行重组再现和优化构建,让学生在学习和问题的解决中学会不断地总结与归纳,用成功的方法再去演绎解决新的问题,通过不断地归纳演绎、对比分析、总结经验、弥补不足,进一步学习相关知识和方法,再进行实践,从而不断增强自身的综合应用能力和素质。

随着医学院校教育理念的转变以及教育体制改革的深入,对培养适应科学技术迅速发展的创新型医学人才提出了更高的要求。如何培养出具有创新能力、综合素质高的专业人才已成为亟待解决的问题之一。本文探讨了医药数学建模课程的开设对培养大学生实践创新能力的几点做法。教学实践证明:数学建模课充分锻炼了学生的各项能力,是提高医学专业学生综合应用素质行之有效的方法。

力学建模论文大全(24篇)篇六

摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

一、新课的引入需要发挥教师的作用。

教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。

二、在教学任务的设计上需要发挥教师的作用。

数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。

三、在新旧知识的联系点上需要发挥教师的作用。

建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。

四、在教学重点、难点上需要教师的引导。

教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。

力学建模论文大全(24篇)篇七

一、数学建模思想的内涵分析。

数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。在几十年的发展过程中,数学建模思想取得了很大发展。目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。数学建模思想的重要性在于以下几点:

首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。

其次,数学建模可以简化信息。数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。数学建模能够让学生体验建模的过程,教师将建模思想传授给学生,让学生在小组讨论中找出最佳的建模方法,将学生的独立思考和团队合作结合起来,为学生的建模活动提供良好的空间。

再次,数学建模将简化后的信息抽象为数学问题,利用已知条件,对数学问题进行分析,以数学思维将文字语言数学化,以解决问题,通过模型的建立,以简化、抽象的方法将数学学习中的问题进行有效解决。再者,数学建模强调教学中的因材施教,对学生的学习水平和认知差异进行分析,发挥学生的学习潜能和优势,提高学生的数学思维能力。

最后,数学建模的应用性强。随着经济社会道德快速发展,数学知识已深入到人们生产生活的各个方面,数学思维能力及数学应用能力的要求也越来越高,数学建模思想不仅能提高数学应用能力,还能极大促进数学思维能力的发展。在高考应用题解答中,建模思想能够方便学生的解题,情景模拟式的考题形式,对学生的语言能力及数学分析能力要求较高,数学建模思想体现了素质教育对学生全面发展的要求。

(一)审题,即建模准备阶段。

在初中数学的学习中,首先应仔细阅读题目,对问题的背景进行分析,将相关的已知数据进行整合,分清题目中的已知量与未知量之间的关系。在审题过程中,一定要把握住题干中关键字词的数学含义,如增加、减少、不大于、不小于、至少等等。在审题过程中,可以在头脑中形成一套解题思路,再根据已知量情况,选择最佳的问题解决方法。初中数学的审题有一定的难度,教师应引导学生对题目进行分析,找出问题的关键内容,提取有用的解题数据。在这个过程中,教师应加强对学生阅读能力的培养以及数学思维的培养,将形象繁杂的语言转化为抽象简洁的数学语言,为建模和解题做好准备工作。

(二)建立数学模型。

在对题目信息进行准确分析之后,就应该着手建立数学模型。将繁杂的语言文字抽象化为简洁的数学语言,从题干中提取相关的数量关系,将该数量关系以数学符号或数学公式进行分析,从而建立起一个完整的数学模型。数学建模过程对学生来说有一定的难度,对于比较抽象的模型或相对复杂的建模方法,教师应先给出相应的范例,同时可以采取小组讨论的方法来激发学生的学习兴趣,根据学生的建模类型的适用性、可行性、效率等进行对比分析,根据题目类型选择最恰当的数学模型。

(三)求解数学模型。

根据已建立的数学模型,运用所学知识选择最佳的问题解决方法,简化运算方式,以最短的时间求解出该问题的解。同时,应对求解过程中的变量范围和其他限制性条件予以注意。在模型求解过程中,应该重视算法简化及工具的使用,还包括跨学科知识的应用等方面的内容也应该予以重视。教师可以充分利用模型求解的过程,拓展学生的知识面,激发学生的学习兴趣和欲望,培养学生的数学思维。模型求解过程的难度不是很大,可以通过学生独立完成或者在分组中完成。

(四)模型验证。

通过问题的求解,检验该求解结果是否与实际要求相符合,同时也应对该求解结果与数学模型的匹配性进行检验,实现最佳解决方案的实施。模型验证应在具体的问题中来检测,以实际问题现象和数据对结果进行分析,保证模型结果的适用性、合理性和准确性。如果检验结果不符,则要修改模型结构,通过不断改进以符合实际情况。模型验证环节是学生最易忽略的地方。在数学模型求解完成之后,由于模型与实际问题存在着一定地位问题,导致模型设计的不合理。这些都需要在模型验证过程中予以解决。因此,在模型求解完成之后,教师应要求学生将模型与公式对照检验,发现模型存在的问题,进而解决问题。在多次的测量中,得出比较准确的解题结果,之后则可以进行模型参数变化及扩展等教学内容。

综上所述,初中数学建模方法的实施,能够帮助学生在数学学习中以建模方法来解决数学实际问题,在数学建模思想的不断强化过程中,提高学生的数学建模意识。数学建模意识的培养并非一蹴而就,而是在长期的数学教学中所形成的一种数学解题方法。数学建模意识的培养,离不开教师的积极作用,教师应树立数学建模思想,将数学建模作为数学思维培养的重要方法。

同时,数学建模思想改变了教师“一言堂”式的'课堂教学方式,发挥小组合作的重要作用,在小组的讨论和相互学习中,培养了学生的主动参与意识,激发学生的学习兴趣,促进课堂教学效果的提高。

参考文献:

[1]付威.浅谈初中数学教学中建模思想的渗透[j].文理导航(下旬),,(2):56.

[2]徐多多.浅析初中数学建模思想的有效运用[j].科海故事博览·科教论坛,2012,(12).

力学建模论文大全(24篇)篇八

摘要:在新课改以后,要求教师要在教学中重视学生的主体地位,提升学生学习兴趣,培养他们的自主学习能力。本文从初中数学教学过程中数学建模入手,对如何将数学建模运用到学生解题过程中进行了分析。

数学建模是指利用数学模型的形式去解决实际中遇到的问题,换句话说,就是利用数学思维、数学方法解决各种数学问题。数学建模是在新课程改革后出现的新概念,经过一段时间的观察我们可以发现,数学建模的方法能够有效的提高学生的学习兴趣,培养学生的数学能力。这种方式能够将复杂的数学问题利用简单的方式找到解决方案,是提高初中数学课堂效率及课堂质量的有效手段。初中数学是初中学习中的重要课程之一,也是培养学生数学思维的重要阶段。可以说,初中数学的学习是学生学习数学的关键,对今后的学习起到极大的影响。因此,对于初中数学教师来说,不断的完善教学手段,提高数学课堂质量是教学工作中的重中之重。而数学建模就是为了解决数学在生活中的实际问题,能够让学生感受到数学本身的魅力,培养他们的数学思维,提高数学学习能力,从而让初中数学教学质量也得到大幅度的提升。初中数学与数学建模之间有着密不可分的作用,两者相互联系、相互促进,如何有效的.将数学建模运用在初中数学教学过程中,是每个初中数学教师都值得思考的问题。

数学建模是为了解决数学中遇到的问题,数学本身特别是初中数学也是一门较贴近学生生活的学科。因此在数学学习中,教师要首先培养学生的数学学习意识,让他们感受到数学与生活的紧密联系,然后再引导学生用数学建模去解决遇到的问题。在这一过程中,数学教师要注意以下两个问题:(一)在教学中一定要贴近学生的生活,课堂中所提出的问题也必须要符合生活实际,让学生对所学内容感到亲切。积极引导学生利用多种方式解决同一问题,尤其是利用数学建模的方式,以达到培养他们的数学思维以及想象能力的目的。(二)在学生进行数学建模的过程中要利用多鼓励的方式调动他们对数学学习的积极性,让他们在数学建模中获得成就感,增加自信心,以此来提高学生在今后学习中使用数学建模方法的热情。

二、提高学生想象力,用数学建模简化问题。

对于初中生来说,他们的思维与其他年龄段相比极其活跃,拥有了丰富的想象力。在数学学习中,如果能将想象力与数学学习结合在一起,一定会得到意想不到的效果。教师可以根据初中生这一特点,提高他们的想象力,然后再引导他们利用数学建模解决问题,让题目简单化。具体来说,就是在面对复杂的数学问题时,教师可以先为学生创建教学情境,以这样的方式提高学生的学习兴趣,让他们愿意主动去深入的研究遇到的题目。之后教师再去对他们进行引导,让他们能够理解题目中所提问题的含义,并能够运用他们的想象能力思考解决问题的方式。最后再引导他们进行数学建模,解决问题。这样的方式充分的利用了学生的想象能力,将所需解决的问题简单化。

三、选择合适的题目作为建模案例。

在数学建模过程中,教师也要时刻牢记题目应该贴近学生的生活,符合实际,并且具有一定的趣味性,让他们有兴趣投入到数学建模的过程中去,然后再反复练习之后达到提高他们建模能力的目的。在选择数学建模案例时教师主要应该注意以下两点:首先,教师在选择建模案例时要尽量选择比较典型的问题,能够让学生在学习了该题目以后掌握这一类的解题方法,达到初中数学教学的目的。所以,这就需要教师对题目进行深入的分析,看是否在拥有趣味性、真实性的同时符合教学要求。其次,题目最好能够拥有可变性,教师能够通过对题目中已知条件的改变让学生进行不同方面的建模练习,以此提高他们数学建模的能力。

四、引导学生主动进行数学建模。

在教师经过反复的教学后,学生都已经拥有了基本的数学建模知识,了解了数学建模过程,并且能够在解题过程中简单的使用数学建模。此时,教师在教学中就可以引导学生利用数学建模解决数学题目了。引导学生用数学建模方法解决数学问题,就要在解题过程中多对学生进行这一方面的鼓励,让他们提高建模信心。在这一过程中,教师还可以尝试让学生之间利用合作的方式让他们进行数学建模方法的探讨,并在探讨的过程中吸取他人的经验,提高自己数学建模水平,同时这样的方式能够让数学建模深入到每一个学生的心中,逐渐影响每一个学生的解题思路,让他们能够在解题过程中熟练运用建模的方式,提高解题能力。数学建模的方法能够有效的改变过去的传统教学思路,增加学生对数学的学习兴趣,提高数学解题能力。这种教学方法对于初中数学教师来说,值得不断的探讨研究,并应用在教学中,以此提高数学课堂的教学效率和教学质量。

力学建模论文大全(24篇)篇九

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段。

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段。

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段。

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段。

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段。

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义。

(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质。

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力。

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力。

所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成".现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程.

(四)加强数学建模教育有助于提高学生科技论文的撰写能力。

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的`模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作.

三、开展数学建模教育及活动的具体途径和有效方法。

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1.代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2.原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3.创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的.

