范文范本是对优秀作品进行梳理和提炼,可以为我们提供一个学习的方向和目标。下面是一些写作范文范本,希望对大家提供一些参考和指导。
人教版六年级倒数的认识评课(汇总16篇)篇一
教学目标:
1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。
2、培养学生的数学思维。
教学重点:理解倒数的意义,求一个数的倒数。
教学难点:从本质上理解倒数的意义。
教学过程:
一、呈现数据,先计算,再观察发现。
1、出示:3/8×8/37/15×15/75×1/50。25×42、
计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)。
二、交流思辨,抽象概念。
1、汇报。乘积都是1。
2、你能根据上面的观察写出乘积是1的另一个数吗?
3/4×()=1()×9/7=1。
说说你是怎样写得,有什么窍门?
如0。5、1。73、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的'倒数。
4、让学生说说上面的数(用两种说法)。
5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。
学生讨论:分数的分子分母调了一下位置;
师:那么5×1/50。2×5乘积也是1哟!怎么?把整数和小数也化成分数。
6、沟通:分子分母倒一下跟乘积是1有联系吗?
7、现在你对倒数有了怎样的认识?
三、求一个数的倒数。
1、找一个数的倒数。
5/11的倒数是(),()的倒数是4/7,()和15是互为倒数。
你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)。
2、会找了吗?你能找到下列数的倒数吗?
3/54/967/211.251。20。
学生独立完成,然后交流。
人教版六年级倒数的认识评课(汇总16篇)篇二
1、xx老师的课由判断套圈游戏的公平性引入圆,通过课件出示银河系、一些圆形建筑等图片、再让学生说说在生活中看到的圆,以此激发学生学习的兴趣。
2、在学习新课过程中,xx老师让学生通过摸、折、画等学生动手操作活动去学习。首先通过组织学生摸摸自带圆形物体的边,注意与其他平面图形的比较,从而引导学生小结出圆的概念;然后组织学生对手上的圆形纸进行折、画,从而介绍圆心、直径、半径,改变了教材三个概念的呈现顺序;最后对例3通过画、折、比的方法进行探究,得出圆的有关特征,同时进行了相关练习,巩固所学知识。全课层次分明、重点突出、目标达成度较高。
3、充分利用多媒体,直观生动的'演示突破了知识的难点。比如,教学“直径、半径有无数条”这样的特征,学生想象起来会比较困难,因此教师就采用多媒体课件加以直观的演示,从而非常直观地凸显了这一知识点。再比如,教师在教学“同圆内每条直径都相等”时,屏幕上的直径依次旋转至同一条直径重合,相信会给学生留下非常深刻的印象,从而加深对特征的理解和掌握。
4、用数学的观点和思想方法解释生活中的问题这一理念得到了较好的落实,从课始问题的提出到课末用本节课所学的知识进行解释,让学生感受到了生活中无所不在的数学知识。
建议:在理解圆的直径与半径之间的关系时,最好能让学生通过不同的方法去证明在同一圆里半径是直径的一半的规律,如可以让学生去量长度、或通过动手折等。
人教版六年级倒数的认识评课(汇总16篇)篇三
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
生:如果把0.25化成分数就是1/4,4就可以看成4/1,分子和分母也调换了位置。
生:老师,如果分子是0的话,怎么办?
师:这个问题我们记着,待会解答好吗?
生:好。
师:根据这一特点你能写出一个数的倒数吗?
生:能。
师:试一试!
师在黑板上出示3/57/2,写出它们的倒数。
生汇报,并汇报写的方法。
师生一起小结:求一个数的倒数,只要把分子分母调换位置。(板书)。
师:那18的倒数是什么?它可是没有分子和分母呀?
生:把18看成是分母是1的分数,再把分子分母调换位置。
师根据学生的回答及时板书。
师:那1又2/7的倒数呢?
生思考。
生1:1又2/7的倒数是1又7/2。
生2:不对,要先把1又2/7化成假分数9/7,再交换位置。1又2/7的倒数是7/9。
师:哪个答案才是正确的呢?