(二)开展数模竞赛的专题培训指导工作。

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近20年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如20xx年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约1万多个本科参赛队中脱颖而出的。又如20xx年我校57队参加全国大学生数学建模竞赛,43队获奖,获奖比例达75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛。

全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语。

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

力学建模论文大全(24篇)篇十

3.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:

一次函数成本、利润、销售收入等。

二次函数优化问题、用料最省问题、造价最低、利润最大等。

幂函数、指数函数、对数函数细胞分裂、生物繁殖等。

三角函数测量、交流量、力学问题等。

3.4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的`应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

力学建模论文大全(24篇)篇十一

培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。随着科学技术的不断发展,各学科各领域对实际问题的研究日益精确化与定量化,数学在科学研究与工程技术中的作用不断增强,其应用的范围几乎覆盖了所有学科分支,渗透到社会生活中的各个领域。前苏联数学家亚历山大洛夫曾说过,“数学在其它科学中,在技术中,在全部生活实践中都有广泛的应用”。1993年,王梓坤院士发表的著名报告《今日数学及其应用》中也深刻指出:“现代世界国家间的竞争本质上是高技术的竞争,而高技术本质上是一种数学技术。”数学是一门技术已经成为人们的共识。数学技术离不开数学建模,数学建模是把数学作为工具,并应用它解决实际问题的一种活动,它是一个跨学科、跨专业、综合性和应用性都非常强的过程,是数学应用的必由之路,是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介。因此,数学建模的过程是一个全而培养学生综合素质、提高学生各种能力的过程,数学建模是培养生产一线应用型人才的一条重要途径。

应用型人才是将专业知识和专业技能应用于社会实践的专门人才是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专门人才社会对应用型人才的基本要求是具有基础扎实,知识而宽,应用能力强,素质高,有较强的创新精神和团队合作精神。他们的突出特点是既具有宽广的知识而和深厚的基础理论,又能将所学知识应用于本行业相关技术领域,适应产业发展对应用型人才市场需求的不断变化,还有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力。

随着高等教育的不断扩招,高等教育的大众化趋势已越来越明显,在这种背景下,传统的“研究型”、“学术型”人才培养模式受到了严峻的挑战,因此,一些发达国家率先提出了“发展应用型大学”,“培养应用型人才”的口号。德国早在20世纪70年代就成立了应用科技大学,其应用型人才的培养特色鲜明,深受欢迎。美国的工程教育,英国的技术学院,日本的短期大学都以培养应用型人才而著称。近年来,我国高等院校对应用型人才的培养取得了一定的进展,但仍然存在认识上的不足,培养方案和措施仍有许多不尽如人意的地方,应用型人才的培养模式还有待于进一步探索。通过多年的实践和探索,根据应用型人才的特点和社会日益数字化,对应用型人才的要求以及数学在各行各业中的广泛应用、数学建模在应用型人才培养中具有不可替代的重要作用。

数学建模就是用数学语言、方法近似地刻画要解决的实际问题,对于已建立的模型采用推理、证明、数值计算等技术手段及相应的数学软件求解,并利用所得的结果拟合实际问题。数学建模在应用型人才培养中的作用主要体现在以下几个方面:

由于实际问题的'复杂性,在数学建模过程中要涉及到大量的数据收集和对数据的分析与处理,一个完整的建模过程一般要经历模型的假设、模型的建立与求解、算法的设计和计算机实现、对结果的分析与检验并将所得的结果模拟实际问题等几个阶段。这些过程只靠个人的力量在有限时间内是很难完成的,这就注定了数学建模是一个团队的集体行为,需要有师生之间、学生之间以及学生与社会之间的交流与合作。因此数学建模有利于提高学生的团队合作精神,而团队合作精神又是社会对应用型人才的基本要求。

数学建模所面临的数据是杂乱无章的,这就要求学生对这些数据进行去粗取精,去伪存真,归纳、提炼、整理、加工和总结,还需要对一些已知条件进行符号化和量化,然后从中抽象出恰当的数学关系,从而组建一定的数学模型,再用所学的数学理论和方法去求解数学模型。在对实际问题中的数据进行加工和整理过程中,为使问题简化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并没有一定的范式,这要根据建模者对实际问题的理解、研究问题的目的以及数学背景来完成这个过程,应该说这是一个创造性的过程。另外,数学模型是对实际问题的近似刻画,为了使建立的数学模型尽可能完美地表达实际问题,又使模型易于求解,需要对模型进行不断的改进和不断的完善,这就要求学生不断对问题进行深入的了解,深入到知识的更深层面,这样又会产生新的疑问,这个过程多次循环们复,学生的创新能力将不断得到加强。创新能力也是社会对应用型人才的基本要求。

一个完整的数学建模过程是综合运用知识和能力,解决实际问题的过程。这不仅需要学生有较好的数学基础和严密的逻辑推理能力,还要求学生对问题的实际背景有一定的了解,要求学生有广博的知识和深厚的专业基础,并能对这些知识进行融会贯通。数学建模面临的数据}i-.}i是庞大而复杂的,对数据的处理过程是一个分析与综合,抽象与概括,比较与类比,系统化与具体化的过程。在这个过程中,学生的应变能力和多角度分析,多方位思考能力不断得到提高,综合素质不断得到加强。综合素质和能力是应用型人才的基本特征和社会对应用型人才的起码要求。

从实际问题中抽象出来的数学模型一般很复杂,因此模型的求解一般很困难,甚至无法求出模型的解析解,即使能求出模型的解析解,由于其复杂性而无多大的应用价值。所以数学模型的求解通常需要编写算法,运用某些数学软件利用计算机求其数值解,这就要求学生有较强的数学软件应用能力和对计算机的实际操作能力。在操作的过程中,学生的动手能力和实践能力自然而然得到提高。另外在数学建模中,需要进行调查研究,需要对有关的数据进行广泛的采集和补充,这就是应用型人才培养中所强调的实践性。

数学建模本身就是综合运用知识,解决实际问题的过程。数学建模中的很多典型案例,如“最优捕鱼策略”,“投资的收入和风险”,“车灯线光源的优化设计”等就较好地突现了知识的应用性。数学建模是数学应用的必由之路,是联系数学与实际问题的桥梁。一方面数学建模需要用数学语言、方法近似地刻画要解决的实际问题,另一方面数学建模需要利用所得的结果拟合实际问题,所有这些都与应用型人才的突出特点和社会对应用型人才的要求是一致的。

数学建模需要学生亲自参与问题的研究与探索,数据的收集和补充需要学生的积极参与,数据的处理和模型的建立需要学生的主动参与,模型的求解需要学生独立完成。数学建模一般需要综合运用多方面的知识,需要了解相关问题的背景材料,需要对相关的数据进行合理的取舍和有效的筛选,有些知识和相关的资料需要学生自己去查询,所有这些都为学生的自主学习提供了一个良好的“下台。另外,数学建模需要用自己的语言描述问题的解决过程,需要广泛的交流与合作,还需要进行论文的写作等等,这些都对学生语言表达能力的提高具有重要的作用。应用型人才的一个突出特点就是具有接受继续教育的基础条件和进一步获取新知识的基本能力和扩展与职业相关的学科知识能力,而自学能力和语言表达能力为进一步获取新知识等能力提供了良好的基础。

应该说,数学建模的作用是多方面的,通过数学建模的训练,学生获得了参与研究探索的体验,培养了收集、分析和利用信息的能力,学会了分享与合作,锻炼了学生的意志力、洞察力、想象力、自学能力、语言的翻译和表达能力以及综合应用专业知识解决实际问题的能力与分析问题、解决问题的能力,所有这一切都是应用型人才培养所要达到的目标,也是与应用型人才培养模式的四个基本点是一致的。因此数学建模能将应用型人才的突出特征和社会对应用型人才的要求体现得淋漓尽致,它在应用型人才的培养中具有不可替代的重要作用。

1.马克思有一句名言,“一门科学只有成功地应用了数学时,才算真正达到了完善的地步”。不论是自然科学还是社会科学都需要数学,都蕴含数学。一门科学要成功地应用数学,必须对这门学科中的问题建立数学模型。因此,建议高等院校的各个专业都要不同程度地开设数学建模课程,并根据专业的不同要求选择合适的数学建模内容,真正做到“人人学有用的数学,人人做有用的数学,人人用有用的数学”。

2.数学建模课程应增加实训内容,数学建模的学习应以实训内容为主。教师应根据学生的具体情况,女排布置具有综合性、开放性、灵活性和趣味性的实训题目,让学生自己进行调查研究,自己收集数据、分析数据和处理数据,模型的建立和求解要以学生为主体,并以论文的形式提交给教师,教师提供实时指导和帮助,对建模的结果进行有的放矢的点评,并将实训内容作为学生期末考评的主要内容和重要依据。

3.举办多种形式的数学建模竞赛,丰富数学建模的教学内容和教学方式,引进案例教学和专题讲座,通过对典型案例的深入剖析,激发学生的学习兴趣和积极性,培养学生的数学建模思想和坚忍不拔的毅力,聘请专家对一些典型问题进行专题讲座。

力学建模论文大全(24篇)篇十二

摘要:随着现代社会的发展,数学的广泛用途已经无需质疑,他深入到我们生活的方方面面。现阶段,数学建模已经成为应用数学知识解决日常问题的一个重要手段。本文通过简述数学建模的方法与过程,以及应用数学建模解决实际经济问题的应用,展现的了数学学习的重要意义,以及数学在经济问题解决中的重要作用。

经济现象具有多变性,随着经济社会的发展,国际间贸易往来的日趋紧密,日常经济形势受到的影响因素越来越复杂多变。而日常经济生活中所遇到的经济现象同样存在着诸多的变化的影响因素。如何应对这些难以把控的变量,做好风险的预估、成本的核算、进行最大成本的规划,所有这些都可以借助数学知识、应用数学建模为工具进行较为理性的计算,为经济决策、企业规划提供重要的帮助。

数学建模,其实就是建立数学模型的简称,实际上数学建模可以称之为解决问题的一种思考方法,借助数学工具应用已知的定理定义进行合理的运算,推导出一种理性的结果的过程。数学建模是可以联系数学和外部世界的一个中介和桥梁,在工业设计、经济领域、工程建设等各个方面,运用数学的语言和方法进行问题的求解和推导,实际上,都是一种数学建模的过程。数学建模的主要过程可以总结为如下的框图形式:实际上,数学模型的最终建立是一个反复验证、修改、完善的动态过程,很少能够通过一次过程就建立起完美适合实际问题的数学模型。通过上述过程的多次循环执行:1.模型准备:分析问题,明确建模的目的,统计各种信息数据;2.模型假设:根据建模目的,结合实际对象的特性,对复杂问题进行简化,提取主要因素,提炼精确的数学语言;3.模型建立:根据提炼的主要因素,选择适当的数学工具,建立各个量(变量、常量)间的数学关系,化实际问题为数学语言;4.模型求解:对上述数学关系进行求解(包括解方程、图形分析、逻辑运算等);5.模型分析:将求解结果与实际问题结合,综合分析,找到模型的缺陷和不足,进行数学上的优化,建立稳定模型;6.模型检验:将模型得到的结果与实际情况相验证,检验模型的合理性和适用性。

二、经济问题数学模型的建立。

经济类问题因为其特有的特点,可以按照变量的性质分为两类:概率型和确定型。概率型应用于处理具有随机性情况的模型,可以解决类似风险评估、最优产量计算、库存平衡等问题;确定型则可以基于一定的条件与假设,精确的对一种特定情况的结果做出判断,如成本核算、损失评估等。对经济问题的建模计算实际上是一个从经济世界进入数学世界再回到经济世界的过程。建立经济数学模型,需要首先对实际经济问题和情况有一个较为深入的认识,然后通过细致的观察梳理,抽出最为本质的特征性的东西。将原始的复杂的经济问题简化提炼为一个较为理想的自然模型,然后基于这个原始模型应用数学知识建立完整的数学经济模型。

三、建模举例。

四、结语。

综上所述,我们可以看到,数学建模在经济中的应用可以非常广泛,对很多的决策和工作都可以提供参考和指导,如提高利润、规避风险、降低成本、节省开支等各个方面。上文只提供了一个简单的例子,和初步的介绍,其深入的理念和概念更加值得我们去努力的学习和思考。

力学建模论文大全(24篇)篇十三

运筹学与数学建模2门课程联系密切,在运筹学教学中,适当融入数学建模思想,能大幅度提高学生应用数学解决实际问题的能力.从运筹学教学中教学大纲的改革、教学环节的设计等方面进行了探索与实践.教学实践表明,将数学建模思想融入到运筹学教学中能提高课堂教学的效果,锻炼学生的动手实践能力.

力学建模论文大全(24篇)篇十四

走美杯”是“走进美妙的数学花园”的简称。

“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届“走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。“走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过“趣味数学解题技能展示”、“数学建模小论文答辩”、“数学益智游戏”、“团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词“数学好玩”和“走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从“学数学”到“用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。

“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

1、活动对象。

全国各地小学三年级至初中二年级学生。

2、总成绩计算。

笔试获奖率:

一等奖5%,二等奖10%,三等奖15%。

3、笔试时间。

每年3月上、中旬。

报名截止时间:每年12月底。

走美杯比赛流程。

1、全国组委会下发通知,各地组委会开始组织工作。

2、学生到当地组委会报名,填写《报名表》。

3、各地组委会将报名学生名单全部汇总至全国组委会。

4、全国“走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)。

6、全国组委会公布初赛获奖名单并颁发获奖证书。

7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

8、各地按照组委会要求提交数学建模小论文。

9、前各地组委会上报参加全国总论坛学生名单。

10、全国总论坛和表彰活动。

力学建模论文大全(24篇)篇十五

数学,源于人们对生产与生活实际问题,抽象出的数量关系与空间结构发展而成的.近年来,信息技术飞速发展,推动了应用数学的发展,使数学日益渗透到社会各个领域.中考实际应用题目更贴近日常生活,具有时代性、灵活性,涉及的模型有方程、函数、不等式、统计、几何等模型.数学课程标准指出,教师在教学中应引导学生从实际背景中理清数学关系、把握变化规律,能从实际问题中建立数学模型.教师要为学生创造用数学的氛围,引导学生参与自主学习、自主探索、自主提问、自主解决,体验做数学的过程,从而提高解决实际问题的能力.