我们一起来检验检验。
怎么检验呢?(生齐说看它们的乘积是不是1。)。
师板书乘法算式,计算带分数乘法时,要先把带分数化成假分数,……。
生1:老师,两个带分数相乘我们不用去计算,因为带分数大于1,两个带分数相乘的积肯定要大于1。
师:你分析得很透彻,不错,同学们,给她掌声。
师生一起算1又2/7×7/9=1,得出1又2/7的倒数是7/9。然后小结求带分数的倒数的方法。
师:再来一题:0.2的倒数是()。
生1:把0.2先化成分数是1/5,所以它的倒数是5。
生2:我还可以想:0.2和几相乘的乘积是1?0.2×5=1,所以0.2的倒数是5。
师:你根据倒数的意义来求它的倒数,这种方法也不错。
那0.3的倒数呢?
一学生很快举起了手:我就想0.3和几相乘的乘积是1?……哦,不行,还是要把0.3化成分数来求它的倒数。0.3的倒数是10/3。
师:看来我们求小数的倒数一般方法要……(学生齐说)。
师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)。
0的倒数呢?
生1:0。
生2:不对,没有。
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、……把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。)。
师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个带分数的倒数要先化成假分数;是求一个小数的倒数要先化成分数(师补充,而且是一个最简分数);如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
师:如果是一个真分数或假分数呢?
生:只要把分子分母调换位置就行了。
师:看看我们的板书还要加上什么?
生:0除外,因为0没有倒数。
生齐读求一个数倒数的方法。
人教版六年级倒数的认识评课(汇总16篇)篇四
教学目标1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
教学重难点。
教学重点:理解倒数的意义,学会求倒数的方法。
教学难点:发现倒数的一些特征。
教具准备课件。
设计意图。
教学过程。
特色设计。
通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。
一、猜字游戏引入新课。
找找下面文字的构成规律。
呆―――杏土―――干吞―――吴。
按照上面的规律填数。
――()――()――()。
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数。
二、新知探究。
(一)探究讨论,理解倒数的意义。
1.课件出示算式。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2.出示倒数的意义:乘积是1的两个数互为倒数。
3.你是怎样理解互为倒数的呢?能举例吗?
(二)深化理解。
1.乘积是1的两个数存在着怎样的倒数关系呢?
2.互为倒数的两个数有什么特点?
3.想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)。
(三)运用概念。
1.讨论求一个数的倒数的方法。
出示例2:写出其中3/5、7/2两个分数的倒数。
学生试做讨论后,教师将过程。
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)。
2.怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。
三、巩固练习。
(一)完成教材第28页的“做一做”
(二)完成教材第29页练习六的第1-5题。
四、课堂小结。
今天我们学习了有关倒数的哪些新知识?板书设计。
人教版六年级倒数的认识评课(汇总16篇)篇五
师:前面我们学习了分数乘法,请同学们拿出听算本,我们听算几道题。
生:笑……。
师:有些同学在下面偷偷地笑了!你们笑什么呀?
生:(齐)太简单了!乘积都是1!……。
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一分钟的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始……。
师:一分钟到,停!谁愿意把你写的念出来,和大家共同分享?
师有选择的板书在黑板上。
师:这么短的时间内就能写出这么多乘积是1的两个数,还是几种不同的类型,不错。
生:(抢着说)我还有更多的……。
1/5×5=1,1/6×6=1,1/7×7=1,1/8×8=1,1/9×9=1。
师:太厉害了!如果给你们充足的时间,你们还能写多少个这样的乘法算式?(无数个)。
学生在下面窃窃私语。有说我也会的,也有说不信的……。
师:你要能猜出来,也可以来试一试呀。
生1:老师,我请你猜。
师:好。
生1:我写的第一个数是4。
师:那你写的第二个数是1/4。
生1:不对,我写的是0.25。
师:是吗,1/4和0.25相等呀。
生2:老师,我也请你猜。
师:都来为难我了!
生2:我写的第一个数是10/8。
师:那你写的第二个数是8/10或是0.8。
生2:老师,你没化成最简分数呀!
师:你的也不是最简分数呀。
师:你们也能猜吗?
生(齐说):能。
师:为什么能猜到?
生:因为这两个数的乘积是1。
师:对,你们所写的这两个数的乘积都是1。像这样的乘积是1的两个数,我们把它称之为互为倒数。
教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1,所以他们互为倒数。比如2/9和9/2和乘积是1,我们就说2/9和9/2互为倒数。(师板书2/9和9/2互为倒数)。
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
生3:我举个例子来说,比如“2/9和9/2互为倒数”就是说2/9是9/2的倒数,9/2是2/9的倒数。
生:学过,约数和倍数。比如:15是3的倍数,3是15的约数。
师:对,我们今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。
师:5和1/5的积是1,我们就说……(生齐说)。
师:0.25×4=1,这两个数的关系可以怎么说?