一、影响数学建模教学的成因探析

一是教师未能实现角色转换.建模教学离不开学生“做”数学的过程,因而教师在教学中要留有让学生思考、想象的空间,让他们自主选择方法.然而部分教师对学生缺乏信任,由“引导者”变为“灌输者”,将解题过程直接教给学生,影响了学生建模能力的提高.二是教师的专业素养有待提高.开展建模教学,需要教师具有一定的专业素养,能驾驭课堂教学,激发学生的兴趣,启发学生进行思考,诱发学生进行探索,但是部分教师专业素养有待提高,或认为建模就是解应用题,或重生活味轻数学味,或使讨论活动流于形式.三是学生的抽象能力较差.在建模教学中,教师须呈现生活中的实际问题,其题目长、信息量大、数据多,需要学生经历阅读提取有用的信息,但是部分学生感悟能力差,不能明析已知与未知之间的关系,影响了学生成功建模.

二、数学建模教学的有效原则

1.自主探索原则.

学生长期处于师讲、生听的教学模式,沦为被动接受知识的“容器”,难有创造的意识.在教学中,教师要为学生创设轻松愉悦的探究氛围,让学生手脑并用,在探索、交流、操作中提高解决问题的`能力.

2.因材施教原则.

教师要着眼于学生原有的认知结构,要贴近学生的最近发展区,引导他们从旧知的角度思考,找出问题的解决方法。

3.可接受性原则.

数学建模内容的设计,要符合学生的年龄特点和认知能力,能让学生理解所探究的内容.若设计的问题不切实际,往往会扼杀学生的兴趣,教师要密切联系教学内容、生活实际,让学生有能力解决问题.

力学建模论文大全(24篇)篇十六

将建模的思想有效的渗透到应用数学的教学过程中去,是我们当前开展应用数学教育的未来发展趋势,怎样才能够使应用数学更好的服务社会经济的发展,充分发挥数学工具在实际问题解决中的重要作用,是我们当前进行应用数学研究的核心问题,而建模思想在应用数学中的运用则能够很好的解决这一问题。

数学教育至少应该涵盖纯粹数学和应用数学两方面内容,目前我国数学教育内容以纯粹数学为主,极少包括应用数学内容,这割裂了数学与外部世界的血肉联系,使数学变成了多数学生眼中的抽象、枯燥、无用的思维游戏,而厌学成风。因此,大家对现行的数学教育不满意,期望改革,期望找到方法激发学生的学习兴趣、培养学生利用数学解决各种实际问题的能力。在不改变传统的教学体系的前提下,有机地融入应用数学内容,应是解决现存问题的有效方法。事实上,数学发展的根本原动力,它的最初的根源,是来自客观实际的需要,数学教学中理应突出数学思想的来龙去脉,揭示数学概念和公式的实际来源和应用,恢复并畅通数学与外部世界的血肉联系。伴随着社会生产力的不断发展,多个学科交叉发展,使得应用数学逐渐发展成拥有众多发展方向的学科,应用数学所运用的领域不断延伸,已经不再局限于传统的、而是想着更为宽阔的、新兴的学科以及高新技术领域发展,应用数学目前已经渗透到社会经济发展的各个行业,在这一大背景下,应用数学的研究者就拥有了极大的发展空间以及展示才能的舞台,也迎来了应用数学发展的新机遇。

数学这一学科不仅具有概念抽象性、逻辑严密性、体系完整性以及结论确定性,而且还具备非常明显的应用广泛性,伴随着计算机网络在社会生活中的广泛运用,人们对于实践问题的解决要求越来越精确,这就给应用数学的广泛运用带来了前所未有的机遇。应用数学在这一背景下也已经成为当前高科技水平的一个重要内容,应用数学建模思想的引入与使用能够极大的提升自身应用数学的综合水平以及思维意识,开展应用数学建模不仅能够有效的提升自己的学习热情与探究意识,而且还能够将专业知识同建模密切结合在一起,对于专业知识的有效掌握是非常有益的。

3.1充分重视建模的桥梁作用。

建模是实现数学知识与现实问题相联系的桥梁与纽带,通过进行建模能够有效的`将实际问题进行简化。在这一转化的过程中,应当深入实际进行调查、收集相关数据信息,认真分析对象的独特特征及规律,构建起反映实际问题的数学关系,运用数学理论进行问题的解决。这正是各个学科之间进行有效联系的结合点,通过引进建模思想,不仅能够使我们有效掌握数学理论之外的实践问题,还能够推动创新意识的提升,因此,我们应当充分重视建模的作用。

3.2将建模的方法以及相关理论引入到数学教学中来。

我国当前数学课程教学体系的现状包括高等数学、线性代数、概率论与数理统计等几个部分。当前应用数学的发展,满足这一学科的建设以及其他学科对这一学科的需要,教师在教学中应当将问题的背景介绍清楚,并列出几种解决方案,启发学生进行讨论并构建数学模型。学生们在课堂上就能够获得更多的思考和讨论的机会,能够充分调动学生们的积极性,使其能够立足实际进行思考,这样一来就形成了以实际问题为基础的数学建模教学特色。

3.3积极参加数学模型课等相关课程与活动。

数学应用综合性的实验,要求我们掌握数学知识的综合性运用,做法是老师先讲一些数学建模的一些应用实例,然后学生上机实践,强调学生的动手实践。数学实验课应该说是数学模型的辅助课程,主要培养我们的数学思维和创新能力,还应当组织一些建模比赛,不断提升数学建模的综合水平。

上述几个部分的论述与分析,我们看到,在应用数学中加强建模思想具有非常重要的意义,不仅需要在课堂学习过程中认真掌握数学理论知识,还应当深入了解数学理论在实际生活中的可用之处,尽可能的使应用数学与自身所学专业相联系,这样,才能够使应用数学的能力与水平在日常实践过程中得到提升。就当前高等数学的现状来看,加强创新意识以及将实际问题转化为数学问题能力的培养,提升综合运用本专业知识以来解决实践问题的能力,使创新思维得到最大限度的发挥。

[1]余荷香,赵益民.数学建模在高职数学教学中的应用研究[j].出国与就业(就业版),20xx(10).

[2]关淮海.培养数学建模思想与方法高职高专数学教改之趋势[j].职大学报,20xx(02).

[3]李传欣.数学建模在工程类专业数学教学中的应用研究[j].中国科教创新导刊,20xx(35).

[4]李秀林.高等数学教学中渗透数学建模的探讨[j].吉林省教育学院学报(学科版),20xx(08).

[5]吴健辉,黄志坚,汪龙虎.对数学建模思想融入高等数学教.学中的探讨[j].景德镇高专学报,20xx(04).

力学建模论文大全(24篇)篇十七

大量的应用型技能型人才,有效满足了社会各行各业的用工需求。随着国家对高职教育的重视和不断投入,提高教育的教学质量势在必行[1]。数学建模的核心是以数学模型为基础的实际运用,鉴于数学建模的这种特点,国内高职数学教育逐步把数学建模理念融入到课题教学中,提高学生的应用能力。以数学建模理念的告知书明确教学改革要求学生结合计算机技术,灵活运用数学的思想和方法独立地分析和解决问题,不仅能培养学生的探索精神和创新意识,而且能培养学生团结协作、不怕困难、求实严谨的作风[2]。笔者结合自身的教学工作经验,对基于数学建模理念的高职数学教学改革进行了探索,对教学实践中出现的问题进行了分析梳理,以期为高职数学教学改革提供新思路,推动高职数学教学水平的不断提高,培养出具有良好数学素养和专业技能的新型高职人才。

近年来,随着国内产业结构的不断调整,对于高等职业技术人才需求不断增大,社会对高等职业技术教育寄予厚望。但是传统的高职教育由于专业设置不合理,使用教材落后,实训实践场地不足,培养出的学生动手能力差、专业能力不足,面对社会发展的新形势,高职教育必须进行教学改革,提高学生的职业能力和就业竞争力。高职教育不同于普通本科教育,它有以下几方面的特点。

1人才培养目标不同。

高职教育和本科教育人才培养目标不同,高职教育是以技术应用型高技能人才为培养目标,所有的教学课程设计和人才培养体系设计都是基于此目标展开的,高职教育主要是为了向产业发展提供生产、服务、管理等一线工作的高级技术应用型人才,专业能力培养和目标职业匹配度高,所以高职教育教学成果最直接的评价就是毕业生的就业竞争力和上岗后的适应能力。

2两者的教学内容不同。

高职教育的教学重点是学生要掌握与实践工作关系较为密切的业务处理能力、动手能力与交流能力,把学生的职业能力建设列为教学重点,课程设计专业性强,一旦就业能为企业创造明显的效益,高职教育各专业课程差别较大。

3生源情况不同。

在当前的教育教学体系下,高职教育的生源普遍较差,大多是没有希望考上大学,转而进入高职学习,希望通过掌握一定的技术来实现就业,所以高职学生的基础知识普遍较差,学习兴趣不高。数学建模给高职数学教学改革开辟了新思路,数学建模为数学理论学习和工程实践应用搭建了桥梁,在工学结合的基本原则下,采取数学建模教学理念,培养学生的数学素养及动手应用能力是一个非常有效的手段[3]。

1数学建模的概念数学建模是将数学理论和现实问题相结合的一门科学,它将实际问题抽象、归纳成为相应的数学模型,在此基础上应用数学概念、数学定理、数学方法等手段研究处理实际问题,从定性或者定理的角度给出科学的结果[4]。数学建模的发展为数学知识的应用提供了途径,对于现实中的特点问题,可以用数学语言来描述其内在规律和问题,运用数学研究的成果,结合计算机专业软件,通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,转化成为数学问题,借助数学思想建立起数学模型,从而解决实际问题。2基于数学建模思想的教学理念基于数学建模的这种学科特点,可以把数学知识应用化,因此,基于数学建模思想的教学理念可以概括为三个层次:首先,确立提高学生数学应用能力为目标,以提高学生数学学习兴趣为手段,以学习数学建模为途径;其次,结合教学内容,开发相应的数学建模案例,因地制宜、因生制宜,根据专业不同编写相应的校本教材;最后,改进教学方法,创新课堂教学模式,建立课外数学建模学习兴趣小组,带领学生进行数学应用实践活动,鼓励学生参加各种数学建模竞赛[5]。

传统的数学教学模式以教师课堂讲授为中心,学生只能被动的接受,由于学生的基础知识水平不同,掌握新知识的能力也不同,这种没有区分的教学模式教学效果差,往往带来的结果是造成基础差的学生跟不上,对数学感兴趣的学生失去兴趣。基于数学建模理念的高职数学教学改革,是以学生数学应用能力提高为目标,以数学学习兴趣培养为出发点,以数学建模为途径,以教学方式改革为保障,打造高职数学教学改革新模式,全面提高高职教育应用型人才培养水平。

1结合专业特色,突出数学教育的应用性。

数学作为高职教育的基础性学科,理论性强,体系性强,对于基础知识薄弱、学习兴趣差的高职生来说感觉难学、枯燥,这是因为高职数学教育没有教会学生如何在专业学习中和以后的工作中如何去用学到的数学知识,学生感觉知识无用自然也就不会主动去学,之所以引入数学建模的思想就是为了让学生利用学到的数学知识去解决实际问题,让学生认识到数学不只是纸面上的写写算算,数学可以把实际问题抽象化,变成数学问题,利用数学的研究方法给实际问题进行科学的指导,这样高职数学教育就不再是课堂上的照本宣科,课下的演算作业,将基础数学教育和学生的专业教育相结合,带来学生用数学解决专业问题是大幅度提高学生专业能力的有效途径。

2结合学生能力,因材施教、因地制宜。

高职学校的生源不如普通高校,一般学习基础较差,对于专业实训课并不明显,但是在基础学科教学过程特别突出,很多基础知识掌握不牢,甚至一点印象都没有,教师在上课时要充分考虑到这种情况,在课堂授课时给予实时的补充,以助于知识的过渡。因材施教是我国传统的教育思想,在掌握学生知识水平的基础上,教师要根据不同学习层次学生的具体情况,安排教学内容和设置教学目标,对于基础知识水平不高、学习兴趣较差、学习能力较弱的学生要进行课外辅导。高职基础课教育是专业课学习的基础,授课教师要根据学生的专业学习情况和专业特点,把迁移知识运用能力在课堂上结合学生的专业背景进行辅导,高职数学教育不仅仅是为了学习数学,更多的是发挥数学知识在其专业能力培养中的作用。

3培养学生学习兴趣,促进整体教学质量提高。

高职学校的学生学习兴趣普遍不高,尤其是对于学了十几年都感觉头痛的数学,要想提高数学的教学质量,首先必须要培养学生的学习兴趣,长期以来学生在数学学习上已经有了根深蒂固的认识,培养数学学习兴趣很难,但是如果学生没有学习兴趣,教师授课内容、授课方式改革都起不了太大的作用,学生对于数学学习兴趣低由于低年级学习时受到的挫败感,因此要让学生建立学习数学的自信心,让他们体验学会数学的成就感,这样才能逐步培养他们的学习兴趣。教师可以采取以点带面的方式,先选择有一定基础的学生,再从全部课程学习中发现表现优秀的个体,组织参加建模竞赛,进行单独赛前加强指导,用这些榜样的力量提高全体同学的学习积极性。数学建模作为提高高职数学教育教学水平的“点”,能够以其趣味性强,带动学生的学习兴趣,促进高职数学教育教学水平的全面提高。

4改革教学及评价方式,建立面向应用的数学教育体系。

由于基于数学建模思想的高职数学教学改革打破了以往的课堂教学方式和考核方式,学生面对的不再是期末的一张试卷,而是一个个数学建模案例,需要学生运用本学期学到的数学知识解决实际问题,教师根据学生对案例的理解程度,数学模型运用能力,实际过程分析和解题技巧等多方面给出评价,同时积极评价、鼓励学生的创新思维,并将其纳入到考核体系当中。通过以上各个方面评价的加权作为最后的评价指标。这种以数学知识应用为基础,直接面向应用的高职数学教育模式能极大的激发学生的学习积极性和知识应用能力,符合高职应用型人才培养理念,对提高高职学生的专业能力也打下了坚实的基础。基于数学建模理念的高职数学教学改革是推动高职应用型人才培养体系建设的新举措,也是推动高职基础课教学水平的重要内容,能有效解决学生学习兴趣低,基础知识掌握不牢,数学知识应用能力低等问题,通过“案例驱动法+讨论法”,引导学生再次对课本知识进行思考和应用,有利于培养学生的创新思维和应用能力。引入数学建模理念教学,把课堂学习的主动权交回给学生,既保证了高等数学原有的知识体系的完整,也可以提高教学效率。通过教学方式和评价方式改革,学生的学习主动性增强,也改变了以往对于数学学习的学习态度。高等数学作为高职教育学生必修的基础课,在培养学生基本数学素养上具有重要作用,是理工类专业课程体系的重要组成部分,基于数学建模理念的高职数学教学改革也为同类基础理论课改革提供了新思路和范例。

[1]孙丽.在高职数学教学改革中应注重数学建模思想的渗透[j].科技资讯,20xx(22):188.

力学建模论文大全(24篇)篇十八

众所周知,高等数学是所有自然学科的基础,一个大学生要想在以后的工作、学习中大展宏图,那么就一定少不了坚实的高等数学基础。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力为以后的发展打好数学基础。一直以来,各所高校的教师们都在努力的想办法、找对策,一些实用有效的方法已经提出并且在逐步推广,比如,问题驱动式的教学方法和基于pbl的教学方法等。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。该方法在笔者所教授的班级中已经实际应用过几届,学生普遍反映效果较好,任课老师也认为该方法确实能极大地调动学生的学习积极性。

提到高等数学,学生们的第一反应往往是:各种公式塞满黑板,各种运算充斥脑海;定义、定理、推论一个连着一个;极限、连续、可导可积一个涵盖另一个[1]。和高中数学相比,记忆的负担轻了(实际上是知识点太多,记不住了),而对思维的要求却提高了。对大学生来说,每一次的高数课,都是一次大脑的思维训练,时刻要求精神高度集中,一定要紧跟老师的步划,一旦走神,后面的内容就不知所云了。这样的要求短时间可以达到,长久下去学生们会觉得很辛苦,很有压力,会出现抱怨。笔者碰到过这样的学生,刚开始时,兴致勃勃,雄心万丈,可到后来兴趣索然,马虎应对。怪学生吗?诚然学生有责任,但任课老师也该负很大的责任。作为高等数学的老师我们经常要面对学生提的这些问题:(1)我学的专业和高等数学相差甚远,有可能这一辈子都不会用到高等数学的知识,那我学高等数学的目的何在?(2)老师您天天鼓吹高等数学的强大功能和广泛用途,但是通过一学期的学习,我发现除了对付考试有用,真不知高等数学可以用在何处?这些问题不及时解决,时间长了一定会影响到大学生对高等数学的学习积极性,甚至有可能会产生厌学的情绪和氛围。有些极端的学生,期末考试之后,一听到自己高等数学考过了,立马将高等数学的课本给撕了,可想而知高等数学对其造成的压力有多大[2]。如何解决大学生在学习高等数学时碰到的问题?如何调动大学生学习高等数学的积极性?让学生们了解高等数学的用途,真正愿意静下心来好好学习高等数学,努力地为以后的发展打好数学基础。笔者从所在学校的学生实际学习情况出发,根据几年来的教学心得和积累,打算提出一种较为实用的教学方法——利用数学建模的思想调动大学生学习高等数学的积极性。

一、以实际问题反推解决问题时我们需要的高等数学知识。

有这样一个实际问题:报童每天清晨从报社购进报纸零售,晚上将没卖掉的报纸退回给报社。假设报纸每份的购进价为b元,零售价为a元,退回价为c元,自然地有abc。这就是说,报童每售出一份报纸赚a-b元,每退回一份报纸赔b-c元,报童每天如果购进的报纸太少,那么会不够卖,就会少赚钱;如果每天购进的报纸太多,那么会卖不完,将要赔钱。请为报童规划一下,他该如何确定每天购进的报纸份数,以获得最大的收入[3]。

现在我们来反推该问题涉及到的高等数学的知识:首先,通过分析题目可知,问题解决的关键在于——如何确定每天的报纸需求量,注意每天的报纸需求量是随机变化的?解决这个关键问题的知识我们早就掌握了,分别是数理统计中的频率连续化、概率论中的概率密度与期望和高等数学中的定积分[4]。

二、利用高等数学的解决实际问题。

f(r)[4]。如果求出了f(r),那么。

g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)。

现在我们来求f(r),假定报童已经通过自己的经验和其他渠道掌握了一年(365天)中每天报纸的售出份数,那么在他的销售范围内,每天报纸日需求量r的概率f(r)为:

f(r)=,r=(0,1,2,3,…)。

其中k表示为卖出r份的天数。

g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)。

通过上面的分析,可知实际问题归结为,在p(r)和a,b,c已知时,求n使得g(n)最大。

=-(b-c)p(r)dr+(a-b)p(r)dr.(3)。

令=0,得到=,又因为p(r)dr+p(r)dr=1,所以p(r)dr=.(4)。

在等式(4)中,p(r)和a,b,c均为已知,所以利用定积分的知识一定可以求出n。也即可以确定每天购进的报纸份数,使报童每天获得最大的收入。

三、利用现实问题,让学生学会思考,给他们提供创造成就感的机会。

通过上面碰到的实际问题,可以很容易地说服同学们静下心来好好学习高等数学。因为通过实际问题的求解,学生们了解到了,要想解决一个实际问题(哪怕是很小的问题),也需要大量的高等数学知识的储备;学生们也大概领略到了高等数学的用途与功能。这样的教学方法简单、直接,胜过老师课堂上反复的唠叨与强调。有了这样的一些实际问题,老师们就可以大胆地将数学建模思想引入高等数学的教学当中,让学生们在解决实际问题中学会思考,掌握知识,提高能力。

通过训练后,碰到实际问题,同学们会自然的想到我们的教学方法:(1)这些实际问题涉及到的高等数学知识?那些自己掌握了,那些还没有弄明白,学要加强学习。(2)知识点找到后,如何建立起数学与实际问题求解之间的关系?也即如何建立数学模型。(3)除了老师给的题目,自己本专业中的实际问题,能否用高等数学的知识去解决?通过思考、分析、解决这些问题,学生们会有一种创造创新的成就感,会愿意自主学习,自然而然其学习高等数学的积极性也会大大提高了。

力学建模论文大全(24篇)篇十九

随着社会的不断发展和科学技术的进步,数学在现实生活中的应用越来越广泛,尤其是计算机技术的发展及广泛应用,使数学建模思想在解决社会各个领域中的实际问题的应用越来越深入。本文笔者简要谈谈数学建模思想融入大学数学类课程的意义和方法。

所谓数学建模就是指构造数学模型的过程,也就是说用公式、符号和图表等数学语言来刻画和描述一个实际问题,再经过计算、迭代等数学处理得到定量的结果,从而供人们分析、预报、决策与控制。那么数学模型就是利用数学术语对一部分现实世界的描述。数学建模思想是指理论联系实际,将实际的事物抽象成数学模型,然后利用所学的理论来解决问题的一种思想。

在新形势下,传统的数学教学方法已经无法适应现在大学数学教育改革的需求,数学建模思想与大学数学类课程教育融合成为目前高等院校数学教学改革的突破口。

(1)数学知识在各个领域的应用越来越广泛。如今数学知识在各个领域的应用越来越广泛,尤其是在经济学中的应用最为显著。自从1969年创设诺贝尔经济学奖以来,就有不少理论成果来自利用数学工具分析经济问题。事实上,从1969年到20xx年这35年中,一共产生了53位获奖者,其中拥有数学学位的共有19人,所占比例为35.8%;其中拥有理工学位的有9人,所占比例为17%;二者共计占52.8%;其中共有29位诺贝尔经济学奖的获得者是以数学方法为主要的研究方法,约占总人数的63.1%。然而几乎所有的诺贝尔经济学奖获得者都运用了数学方法来研究经济学理论。除了在经济领域,数学建模思想也广泛应用于生物医学,包括超声波、电磁诊断等方面。同时数学建模还将数学与生物学融合进了基因科学,例如基因表达的定型、基因组测序、基因分类等等,在生物学领域需要建立大规模的模拟以及复杂的数学模型。可见数学建模思想的应用是非常广泛的,并对其他领域的发展起着重要的推动作用。

(2)有利于激发学生的学习热情,丰富大学数学课程。一般的数学课,通常只是重视理论知识的讲解和传授,对知识点的推理和思想方法的分析较少。而且多数学生为了应付考试,也只是以“类型题”的方式去复习知识点。这样的方式虽然能够让学生掌握一部分数学知识,可是却不能提高学生的数学素质,不能提高学生对大学数学的学习兴趣。而数学建模思想运用数学知识来解决生活中的实际问题,这样就使数学活了起来,而不是死的理论知识。运用数学建模思想能够让学生在数学中感悟生活,在生活中体会数学的价值,更容易吸引学生的学习兴趣。而兴趣是学习最有效的动力,让学生主动参与学习而非被动学习,取得的教学效果会更好。

(3)是加强数学教学改革,适应时代发展的需要。在大学数学教学活动中,许多学生常常陷入这样的困惑之中:花费了大量的精力,做了很多习题,但是却感受不到数学的作用和价值。而教师在教学中也总是告诉学生数学是一门很有用的课程,但是却举不出现实的例子。并且传统的教学方式也只是教会学生掌握简单的理论知识,并不能提高学生的数学素养和数学意识。而将数学建模思想融入到大学的数学类课程之中就能很好地解决这些问题。因为将数学建模思想运用到数学类课程中,就能够让学生在独立思考和探索中感受到数学在现实生活中的实用价值,提高学生运用数学的眼光去观察、分析以及表示各种事物的空间关系、数量关系和数学信息的能力,提高学生的创造能力和创新意识。

(1)教师在教学过程中较少渗入数学建模思想。目前在高校数学教学中数学建模的思想应用得仍然较少,重视程度不够。不少高校的教师在开展大学数学类课程时,仍然只是停留在数学知识的教学方面,并没有对学生进行研究性学习探索。据调查,大多数高校教师对日常的教学工作能够认真完成规定的教学任务,但能够真正创造性地把数学建模思想融入到数学教学任务中的教师较少。大多数高校数学老师都意识到探索式的数学建模教学很重要,但真正将数学建模思想与数学教学融合的尝试和探索却很少。可见多数高校教师虽然明白数学建模思想的重要性,但是由于缺乏足够的数学建模教学的相关知识及经验,在实际教学中数学建模思想仍未得到充分的运用。

(2)开设的有关数学建模的课程和活动较少。虽然数学建模思想得到了越来越广泛的应用,但是在高校中实际开设的有关数学建模的课程并不多,尤其是应用数学、数学实验以及计算机应用等一些需要渗入数学建模思想的课程在实际的教学过程中并没有创造性地运用数学建模思想。另一方面,校内自主开展的有关数学建模竞赛和活动并不多,宣传力度也不够,无法让更多的学生了解数学建模的意义和价值,更无法参与到数学建模活动中去。

(3)学生对数学的态度和观念还未改变,对数学建模缺乏深入的了解。大学数学是一门较为抽象的学科,其概念、定理和性质都不容易掌握,由于其具有一定的难度,所以不少学生对大学数学类课程以及数学建模没有兴趣。并且这些学生在初中和高中阶段也学习数学,但是不少学生是为了应付考试,并没有见识到数学的应用性,觉得数学是一门纯理论的课程,没有实用价值。同时很多学生对数学建模思想的运用并不够了解,不知道如何将数学知识和数学方法应用到实际的生活中去,觉得数学没有用,也没有深入学习的意义。