生1:0.25的倒数是4,4的倒数是0.25。
生2:这两个数不是分数,好像不可以说它们互为倒数?
师:可以吗?
生:可以,因为乘积是1的两个数叫做互为倒数,这两个数的乘积也是1。
师强调只要是乘积是1的两个数都是互为倒数。
师:看来同学们学得不错。现在老师要考考大家,是不是真正理解了倒数的意义。
1、判断:
(1)得数是1的两个数叫做互为倒数。
(2)因为10×1/10=1,所以10是倒数,1/10是倒数。
(3)因为1/4+3/4=1,所以1/4是3/4的倒数。
2、展台出示练习十t1、t2,口答。
(t1:3/4×()=17×()=1。
t2:下面哪两个数互为倒数?
4/37/686/73/41/8)。
人教版六年级倒数的认识评课(汇总16篇)篇六
李老师在这节课的教学中,内容设计合理,要点清晰,讲授条理清楚,层次渐进,过渡自然,效果好。具体体现如下:
1、李老师这节课教学目的明确,围绕预定目标有条理的开展,重点突出,难点突破,双基落实较好。
2、在教学过程中,李老师通过引导搜集资料,在通过对资料的分析、比较、归纳和概括,再从学生经常接触的事物、图表等感性材料提炼“百分数”,使学生能较好地结合身边的数学学习书中的数学。
3、在突破、解决百分数的意义时,设计一些分数和百分数比较的题目,让学生加以理解和区分分数和百分数。通过百分数与分数的联系与区别贯穿于教学中,效果较好。
4、将数学学习与培养学生动口动手的能力有机结合起来。如在学习百分数的认识知识后,教师引导学生用以解决三个问题:“说一说”、“读一读”、“写一写”,通过这三个问题,进一步巩固了学生对百分数知识的认识,还有效地培养了学生动脑动口动手的能力。
文档为doc格式。
人教版六年级倒数的认识评课(汇总16篇)篇七
1、在引入部分,教师利用中国的文字的一些特点,引导学生自己举些具有这样特点的分数,突出了互为倒数的两个数的特点,形象地让学生对倒数有了直观的认识。
2、利用教材让学生自学交流找出重点句,重点分析。在这里教师负有启发性的问题:读完这句话,你有什么问题,给学生留下思考发问的机会,对概念进行了仔细的推敲,很好的解决了互为的含义。这样的教学方法我认为在概念教学中是应该提倡的。
3、将知识点蕴含在练习中,让学生不仅要巩固知识还要有反思的'习惯。如:在学习了倒数的定以后,安排了能填会说,其中有7×()=1,1×()=1教师提问结合倒数的知识你又有什么想说的?同学们很快总结出了证书倒数的求法,知道了1的倒数是1,这样比起教师直接讲解来给学生留下的印象要深些。再如:求倒数找规律的环节,让学生及巩固了找到书的方法,还及时总结出了许多规律,在总结中,学生的语言会出现不严密的情况,这正是很好的生成,是很好的教学资源。
4、整节课许多练习环节,教师采用引、扶、放的手段,不仅做到了全员参与,且照顾到了学困生。指名先说,在组内说,最后抽查,这样的做法我们应该借鉴的。
5、总之这节课亮点很多,如板书调理突出重点、每个富有人文色彩的学习环节小标题,练习设计的层次性等等,我就不一一细说了。
建议:自学力度放的再大点。
人教版六年级倒数的认识评课(汇总16篇)篇八
教学内容:
数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:
理解倒数的意义和怎样求一个数的倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数。
一、游戏导入。
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)。
二、探究意义。
1.找特点。
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒)。
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1)师及时板书。
师:谁还能很快说出乘积是1的两个数吗?
(生回答)。
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)。
师:那么乘积是1的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1的两个数叫互为倒数)。
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)。
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/57/28/65/1210/4。
(指名回答师板书)。
师:你们是怎么找出每个数的倒数的?