(1)提高课堂教学质量,创造性地运用数学建模思想。大学的数学类课程主要有“线性代数”、“高等数学”、“运筹学”、“数学建模”、“概率论与数理统计”等,这些课程的核心部分都跟高等数学有关,所以要注重提高数学类课程的教学质量关键就在于高等数学,而要提高高等数学的教学质量就必须在教学过程中创造性地应用数学建模思想。对于主修数学的学生,要加强对计算机软件和语言的学习,系统性地对数学原理进行剖解和分析,合理运用数学知识和数学方法解决社会实际问题。在教学中多引导、启发学生利用对生活问题和科学问题的深入研究,主动结合自己的课程理论知识和数学建模,使数学建模思想融入到学生的整个学习过程中去。对于非数学领域的问题,要启发学生运用计算机软件建模,从而解决不同领域中的数学建模问题。

(2)多开设跟数学建模有关的数学类课程。例如除了开设跟数学建模有关的必修课,还可以开设一些跟数学建模有关的选修课,为其他专业的学生提供接触和了解数学建模思想的机会,为学生拓展知识领域,为其解决该领域的问题提供有效的方法。例如,经济学有关专业的学生就可以通过选修跟数学建模有关的课程,解决其在经济学中遇到的问题,因为很多跟经济学有关的问题仅仅靠经济学的知识是无法解决的,像贷款计算这样的问题就要将数学与经济学联系起来才能解决实际问题。

(3)广泛宣传,让学生了解数学建模的意义和价值。学生是教学过程中的主体,目前,大学数学建模课程开设效果不佳,学生参与度低的主要原因就是学生缺乏对数学建模的深入了解。那么,要提高学生的参与性,促进数学建模思想与大学数学类课程的融合就必须加强宣传,让学生深入了解什么是数学建模。同时,在课堂上就是也要转变传统枯燥的教学方式,多使用启发式教学和探索式教学,吸引学生的学习兴趣,让他们发现数学对社会实际生活的重要作用,转变他们对数学的态度,并引导学生对数学建模和数学课程感兴趣。

(4)转变数学教育理念及教育方式。要转变传统的教育方式,将教学的重点放在数学知识在生活中的应用问题上,而不是将知识与实际生活割裂开来。同时在教学中要注重证明和推理,加强学生对数学方法的掌握注重培养学生对实际问题的逻辑分析、简化、抽象并运用数学语言表达的能力。也就是说教学的重点在于提高学生的数学学习能力和加强数学意识和数学方法的应用,这样才能够培养出具有创新能力和创新意识的人才。

(5)多开展数学建模活动和竞赛,提高学生参与性。在高校内部要多开展跟数学有关的活动和竞赛以及专家讲座等,一方面加强学生对数学建模的认识,另一方面也提高了学生的参与性。通过专家讲座,不仅可以让学生更深入地了解数学建模的价值,也加强了学术交流,提高学生的数学建模应用能力。通过数学建模竞赛,为学生提供展示自己智慧、充分发挥其能力的平台。同时,竞赛也可以让学生在竞赛中发现自己的不足,在交流中不断完善自己的缺陷,拓展学生的思维。而且,在数学建模比赛中,通过让学生探究跟生活实际有关的例子,提高学生对数学建模的兴趣,加强学生对模型应用的直观性认识,促进学校应用型人才的培养。

总之,数学建模思想和高校数学类课程的融合,对于高等数学教学改革具有非常重要的意义。把数学建模思想融入到高等数学教学中,可以更好地提高学生的数学学习能力,提高他们运用数学思想和数学方法分析问题、解决问题和抽象思维的能力。高校教师要加强数学建模思想的应用,让学生初步掌握从实际问题中总结数学内涵的方法,提高学生的数学学习兴趣,为高校学生专业课的学习奠定坚实的数学基础。

力学建模论文大全(24篇)篇二十

第一条,论文用白色a4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。

第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。

第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。

第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。

第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含excel、spss等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行,可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有需要以附录形式提供的信息,论文可以没有附录。

第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。

第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。

第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。

第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

第十条,参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为pdf或者word格式之一(建议使用pdf格式),不要压缩,文件大小不要超过20mb。

第十一条,支撑材料(不超过20mb)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的`数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。所有支撑材料使用winrar软件压缩在一个文件中(后缀为rar);如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

第十二条,不符合本格式规范的论文将被视为违反竞赛规则,可能被取消评奖资格。

第十三条,本规范的解释权属于全国大学生数学建模竞赛组委会。

说明:

(1)本科组参赛队从a、b题中任选一题,专科组参赛队从c、d题中任选一题。

(2)赛区可自行决定是否在竞赛结束时收集参赛论文的纸质版,但对于送全国评阅的论文,赛区必须提供符合本规范要求的纸质版论文(承诺书由赛区组委会保存,不必提交给全国组委会)。

(3)赛区评阅前将纸质版论文第一页(承诺书)取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(由各赛区自行决定是否使用)。评阅后,赛区对送全国评阅的论文在第二页建立“送全国评阅统一编号”(编号方式由全国组委会规定),然后送全国评阅。

力学建模论文大全(24篇)篇二十一

数学建模是衔接数学与应用问题的桥梁,该课程主要培养学生的综合素质要求。本文针对于数学建模的课程考核问题进行探讨,分析数学建模课程考核存在问题,改革思路,并提出多层次综合考核方式,应用于数学建模的课程考核,效果良好。

数学建模是一门介绍数学知识应用于解决实际问题的方法课程,该课程主要讲授如何针对日常生活中的实际问题,做假设简化并进行抽象提取,然后用数学表达式或者数学公式等将该问题表达出来,并求解该问题,从而达到解决实际问题的目的。数学建模的教学内容包含常见数学模型的介绍、数学软件编程和处理实际问题的数学方法。即数学建模是一门衔接数学与实际问题的应用型课程,其教学、考核等都与其他数学课程不同。中共中央国务院《关于深化教育改革全面推进素质教育的决定》明确指出:“高等教育要重视培养大学生的创新能力、实践能力和创业精神,普遍提高大学生的人文素养和科学素质。”特别对于当前处于经济结构调整期,“中国制造”向“中国创造”转型,国家需要大量的高素质创新型人才。而高校是培养高素质创新型人才的重要基地,需要改变原有的人才培养模式,提高学生的动手能力和综合素质,培养适合经济发展需要的高素质创新型人才。因此,本科教学中越来越重视培养学生收集处理信息的能力、获取新知识的能力、分析和解决问题的能力、语言文字表达能力以及团结协作和社会活动的能力。数学建模竞赛是利用数学知识解决实际问题的竞赛活动,要求参赛学生利用三天三夜的时间完成数学建模竞赛,整个竞赛过程中学生需要分析问题、查找资料、建立模型、编程求解、撰写建模论文等步骤。这些步骤要求参赛学生具有较强的信息收集、知识获取、分析、编程、论文撰写、团队协作等能力。因此,数学建模竞赛活动是培养学生各方面能力的竞赛,也是全国参与人数最多、受益面最广、举办时间最长的竞赛活动之一。数学建模是信息与计算科学和应用数学专业的专业必修课,参加数学建模竞赛的必须培训课程,数学建模的考核不仅仅是给出该课程的成绩,更重要的承担为数学建模竞赛选拔参赛人员的任务。本文针对数学建模的考核问题进行讨论。

(1)考核手段和目的存在误区。传统的考核方法注重于理论知识的检验,忽略了对学生创新意识、实践能力的培养。同时,教育主管部门对于该课程的考核要求与其他课程类似,仅仅考核知识点的.掌握,忽视了该课程的开设目地,从而使得部分学生的利用数学方法解决实际问题的能力未能提高,没有达到学习此课程的目的。(2)考核重结果,轻过程。目前,数学建模是考查课程,该课程的考核存在两个极端:简单根据学生的数学建模论文给予成绩或试卷考试成绩。考核结果忽略了对学生的各方面能力的考察,导致开卷考试变成了学生的简单应付了事;而且部分考核只看最后的结果,而忽略了数学建模的整个训练过程。(3)考核方式单一。数学建模课程牵涉数学方法、编程能力、论文的写作能力、及其综合动手能力等。单纯从试卷或最终数学建模论文不能体现学生的各种能力。导致学生的某一种能力掩盖了其他能力的展现,导致数学建模竞赛学生选拔过程中存在一种现象:通过各种方式选拔的“优秀”学生,真正参加数学建模竞赛时,根本无法动手。(4)教学改革需要。随着大数据、人工智能、深度学习等领域的兴起,数学知识是解决此类实际问题的必须工具,解决该类问题的过程其实就是数学建模的过程。随着“新工科”培养计划的兴起,数学、编程、写作能力成为衡量人才的重要指标。数学建模是衔接数学和实际问题的桥梁,设置合理的考核方式,体现学生多方面能力是数学建模课程考核改革的动力。

(1)转变教育观念,树立科学考核。数学建模是一门利用数学方法、计算机编程、论文写作等方面知识解决实际问题的课程。该课程主要培养学生利用数学建模方法解决实际问题的能力。因此,任课教师改变课程考核等同于考试的观念,将考核过程贯穿学生的学习阶段,学习阶段融入整个考核过程。从而避免教、考脱节的现象,形成教考相互融合,提高学生的积极性。(2)实施多元化考核,提高学生的动手能力。数学建模课程是综合利用各种能力解决实际问题的方法论型课程,该课程的最终目的是培养学生的各种能力及其解决实际问题的综合能力。包含多个知识点的试卷测试是应试教育的体现,不足以反映学生的动手能力。多元化的考核方式能促进教学过程逐步向以训练学生的解决实际问题能力为导向,激发学生的创新意识、锻炼学生的实践能力。(3)实施多元化考核,促进学生学风。多元化考核将教学和考核的过程相互融合,学生的学习和考核交替进行,能够促使学生、自我反省,发现自己学习的不足,及时改进。同时,教考融合能够促使学生自发学习,调到学生的学习积极性,避免出现“平时送、考前紧、考后忘”的现象。

鉴于数学建模是利用计算机、数学解决实际问题的方法论文课程。该课程的教学过程包含介绍数学建模所用知识点和综合利用各个知识点解决实际问题两个阶段。该课程考核改革主要训练学生综合利用知识解决实际问题的能力,过程的训练是教学的重点。考试改革需贯穿于该课程的具体教学过程,因此将考核分为阶段考核、综合考核、结课考核、参赛考核四种方式。(1)阶段考核。数学建模的教学内容包括编程语言介绍、数学建模方法介绍和数学论文写作介绍几个主要的方面。相应地,编程能力、应用数学建模能力和论文写作能力的训练是数学建模的根本目的。因此,本项目拟根据数学建模的教学大纲安排,对每种能力进行单独考核,结合每种能力的特点,设置不同的题目,考核每种能力的得分。根据教学进度发布测试题目,初步拟定每种能力的测试成绩各占总成绩的10%,共占总成绩的30%。(2)综合考核。数学建模是综合运用各种能力的解决实际问题。在各种能力训练的基础上,强化训练学生的综合运用各种知识的能力。在此阶段,从历年数学建模题目和日常生活中挑出2~3个题目,进行适当简化处理,促使学生利用3~5天的时间完成一篇论文,进行点评评分,挑选部分典型论文进行讲解;然后要求学生继续完善论文,再次点评评分,如此循环多次。每个题目的成绩约占总成绩的10%,该阶段共占总成绩的30%。(3)结课考核。针对数学建模授课期间的知识点训练和综合训练,最后仿照数学建模的参赛组织形式,从实际生活中挑选2个侧重点不同的题目;同时,建议选课学生自由组合,3人一组,共同完成数学建模论文。该阶段对前期训练的检测,同时考核学生的团队精神,最终论文的成绩占总成绩的40%。(4)参赛考核。数学建模课程可作为数学建模竞赛的前期培训,从选课选手中选取部分成绩优秀的学生,组织他们参加全国大学生数学建模竞赛,竞赛获国家级奖,最终成绩直接评为优秀;广西区级奖最终成绩可直接评为良好。