(说自己的方法)。
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:60.527/81。
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论。
0为什么没有倒数?(0和任何数相乘都不得1)。
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)。
四、小结并揭示课题。
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空。
1、乘积是()的两个数叫()倒数。
2、因为7/15x15/7=1所以7/15和15/7()。
3、5的倒数是()。0.2的倒数是()。
4、()的倒数是它本身。()没有倒数。
5、8×()=10.25×()=1。
()×2/3=17/2×()=()×8=()×0.15=1。
2、当把小医生。
1、得数是1的两个数叫互为倒数。()。
2a是一个整数,它的倒数一定是1/a。()。
3、因为2/3×3/2=1,所以2/3是倒数。()。
4、1的倒数是1,所以0的倒数是0。()。
5、真分数的倒数都大于1。()。
6、2.5和0.4互为倒数。()。
7、任何真分数的倒数都是假分数。()。
8、任何假分数的倒数都是真分数。()。
3、面各数的倒数。
2.541/826/70.12。
4、列式计算。
1、7/6加上它的倒数的和乘2/3,积是多少?
2、1减去它的倒数后除以0.12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不为0的数)。
求a、b的大小。
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
人教版六年级倒数的认识评课(汇总16篇)篇九
听了史老师执教的《倒数的认识》一课,收获颇多。总的认为这一课设计巧妙、思路清晰,流畅,重点突出,充分体现教师主导,学生主体作用。体现了新课程的理念,充分发挥了学生主动性,让学生参与到学习之中,运用所学知识推到出倒数。具体评议如下:
1、重视课的引入,创设情境。教师利用生活中的朋友和中国的文字,很形象地让学生对倒数有了直观的认识,让学生感受到数学与生活及其他学科的联系,激发了学生学习的热情。
2、对教材内容理解透彻。教学过程思路清晰、流畅;环节设计重点突出,难点突破到位;教学设计严谨,语言简练;对教材理解全面、深刻。例如新课之前通过好朋友,在理解“互相”的同时,既激发了学生学习的兴趣,又为学习倒数的概念作了很好的铺垫,同时为学生整体感知倒数和求倒数做好充分的.准备。
3、充分体现新理念,让学生充分感知、发现概念。知识的学习以学生自主探究和小组合作讨论为主要形式。教师充分鼓励学生说出自己的意见,表达自己对概念的认识,从意义到求倒数的方法都是由学生来尝试、探索,效果非常好。对0和1有没有倒数的认识更是充分听取了学生的意见,从多角度进行了分析、验证。如:让学生试着把每组的两个数相乘,发现规律,找出它们之间的关系,从而引出了倒数的概念。
4、及时质疑点拨,做好归纳小结。在给出倒数的概念后,教师让学生认真读概念,概念中的重点内容,教师并用彩色的粉笔标出。概念给出后,教师立即询问学生“互为”是什么意思,并让学生及生活中的例子,以便更好的理解倒数这一概念。在探索分数的倒数、整数的倒数、带分数的倒数及小数的倒数时,先让学生发表自己的看法后,教师及时纠正学生的错误,并给予总结归纳,让学生的知识更加条理和系统。这样下来,便于学生做一些判断题。
5、教师注重及时对学生的表现作出恰当的评价。对于学习较差的学生做出正确回答时,及时予以肯定和表扬,增强他们的自信心。
6、板书设计简洁明了,重难点一目了然。强调了倒数的概念和求倒数的方法。
建议:
1。在刚开始探索倒数的概念时,教师应让学生先观察每组两个数的,让他们逐步感知两个数之间存在的内部关系,不应直接告诉学生去将两个数相乘找规律。
人教版六年级倒数的认识评课(汇总16篇)篇十
一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
三、激情投入,挑战自我。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)。
就先聊到这儿吧?好,上课!
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒数的意义。
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法。
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师板书:求倒数的方法:分数的.分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
4.探讨带分数、小数的倒数的求法。
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。
人教版六年级倒数的认识评课(汇总16篇)篇十一
使学生理解倒数的意义,掌握求倒数的方法。
提高学生观察、比较、、概括的能力。
感悟“变通”的数学思想。
:倒数的意义与求法。
:理解“互为”的意义,明确倒数只是表示两个数间的关系。
(生:上下两部分调换了位置,变成了另一个字)。
师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!
再出示“吴”,让学生得出“吞”。
引导质疑。
生:什么是倒数?
生:倒数是指一个数吗?
生:倒数应该怎样表述?
生:怎样求倒数?
生:倒数是不是一定是分数?
生:倒数有什么用?
生:是不是每个数都有倒数?
游戏比赛,理解倒数的意义。
师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?
好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。
准备好了吗?开始……。
师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。
(生读,师有选择的板书在黑板上。)。
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
师:为什么能写这么多呢?你们有什么窍门吗?
生:因为我们所写的这两个数的乘积都是1。将其中一个分数的'分子分母颠倒就能写出另一个数。
揭示倒数的意义。
师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?
生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。
师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本例1,并找出倒数的意义。
师板书:乘积是1的两个数互为倒数。
你认为哪个词非常重要?你是如何理解“互为”的?生回答。
(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)。
强调:(1)乘积必须是1。
只能是两个数。
倒数是表示两个数的关系,它不是一个数。
小组探究求一个倒数的方法。
师:同学们知道了什么是倒数,你能求出一个数的倒数?
请大家打开课本,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。
小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。
内化提高。
反思,发展能力。
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。
后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。
人教版六年级倒数的认识评课(汇总16篇)篇十二
使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
:教学光盘。
:自学课本p50:
什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
0有倒数吗?为什么?
出示例7。
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1。
你能模仿着再举几个例子吗?
学生回答,教师板书。
观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
观察上面互为倒数的'两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×()=1,再得出结果。
人教版六年级倒数的认识评课(汇总16篇)篇十三
“比”与“除法”不是等价概念,显然文本中描述的:两个数的比表示两个数相除,并不是“比”的本质概念。于是,本节课将充分利用学生生活经验创设配制糖水的情境,激发学生学习的原动力和探究的乐趣。学生从三次配制糖水中理解了“比”是两个量对等关系的记录,“比”是一种对应。知道了,在比中相应数量的糖只有一个相应数量的水与之对应,破坏了这种对应关系,比值就变了,即糖水的甜蜜度(状态)也随之变化。糖水的甜蜜度(状态)虽然是看不见,摸不着的,但可以通过可测量的糖和水来记录的。原本这是一个理解的难点,但因为这是学生所熟悉的情境,他们具备这样的生活经验,就能轻松地领悟了“比”的内涵。
现在学习的“比”是为后面比例的学习作铺垫,其实更体现了一种函数思想的渗透。以照片引入情境,紧扣“像与不像与何有关”这一问题,引导学生从数学的角度去自主探究发现“长与宽的关系”,进一步理解“比”的本质概念。再通过多次在坐标中做照片、找照片的思考与想象,孩子们不仅理解了“比”是一种对应,一种状态。在他们的头脑中还能够清晰地刻画出两个变量间的关系,这正是函数作为研究现实世界的一种重要模型。
“比”虽然不等同于除法,但它与分数、除法有着密切的联系;“比”并非是比多比少,但比中也透露出两个量相差份数的信息。沟通好知识之间的内在联系,能为今后进一步学习比的知识和灵活解决问题打下坚实的基础。
在探索研究中,通过按“前后项的相差数配制糖水”的教学环节,学生并不是简单地理解“今日之比并非是之前的比多比少”了,他们更加清楚的是两者之间的区别与关联,顺利地突破了教学的难点。
在练习中,充分发挥习题的功能,利用一题多变,激活了学生思维的灵活性、发散性和创造性。
(1)学生在“判一判”的'练习中既巩固了求比值的方法,也更进一步理解了比的有序性以及比与分数、除法之间的内在联系。尤其是通过第6小题的辨析,学生深入理解了比是两个变量间的对应关系。只要其中一个量发生变化,另一个量也随之变化,只有确定了其中一个量,另一个量才能被确定。
(2)学生在“找一找”练习中不仅巩固了本节课的知识重点,写出了部分与部分、部分与整体的比,还大胆创造出三个数的比。这样,培养了学生类推能力和创新意识的同时,也拓宽了比的视野。
本节课王xx老师把课堂还给了学生,让学生自主学习探究,学生真正成为了学习的主人。但是世间事物没有最好,只有更好。下面我就个人观点说一下这节课中,还有几个值得商榷的地方。
课前学生利用网络资源通过录制的微课进行预习,这节课如用平板答题代替学生汇报环节能更节省时间更高效。
本节课有三处设计了小组交流合作学习的环节,合作学习起到绑带的作用,学生发言更充分,但是本课中这样的环节我认为有些多。
当小组合作学习后的汇报环节,一般只有一个小组进行汇报,如再找几个小组,这样展示的孩子能多些,并且可以汇报不同验证方式。
教材在课堂中应充分利用,本节课只在练习画圆时使用了教材使用率不高,我觉得还可以在概念教学时使用教材。
以上是我粗浅的看法,希望大家批评指正。
人教版六年级倒数的认识评课(汇总16篇)篇十四
1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、培养学生观察、归纳、推理和概括的能力。
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
人教版六年级倒数的认识评课(汇总16篇)篇十五
倒数的认识是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。倒数的认识是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。
1.理解倒数的意义,掌握求倒数的方法。
2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。
理解倒数的意义,掌握求倒数的方法。
熟练写出一个数的倒数。
1.交流。
师:我们的黑板是什么颜色?