该考核方案在信息与计算科学专业的数学建模课程试用。教学中将考核过程融入教学过程,教学过程穿插考核,这样能够防止“考核型学习现象”,促使学生逐步向“学习型考核”转变。同时,数学建模是应用型课程,多元化考试能够训练学生的应用数学、计算机编程和论文书写能力,单一考核不再适应,多元化考核能够发现学生的优点,促进教学过程转变为“以能力为导向”,符合当前的教育改革理念。数学建模讲授的内容有:线性规划模型、非线性规划模型、图论模型(最短路模型、生成树模型、网络图模型)、微分方程模型、差分方程模型、插值模型、拟合模型、回归分析模型、因子分析模型、统计检验模型、综合评价模型、模拟仿真模型等模型及其相关算法的软件编程。在教学安排中,对于数学模型部分尽可能讲解数学建模中常见模型的建模方法、模型特点及其适应范围、该模型的求解算法等。对于涉及模型求解算法的理论及其具体的求解步骤略讲或者不讲解,对于调用软件的算法集成命令及其调用方法等详细介绍。对于数学建模论文写作方面,通过阅读优秀论文,特别是我校20xx年的“matlab创新奖”论文。同时,选取部分简单例题,根据完整数学建模论文的章节要求布置任务,要求完成相应论文。然后根据学生的完成情况,进行详细点评,特别数学建模论文的写作及其注意事项。学生主动完成平时练习的积极性高,80%的同学能够按时完成布置的任务。剩下部分同学再经过多次提醒之后也补交了布置的任务。从提交的作业发现,大部分同学的作业都是自己认真完成,少数同学是在参考他人的基础之上完成。在课程结束后,参照数学建模的形式,要求同学们可以自由组队,队员人数为1~3人,根据人数的多少,设置不同的评价标准。为考查学生的学习情况,本人给出几道历年真题或类真题,这些题目是根据当前的热点新闻等经过加工而提出。从学生提交的结课论文来看,已经达到了预期效果,大部分同学具备了数学建模的基本素质,掌握了数学建模技巧,能够完成数学建模论文。通过两年的试用,信息与计算科学专业参加数学建模竞赛的人数比往年增加20%,而获得省(区)级奖以上的奖项比往年增加40%。因此,说明数学建模考核方案对学生的评价具备一定的准确性。

为配合考核方案的实施,特拟定考核改革调查问卷,本人共做了两次问卷调查,共收到近八十分问卷。问卷包括数学学习兴趣、参加数学建模的积极性、考核严厉与否、考核方案认同度等内容。统计调查问卷发现,学生对数学知识的学习兴趣明显提高,参加数学建模竞赛的积极性也大幅度提高。并且大部分学生认同考核方案,也赞成将考核过程与教学过程相结合。从调查问卷的统计结果看:有近70%的学生认为该课程应该严格考核;76%的学生认同该考核方案。由此可见,数学建模考核方式改革具有一定的推广和实施价值(见图1)。

根据实施《数学建模》考核改革方案的学生反馈情况,总的来看,学生对考核方案比较认同,也同意严格考核。从学生的参赛人数和获奖比例也说明了该考核方案能有效提升学生的学习兴趣,提高学生的各方面能力。

[2]谢发忠,杨彩霞,马修水.创新人才培养与高校课程考试改革[j].合肥工业大学学报,20xx.24(2):21-4.

[3]李红枝,毛建文,古宏标,黄榕波,邢德刚.创新意识和创新能力培养中高校考试改革的探索[j].山西医科大学学报,20xx.13(4):397-400.

[5]蒲俊,张朝伦,李顺初,付晓舰.地方综合性大学理工科学生数学建模创新培养改革的探讨[j].中国大学教学,20xx.7:56-8.

力学建模论文大全(24篇)篇二十二

摘要:数学作为很多学科的计算工具,可以说是现代科学的基础,要想利用数学来解决实际问题,首先要建立相应的数学模型,本文在数学建模思想概念和特点的基础上,从计算机软件、实际生活中的应用等方面,对其应用的发展进行了分析,最后从分析问题、建立模型、校验模型三个阶段,对数学建模的方法,进行了深入的研究。

引言。

随着自然科学的发展,利用数学等思想来解决实际问题,越来越受到人们的重视,数学作为一门历史悠久的自然科学,是在实际应用的基础上发展起来,但是随着理论研究的深入,现在数学理论已经非常先进,很多理论都无法付诸实践,在这种背景下,如何利用现有的数学理论来解决实际问题,成为了很多专家和学者研究的问题。通过实际的调查发现,要想利用数学来解决实际问题,首先要建立相应的数学模型,将实际的问题转化成数学符号的表达方式,这样才能够通过数学计算,来解决一些实际问题,从某种意义上来说,计算机就是由若干个数学模型组成的,计算机软件之所以能够解决实际问题,就是根据实际应用的需要,建立了一个相应的数学模型,这样才能够让计算机来解决。

数学是一门历史悠久的自然科学,在古时候,由于实际应用的需要,人们就已经开始使用数学来解决实际问题,但是受到当时技术条件的限制,数学理论的水平比较低,只是利用数学来进行计数等,随着经济和科技水平的提高,尤其是在工业革命之后,自然科学得到了极大的发展,对于利用自然科学来解决实际问题,也成为了人们研究的重点,在市场经济的推动下,人们将这些理论知识转化成为产品。计算机就是在这种背景下产生的,在数学理论的基础上,将电路的通和不通两种状态,与数学的二进制相结合,这样就能够让计算机来处理实际问题,从本质上来说,这就是数学建模思想的范畴,但是在计算机出现的早期,数学建模的理论还没有形成,随着计算机软件技术的发展,人们逐渐的意识到数学建模的重要性,发现利用数学建模思想,可以解决很多实际的问题,而数学建模的概念,就是将遇到的实际问题,利用特定的数学符号进行描述,这样实际问题就转化为数学问题,可以利用数学的计算方法来解决。

如何解决实际问题,从有人类文明开始,就成为了人们研究的重点,随着自然科学的发展,出现了很多具体的学科,利用这些不同的学科,可以解决不同的实际问题,而数学就是其中最重要的一门学科,而且是其他学科的基础,如物理学科中,数学就是一个计算的工具,由此可以看出数学的重要性,进入到信息时代后,计算机得到了普及应用,无论是日常生活中还是工作中,计算机都有非常重要的应用,而在信息时代,注重的是解决问题的效率。与其他解决问题的方式相比,数学建模显然更加科学,现在数学建模已经成为了一门独立的学科,很多高校中都开设了这门课程,为了培养学生们利用数学解决实际问题的能力,我国每年都会举办全国性的数学建模大赛,采用开放式的参赛方式,对学生们的数学建模能力进行考验,而大赛的题目,很多都是一些实际问题,对于比赛的结果,每个参赛队伍的建模方式都有一定的差异,其中选出一个最有效的方式成为冠军。由此可以看出,对于一个实际的问题,可以建立多个数学模型进行解决,但是执行的效率具有一定的差异,如有些计算的步骤较少,而有些计算的过程比较简单,而如何评价一个模型的效率,必须从各个方面进行综合的考虑。

2.1计算机软件中数学建模思想的应用。

通过深入的分析可以知道,计算机之所以能够解决实际问题,很大程度上依赖与计算机软件,而计算机软件自身就是一个或几个数学模型,在软件开发的过程中,首先要进行需求的分析,这其实就是数学建模的第一个环节,对问题进行分析,在了解到问题之后,就要通过计算机语言,对问题进行描述,而计算机语言是人与计算机进行沟通的语言,最终这些语言都要转化成0和1二进制的方式,这样计算机才能够进行具体的计算。由此可以看出,计算机就是依靠数学来解决实际问题,而每个计算机软件,都可以认为是一个数学模型,如在早期的计算机程序设计中,受到当时计算机技术水平的限制,采用的还是低级语言,由于低级语言人们很难理解,因此在程序编写之前,都会先建立一个数学模型,然后将这个模型转化成相应的计算机语言,这样计算机就可以解决实际的问题,由于计算机能够自行计算的特点,只要输入相应的参数后,就可以直接得到结果,不再需要人为的计算。

经过了多年的发展,现在数学建模自身已经非常完善,为了培养我国的数学建模人才,从1992年开始,每年我国都会举办一届全国数学建模大赛,所有的高校学生都可以参加,大赛采用了开放性的参赛方式,通常情况下,对于题目设置的也比较灵活,会有多个题目提供给队员选择,学生可以根据自己的实际情况,来选择一个最适合自己的问题。而数学建模大赛举办的主要目的,就是让学生们掌握如何利用数学理论,来解决实际问题,在学习数学知识的过程中,很多学生会认为,数学与实践的距离很远,学习的都是纯理论的知识,学习的兴趣很低,与一些实践密切相关的学科相比,选择数学专业的学生很少,而数学建模的出现,在很大程度上改善了这种情况,让人们真正的了解数学,并利用数学来解决复杂的问题。受到特殊的历史因素影响,我国自然科学发展的起步较晚,在建国后经历了很长一段时间封,闭发展,与西方发达国家之间的交流比较少,因此对于数学建模等现代科学,研究的时间比较短,导致目前我国很少会利用数学建模来解决实际问题,相比之下,发达国家在很多领域中,经常会用到数学建模的知识,如在企业日常运营中,需要进行市场调研等工作,而对于这些调研工作的处理,在进行之前都会建立一个数学模型,然后按照这个建立的模型来处理。

从本质上来说,数学是在实际应用的基础上,逐渐形成的一门学科,但是受到当时技术水平的限制,虽然人们已经懂得去计算,却并知道自己使用的是数学知识,随着自然科学的发展,对数学的应用越来越多,而数学自身理论的发展速度很快,远远超过了实际应用的范围,同时随着其他学科的发展,数学变成了一种计算的工具,因此数学应用的第一个阶段中,主要是作为一种工具。随着电子计算机的出现,对数学的应用达到了一个极限,人们在数学和物理的基础上,制作出了能够自动计算的机器,在计算机出现的早期,受到性能和体积上的限制,只能进行一些简单的数学计算,还不能解决实际的问题,但是计算机语言和软件技术的.发展,使其在很多领域得到了应用,在计算的基础上,能够解决很多问题,而软件程序的开发,其实就是建立数学模型的过程,由此可以看出,数学建模思想应用的第二阶段中,主要是以现代计算机等电子设备的方式,来解决实际的问题。

3.1分析问题。

数学模型的应用都是为了解决实际问题,虽然很多问题都可以通过建模的方式来解决,但是并不是所有的问题,因此在遇到实际问题时,首先要对问题进行具体的分析,首先就是看是否能够转化成数学符号,如果能够直接用数学语言来进行描述,那么就可以容易的建立相应的数学模型,但是通过实际的调查发现,随着经济和科技的发展,遇到的问题越来越复杂,其中很多都无法直接用数学语言来描述,这就增加了数学建模的难度。由此可以看出,分析问题作为数学建模的第一个环节,也是最重要的一个环节,如果问题分析的不够具体,那么将无法建立出数学模型,同时对数学模型的建立也具有非常重要的影响,通过实际的调查发现,能够建立高效率的数学模型,都是对问题分析的比较彻底,甚至有些独特的理解,只有这样才能够采用建立一个最简单的模型,而随着数学建模自身的发展,现在建立模型的过程中,对于一个实际的问题,经常需要建立多个模型,这样通过多个数学模型协同来解决一个问题。

在分析实际问题后,就要用数学符号来描述要解决的问题,这是建立数学模型的准备环节,要想利用数学来解决实际问题,无论采用哪种方式,都要转化成数学语言,然后才能够通过计算的方式解决,而数学模型的过程,就是在描述完成后,建立相应的数学表达式,通常情况下,在分析问题时,都能够发现某种内在的规律,这个规律是数学建模的基础。如果无法找到这个规律,显然就不能利用现有的一些数学定律,从而建立相应的表达式,最后解决相应的问题,由此可以看出,分析问题的内在规律,是影响数学建模的重要因素,而这个规律的发现,除了在现有的数学知识外,也可以结合其他学科的知识,尤其是现在遇到的问题越来越复杂,对于以往简单的问题,只需要建立一个简单的模型即可解决,而现在复杂的问题,经常需要建立多个模型。因此现在数学建模的难度越来越大,从近些年全国数学建模大赛的题目就可以看出,对于问题的描述越来越模糊,甚至出现了一些历史上的难题,而不同学生根据自己的理解,建立的模型也具有很大的差异,其中一些模型非常新颖,为实际问题的解决提供了良好的参考,目前我国对数学建模的研究有限,尤其是与西方发达国家相比,实践的机会还比较少。

在数学模型建立之后,对于这个模型是否能够解决实际问题,具体的执行效率如何,都需要进行校验,因此检验是数学模型建立最后的一个环节,也是非常重要的一个步骤,通常情况下,经过校验都能够发现模型中存在的一些问题,从而进行完善,这样才能够保证严谨性,在实际校验的过程中,要对数学模型的每个部分进行验证,通过输入特定的数据,看得到的结果是否符合理论值,如果没有问题,就说明该模型可以解决实际问题。除了检验模型的准确外,校验还有另外一个作用,就是优化模型,在选定数据后,能够看到数学模型计算的整个过程,这时就可以对具体的细节进行优化,如哪部分可以减少计算的步骤,或者简化计算的方式等,这样可以使整个模型更加科学、合理,由此可以看出,校验工作对于数学模型的建立,具有非常重要的意义。

4结语。

通过全文的分析可以知道,对于数学理论的应用,从很久之前就已经开始了,但是数学建模思想的出现,却是随着计算机技术的发展,逐渐形成的一门学科,电子计算机的出现,在很大程度上改变了处理事情的方式,利用计算机软件,只要输入相应的参数,就可以直接得到结果,这正是数学模型完成的任务,只是计算机的出现,省略了中间的计算过程,因此计算机软件的方式,是数学建模思想最好的应用方法,要想解决不同的问题,只要建立不同的模型,然后编写相应的程序。

力学建模论文大全(24篇)篇二十三

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化。

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用。

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施。

(一)在公式中使用建模思想。

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的'教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式。

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛。

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语。

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献。

[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[j]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。

[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[j]。教育实践与改革,20xx(04):177—178,189。

[3]杨四香。浅析高等数学教学中数学建模思想的渗透[j]。长春教育学院学报,20xx(30):89,95。

[4]刘合财。在高等数学教学中融入数学建模思想[j]。贵阳学院学报,20xx(03):63—65。

力学建模论文大全(24篇)篇二十四

1培养创造性思维学生在学习数学知识的过程中,虽然其接受的知识和经验是前人研究和发现的成果,但对于学生来说,其处于知识再发现的地位。教师向学生教授数学发现的思维和方法,换言之就是重点引导学生重温数学经验和知识的研究道路,进而保证学生的再发现能够顺利实现。这也是培养学生创新思维和能力的一个重要途径。利用数学建模能够有效地弥补数学教学过程中存在的缺陷,使学生充分体会到数学发现过程中的乐趣,进而激发学生学习数学的热情和积极性,培养其创造性思维。

2选择经典案例开展数学建模讨论、分析教师在实际的数学课堂教学中,可选择一些社会实际案例为讲授分析的主要对象,如实际生活和高科技的热点话题。教师可对此类实例进行必要的分析与讲解,在此过程中,积极引导学生独立钻研和研究问题,并培养学生主动查阅相关资料、自主讨论的能力。与此同时,教师还要及时与学生进行交流,答疑释难,并要求学生在自己实际能力的基础上构建恰当的模型,由易到难,循序渐进。除此之外,还要使学生充分发挥其主观能动性,培养学生发现问题,思考问题以及处理问题的能力。以微积分方程为例,教师在课堂教学中,可以“经济增长”作为主要案例,向学生系统地阐述微积分方程的实际应用过程,进一步加深学生对知识的理解、掌握和应用。

3同时开设数学建模与高等数学课程在职业院校数学教学过程中,同时开设数学建模与高等数学课程,能够有效提高学生对基础知识的理解能力和掌握程度,促进学生实践动手能力的培养。在数学建模课程的开设中,应该在教师的指导下,充分利用教学软件,引导学生动手实验和计算,加深学生对知识的掌握。在此过程中,使学生充分了解到运用数学理论和方法去分析和解决实际问题的全过程,进一步提高学生的积极性和思维意识能力,使他们意识到数学在实际生活应用中的关键作用。同时,促使学生将计算机技术融入数学学习中去,以现代化的高新科技为媒介,着手实际社会问题的解决。

4创新教学模式根据职业院校学生学习的特点和知识水平,重点提高学生运用数学的技能和思维方式来处理实际生活和专业问题的能力。要想从根本上培养学生的创新能力,一定要改变原来单一固定的教学模式,尝试和探索基于学生实际情况的教学措施和方式。经过长期的实践经验研究,讨论式教学和双向教学方式对培养学生的能力非常有效。这两种教学模式能够加深学生参与课堂教学的程度,激发学生学习数学的'主动性,最终达到提高教学效率的目的。所以,数学建模可以以具体问题为媒介,采用小组集体讨论解决问题的方法,培养学生的创新能力和意识,进一步加快职业技术院校数学教学模式的创新。

5组建数学建模团队在实际的数学教学中,教师可引导学生构建数学建模团队。在教师对数学建模的深入分析为基础,充分调动学生参与问题解决的主动性,师生积极互动,最终完成数学建模。如此一来,不仅能够有效培养学生积极进取的良好学习态度,而且还能够促进学生数学逻辑思维能力的提高。

6搭建校内数学建模网络平台在职业技术院校中构建校内数学建模网络平台,积极宣传与数学建模有关的知识经验,为学生主动获取数学建模信息提供各种数据资料。数学建模网络平台的搭建,能够有效促进教师和学生,学生与学生之间的交流与沟通,大大缩短学生和数学建模之间的距离,进而促进学生自主学习能力的提高和培养。

总而言之,数学建模思想是学生将基础理论知识与实际解决问题的方法相结合的最佳途径。将数学建模融入职业院校数学中,全面培养学生的创新意识和数学应用能力,进一步使数学为达成学院的教学和培养计划奠定基础,为培养更多更优秀的现代化社会人才服务。

猜你喜欢 网友关注 本周热点 精品推荐
心得体会是对自己在某个领域中的体验和收获的总结和整理。请大家阅读下面的心得体会范文,或许会对大家的写作有所启示和帮助。党章是一个政党的根本章程,是党员的行动为准
心得体会是在一段时间内对自己的思考、感悟和收获进行总结的一种方式。接下来是一些经典的心得体会范文,希望可以给大家带来一些启示和思考。写生是通过观察、描绘自然景物
护理是一门关心、照顾和辅助病人恢复健康的科学与艺术。它是医学的重要组成部分,为病人提供全面的身体和心理护理,以帮助他们康复。护理的目标是促进病人的健康与福祉,提
通过记录心得体会,我们能够更好地反思和总结自己的成长和收获。以下是小编为大家收集的心得体会范文,供大家参考借鉴。顺序栈是数据结构中的一种基础的数据类型。它是一种
申请者在撰写学生会申请书时,应该注重文字的简洁明了,内容的有针对性和具体性。以下是几份学生会申请书的优秀范文,不同风格的写作或许会给申请人一些启示。
活动策划要充分调动参与者的积极性和参与度,让他们乐于参与并享受活动的过程。以下是一些活动策划成功的案例,可以帮助大家了解不同行业和领域的策划实践。数计学院08级
销售合同是商业交易的法律凭证,为双方提供法律保护和救济途径。接下来是一些值得注意的销售合同要素和事项,希望对您的合同起草有所帮助。甲方:。乙方:。按照《中华人民
通过写心得体会,我可以更好地发现自己的不足和问题,并积极思考改进的方法和路径。以下是我为大家精选的一些心得体会范文,希望对大家有所帮助。英语是我们每个初中学生必
一份优秀的申请书能够帮助我们获得更多的机会和发展空间。在这些更多申请书范文中,我们可以发现一些共同的特点和写作技巧。尊敬的领导:大家好,我是x的,现就读于_学校
工作心得体会是对自己在工作中遇到的问题和解决方法的总结和反思。下面列举了一些精选的工作心得体会范文,供大家参考和学习。弹指一挥间,几年的光阴毫无声息的流逝,回头
通过研究范文范本,我们可以了解到不同文章类型的写作要点和技巧。小编为大家挑选了一些经典总结范文,希望能够对大家的写作有所帮助。我,作为窑店小学的教师,郑重承诺:
社区工作总结是对自己在社区工作中所遇到的成绩和困难进行梳理和总结的一种重要方式。下面是一些精选的社区工作总结范文,供大家参考和学习。镇村人杰地灵、物华天宝,是一
在工作计划书中,我们可以规划出每个阶段的工作重点和关键任务,以确保工作的顺利进行。以下是一些常见的工作计划书写作技巧和注意事项,请大家参考并运用到自己的实际工作
赠与是指自愿将财产等有形或无形物品无偿转让给他人的行为。如果你想进一步了解赠与的含义和背后的文化内涵,请继续往下阅读。住所:_________。身份证号:___
公众演讲是培养领导力和影响力的一种重要途径,可以帮助个人在职场中更加出色地表现。在公众演讲中,我们可以从不同行业和领域的演讲者中借鉴和学习,汲取灵感和经验。
读后感可以是对书籍中所提问题的思考和回答,是对作者观点的发表和评价。接下来,小编为大家分享了一些读后感范文的写作技巧和注意事项,希望对大家的写作有所帮助。
心得体会是一种宝贵的精神财富,它能够在我们今后的人生中起到积极的指导作用。阅读这些优秀的心得体会范文,或许会给我们带来一些新的思路和见解,值得一看。
学期计划还可以帮助我们了解自己的时间管理能力,发现和解决时间浪费的问题。以下是小编为大家整理的一些学期计划示例,供大家参考,希望能够帮助到大家更好地制定自己的学
通过写心得体会,我们可以不断完善自己的思维方式和行为习惯。9.这次比赛让我充分发挥了自己的才华和潜能,也明白了持续努力和坚持的重要性。中国新中国成立以来的奋斗史
心得体会的写作可以帮助自己在各个方面有所提高,真正实现知行合一。下面是一些关于职场生活的心得体会,希望能给你提供一些职业发展的思路和建议。第一段:引言(100字
写心得体会可以给我们带来思维上的启发和心灵上的满足,能够让我们更好地认识自己,成为更好的自己。接下来是一些优秀心得体会的案例,希望可以给大家提供一些写作思路。
心得体会可以记录下我们的成长轨迹,让我们更清楚地看到自己的进步和提升。以下是小编为大家整理的一些优秀心得体会范文,希望能够给大家提供一些参考和帮助。这些范文涵盖
教师心得体会是教师在长期教育教学实践中,对自己的工作进行总结和反思的一种写作形式,它能够帮助教师提高教育教学能力和专业素养,我觉得我们应该写一篇教师心得体会。以
教师心得体会是一种对教育工作经验进行总结和反思的重要方式。这些教师心得体会都是从实际教学中总结出来的,具有一定的参考价值和启发意义。为深入贯彻落实《中小学教师职
一个月的工作总结是对自己工作态度和责任心的体现,只有通过总结才能不断进步,实现自我价值的提升。以下是小编为大家整理的一些月工作总结范文,供大家参考和借鉴。
月工作总结是在每个月结束时对工作表现进行总结和分析的一种书面材料,它能够帮助我们了解自己在这个月的工作情况,发现问题并进行改进。下面是小编为大家准备的一些优秀的
心得体会是对自己在学习、工作、生活等方面的经验和感悟的总结和归纳,它可以帮助我们更好地认识自己,提升自己的能力。接下来是一些精选的心得体会范文,希望能够对大家的
青春是一本未完成的书籍,我们每一天都在书写着属于自己的故事。在这里,小编分享了一些青春总结的典型案例,希望对大家的写作有所帮助。尊敬的老师、同学们:大家好!梦,
在国旗下,我们团结一心,共同努力,为国家的繁荣发展贡献力量。以下是一些国旗下凝聚着无数人民智慧和心血的古今名篇,希望能激发大家的创作灵感。。每个人都有成长的经历
第一,我能干什么?即你的特长,这是别人要给价钱的最重要的标码,也是你个人赖以生存的筹码。第二,我正在干什么?专心致志,不要同时希望挖两口井。第三,我应该干什么?
心得体会是反映学习和工作过程中遇到的问题和解决办法的重要方式。下面是一份总结心得的范文,希望能够给大家提供一些写作的思路。首先,我还是比较激动的,因为这是我第一
写心得体会可以促使自己更深入地思考和理解所学内容,也可以帮助他人更好地理解和运用相关知识。小编为大家挑选了一些写心得体会的精华范文,欢迎大家阅读和借鉴。
通过社会实践,我们可以更深入地了解企业运作机制,为未来的职业发展打下基础。小编特别为大家精选了一些社会实践的范文总结,希望能给大家提供一些写作参考和指导。
党员心得体会的写作可以帮助党员更好地理解党的方针政策。以下是小编为大家收集的党员心得体会范文,仅供参考,大家一起来看看吧。这些范文涵盖了不同党员在工作、学习和生
心得体会可以帮助我们总结经验,将学到的知识融会贯通,形成更深入的理解。以下是小编为大家整理的一些心得体会范文,希望对大家写作有所帮助。导言:每年的毕业季节都是为
心得体会是我们经验的宝贵收获,通过写心得体会,我们可以加深对所学知识的记忆和理解。小编整理了一些有关心得体会的范文,希望能够帮助大家更好地理解和运用这一写作形式
总结心得体会可以帮助我们更加全面地认识自己,发现自身的潜能和不足之处。请大家阅读下面这些优秀的心得体会范文,相信一定能对大家的写作有所帮助。学习,是我们走向成功
心得体会是对自己在某个过程或者经历中的所思所感所悟的总结,它是对学习和成长的一种自我反思和概括。通过写心得体会可以帮助我们更好地理清自己的思路,发现自己的不足和
在写心得体会的过程中,我们可以重新审视自己的行为和态度,反思并改进自己的不足之处。下面是一些经典的心得体会示例,让我们一起来领略一下吧。写作是我们生活中不可或缺
通过读后感,我们可以反思自己的认知和心态,并从中获取启示与教益。以下是小编为大家搜集的读后感范文,供大家参考和借鉴。在故事的主人公查理的家附近,有一座举世闻名的
讲话稿是指在特定场合、特定目的下准备的演讲稿,它要求言之有物、语言优美。小编为大家准备了一些经典的讲话稿范文,希望能对大家的写作有所启发和帮助。尊敬的各位领导、
在撰写申请书时,要注重逻辑性和条理性,清晰地表达自己的观点和意图。以下更多申请书范文的成功之处在于其简洁明了的表达和具体的实例阐述。校学生处:学校、学院和辅导员
写心得体会可以激发我们学习的热情和动力,让我们更加主动地参与到各种活动中去。在这段时间里,我深刻体会到了“宝贵时间不容浪费”的道理,从而激发出对效率和时间管理的
真实、客观和有价值的心得体会可以为他人提供借鉴和启示。在以下的范文中,作者运用了丰富的语言和修辞手法,使文章更具艺术性和感染力。郑文明。2013年10月23——
3.心得体会是对自身经验和感受的总结,可以帮助我们更好地成长和进步。以下是小编为大家收集的心得体会范文,希望能给大家提供一些写作上的参考和启示。入党是每个共产党
通过总结自己的培训心得体会,可以发现自身的不足之处,并制定进一步的学习计划。以下是小编为大家准备的一些培训心得体会范文,希望能给大家提供一些写作的思路和参考。
学校是一个构建人生友谊的地方,我们在这里结交了一生的好朋友。如果你对学校总结范文感兴趣,那么以下的例子肯定能给你一些启发。尊敬的各位领导:品尚圣会有限公司从成立
通过总结心得体会,我们能够更好地记住和巩固所学和所做的事情,提高我们的学习和工作效率。这些心得体会都是作者自己对一段经历的真实感悟和思考,希望可以给大家带来一些
某些事物的转让可能对涉及方带来利益,但也有可能带来风险和挑战。在转让过程中,以下是一些常见的问题和解决方案,供大家参考。甲方名称:(承包方)。地址:乙方名称:(
读后感是我们在读完一本书后,通过对书中情节、人物和主题的反思和总结,对书籍内容进行个人评价和思考的一种形式。接下来,请欣赏这些读者们独特的阅读体验和情感表达,或
心得体会是一种思考和思考的过程,可以帮助我们更好地认识自己。这些心得体会范文或许不完美,但它们无疑都蕴含着作者的真实体验和思考。10月9日—10月14日,在市委
阅读范文范本有助于培养我们的写作触角,提高我们的文学眼光。以下是一些经过认证的范文范本,它们以其独特的风格和出色的表达赢得了广泛的赞誉。一.摘要:随着社会的发展
写心得体会能够激发我们对于学习和工作的热情和积极性,进一步提高自身的表现和成绩。接下来,我们一起来看看小编为大家整理的一些精彩心得体会,或许可以给你一些灵感。
劳务作为一项重要的经济活动,需要政策的支持和合理的管理。接下来是一些关于劳务的名言警句,它们概括了人类劳动的本质和意义,希望能够给您带来思考和启发。
心得体会需要真实、客观,不能只停留在表面的感受和抒发情感。通过阅读这些心得体会范文,我们可以更好地理解自己和他人的心路历程。作为小班教师要调整好心态,要有足够的
培训心得可以促使个人思考自己的学习方式和方法,找到更好的学习策略。以下是小编为大家收集的培训心得范文,供大家参考和借鉴。感谢部门领导的培育和相信,我有幸参加了为
培训心得的撰写过程中,要注重条理清晰,逻辑严谨,语言得体。下面是一些优秀的培训心得范文,供大家参考和学习,希望能对你的写作有所启发。首先感谢公司领导给我们精心组
一个好的月工作总结能够为下一个月的工作指明方向和目标。小编为大家整理了一些有针对性和实用性的月工作总结范文,希望能给大家的写作带来一些新的思路。大学生是一个思维
转专业申请书是申请者展示自己专业兴趣、学术能力和适应能力的关键途径。接下来是一些转专业申请书的写作指南和注意事项,希望对初次撰写的同学有所帮助。支部是一个由四十
心得体会是一个自我反思和评估的机会,可以帮助我们更好地总结和挖掘自己的潜能。我们来看看一些名人的心得体会,或许能够给我们提供一些启示和思考。个人理财是每个人生活
教师心得体会不仅可以对自己的工作进行总结,还可以给其他教师提供有益的借鉴和启示。以下是小编为大家整理的教师心得体会范文,供大家参考。首先,要成为一名好的幼儿园教
心得体会是对个人思想和行为的反思,有助于我们认识和改进自己。小编为大家精选了一些写心得体会的范文,希望能够给大家在写作时提供一些参考和启示。最近我拜访了一个非常
每一次心得体会都是对自己在某个领域的一次成长和进步的总结。【示例文本九】通过参加竞赛,我克服了自己的压力和紧张情绪,取得了出色的成绩,并提升了自信心。
感谢各位的莅临,我将尽心尽力担当好主持人的角色,为大家打造一个难忘的活动。以下是一些写作高手的总结范文,让我们一起来欣赏和学习。各位领导、各位来宾:大家上午好!
心得体会是对自己在某个具体经历或事件中的领悟和感悟的总结。接下来是一些有关心得体会的范文,希望能够给大家提供一些写作素材和思路。“养成教育”是培养幼儿良好行为习
写心得体会可以帮助我们加深对于某一主题的理解和认识。以下是小编为大家搜集整理的一些心得体会范文,希望能够给大家提供一些参考和帮助。随着基础教育课程改革的全面进行
心得体会是一种对过去经验的回顾和反思,是对自己成长和发展的一种记录和总结。接下来,请欣赏一些创业者的心得体会,他们分享了他们创业路上的坎坷和成功经验。
在工作和学习中,我们常常需要总结自己的经验和收获,以便更好地改进和提升。若是对于心得体会写作感到迷茫的话,不妨参考一下下面的范文,相信一定能帮到你。
党员心得体会是党员通过工作实践和生活经验的总结和反思。以下是小编为大家收集的党员心得体会范文,仅供参考,希望对大家写作有所启发。整顿党员作风是党风廉政建设中的重
心得体会是在学习和工作过程中得出来的经验总结,具有较强的主观性和个人性质。以下是一些实用的心得体会案例,希望可以对大家总结经验有所帮助。光阴似箭,日月如梭。为期
心得体会可以帮助我们更好地总结经验和教训,为今后的学习和工作提供指导和参考。我们为大家准备了一些优秀的心得体会样本,希望能够成为大家写作的参考。产品周是一场以展
面对大庭广众,发言稿可以帮助我们更加清晰地组织思路,确保自己的言辞准确、有力。这是一些经过精心编辑的发言稿范文,它们可以帮助你更好地理解如何写一份出色的发言稿。
通过写心得体会可以加深对所学知识和技能的理解和掌握。感谢以下作者分享的心得体会,让我们从中获得了很多有益的启示。在当今社会,大家都是流动着金钱的,可以把钱放入银
写心得体会可以帮助我们整理思绪,将碎片化的经验或者感悟整合为一个完整的知识结构。心得体会范文4:在工作中,我发现与他人良好的沟通和合作是取得成功的关键。只有我们
我在这个项目中经历了很多挑战和困难,这些经历给了我很多启示和教训。以下是小编为大家整理的一些优秀心得体会范文,供大家参考和借鉴,希望能给大家提供一些启示和帮助。
培训心得体会能够帮助我们深化对培训内容的理解,以及总结自身在学习过程中的收获和不足。在这里,小编为大家分享了一些优秀的培训心得体会,希望能给大家带来一些启发。
心得体会是在我们的成长、学习、工作和生活中对所经历的事物、经验和感悟进行总结和概括的一种重要方式,它可以帮助我们更深入地理解和把握所学所得,提高我们的思考和表达
写心得体会是一个不断提升自己的过程,通过总结和反思,我们可以不断改进自己。以下是小编为大家收集的心得体会范文,供大家参考和借鉴。1、组织学生观看法制教育专题片、
检讨书的写作需要真实坦诚,不回避问题,勇于面对自己的不足和错误。下面是一些优秀的检讨书案例,希望能够对大家进行启发,写出更好的检讨书。各位学生会同事:你们好!首
心得体会是我们对所学知识、所经历事物的深度思考和感悟,它能够让我们更好地领悟生活的真谛。以下是小编为大家整理的心得体会范文,供大家参考和借鉴。近年来,我国练兵备
心得体会是我们对某一件事或某一经历的感受和思考的总结。10.通过这次实践,我对所学知识有了更深刻的应用和理解,也发现了自己在实践中的不足和改进的空间。
写心得体会不仅能够提高我们的文字表达能力,还有助于培养我们的观察力、思考力和创新力。感谢大家的关注,下面是一些原创的心得体会范文分享给大家,希望能够给大家带来一
幼儿园工作总结是对过去一段时间内工作的回顾和总结,为今后的工作指明方向。以下是小编为大家准备的一些幼儿园工作总结范文,希望能够给大家提供一些思路和参考。
通过写心得体会,我们可以发现自己的优点和不足,有助于个人成长和进步。接下来是小编为大家准备的心得体会范文,希望能够帮助大家更好地理解和运用这一写作形式。
教学工作计划的编制需要充分考虑学生的年龄、认知水平和学科特点,以及教学资源和时间等方面的限制条件。以下是一些教学工作计划的优秀案例,供大家参考和学习。
心得体会是对自己在学习、工作以及生活中的一些感悟和领悟的总结和归纳。下面是小编为大家精心挑选的一些心得体会范文,供大家学习和参考,希望能够对大家的写作有所帮助。
经历了一次困境,我意识到困难并不可怕,关键是如何勇敢面对和解决。下面是一些经典的心得体会示例,让我们一起来领略一下吧。双减政策是中国教育部在2018年提出的一项
通过撰写心得体会,我们可以更加深刻地认识自己,找到自己的短板并进行改进。如果你正在写心得体会,可以参考一下以下的范文,或许能够找到一些新的写作思路和技巧。
自我总结是一种自我反馈的机制,可以帮助我们认识到自身的成长和进步。接下来是一些自我总结的实例分析,希望能帮助大家更好地理解和应用。比如:院系、班级组织的烧烤、羽
通过开学典礼,学校可以向学生们传递校园文化和价值观,引导他们正确的行为和思想。接下来是一些学生在开学典礼上表达的对老师和家人的感恩之情,值得我们思考和珍惜。
通过写心得体会,可以激发自己对学习和工作的热情,保持良好的学习状态。接下来是一些写得非常有思考深度的心得体会,值得我们深入思考和学习。社区,作为一个让人们聚集在
通过反思和思考,我认识到了自己的不足之处和需要改进的地方,这对我个人的成长非常关键。接下来是一些学习心得体会范文,希望可以给大家在学习方面提供一些参考和指导。
通过写心得体会,我们可以更好地审视自己的行为和决策,及时调整错误。请看以下是小编为大家整理的精品心得体会范文,希望对大家的写作能够提供一些启示和帮助。
实施方案的执行结果需要进行评估和反馈,以便及时进行调整和改进,确保整个过程的顺利进行。以下是小编为大家收集的实施方案范文,仅供参考,大家一起来学习吧。
心得体会是一种积累,通过整理和总结,我们可以把自己的经验转化为宝贵的财富。小编为大家整理了一些关于学业、工作和生活的心得体会范文,供大家参考和学习。
人的思想是在社会实践中形成和发展起来的,它是由人的具体生活经验和社会历史条件决定的。接下来是一些与思想有关的故事和寓言,希望能为您提供一些新的思路和视角。
心得体会是我们在社会生活中积累的宝贵财富,它记录了我们成长的点滴和收获。以下是小编为大家收集的心得体会范文,仅供参考,大家一起来看看吧。随着现代化交通工具的普及
对于小学劳动课这一学科,很多人都不明白它的真正含义,它究竟是一门怎样的课程?要教给学生什么?怎么教?劳动课与综合实践课又怎样的关系?这些都是我在实际的教育教学中
心得体会是一种宝贵的财富,我们可以通过写作的方式记录下来,以便日后回顾和参考。心得体会是在自己经历了某个事件、完成了某个任务、学习了某门课程等之后,对所取得的经
通过总结和概括个人在培训中的心得,可以激发个人对学习和自我进步的动力,为个人的成长和发展提供指导和支持。让我们一起来看看下面这些培训心得范文,相信对你们的写作会