生:黑色。
师:教室的墙面又是什么颜色?
生:黑色。
师:黑与白在语文上是什么关系?
生:黑是白的反义词。
生:白是黑的反义词。
师:能说黑是反义词或白是反义词吗?
生:不能,因为黑与白是相互依存的关系。必须说清楚谁是谁的反义词。
师:那么,数学上有没有相互依存关系的现象呢?
生:约数和倍数。
师:你能举例说明约数和倍数的相互依存关系吗?
生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。
2.导入今天,我们继续来研究数学中具有相互依存关系的现象的有关知识。
对数游戏。
1.学习倒数的意义。
我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。
师:4是3的4/3,
生:3是4的3/4。
师:7是15的7/15;生:15是7的15/7。
提问;看我们做游戏的结果,你们有没有发现什么?
人教版六年级倒数的认识评课(汇总16篇)篇十六
本课的内容是九年义务教育数学第十一册第一单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
基于以上的认识,遵循“知识与技能的学习必须以有利于其它目标(数学思考、解决问题、情感态度)的实现为前提”的重要理念,确定本课的教学目标:
1、让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。
2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
3、培养学生良好的合作意识,具有回顾与分析解决问题过程的意识。
4、感受数学的趣味性和挑战性,获得良好的情感体验。
本课我采用了发现式教学法、小组讨论式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,以平等宽容的态度激起学生的探究热情,让学生在互动和活动过程中充分地运用自己的能力器官。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,在互动中迸发出智慧的火花。
在课前准备阶段,我抓住“互为”二字作文章,先安排这样一个课前活动。
1、联系语文中的反义词的知识,举倒如:“黑”的反义词是什么?(白)“正”的反义词是什么?(反、倒)。
2、用“互为”造句。举倒如:“黑和白互为反义词”,这句话还可以怎样表达?(黑是白的反义词或白是黑的反义词)。
3、思考:能否说“黑是反义词,白是反义词”?为什么?
通过以上的活动帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
(一)激趣引入,导入新课。
先说出结果是1的算式,再通过观察、分类与思考来接题:我们今天就来研究倒数(出示课题)。这样就有效地激发了学生的观察兴趣。
(二)举例辨析,理解意义。
分三步进行:
一是微机出示:(1)什么是倒数?满足什么条件的两个数互为倒数?(2)你能找出互为倒数的两个数吗?请举例。
结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。
二是同桌互说,举例说出互为倒数的两个数,并说理由,充分感知。
三是让学生回答,进行交流:怎样理解“互为”的含义?能说某数是倒数吗?(举例如:“小明和小华是好朋友”,能说成“小明是好朋友”或“小华是好朋友吗”?)。
此处在学生自学的基础上,让学生举例说明倒数,积累感性材料。引导学生重点理解“乘积是1”而不是“和(差、商)是1”,理解“互为”是指两数的依存关系。
(三)观察比较,归纳方法。
该环节让学生寻找求倒数的方法,注意先独立思考,再合作交流。具体分为三个层次:
第一层次:创设问题情境:“找朋友—好朋友,手拉手”,请把互为倒数的两个数用线连起来。微机显示:
7/9、11/6、6、2/3、9/7、6/11、1/6练习后,质疑“为什么2/3孤零零地站在哪里?”
学生回答后,再激趣:“大家有勇气探索求倒数的方法吗?
第二层次——我来试试看:我能行。
写出11/6、1/5、9和15/8的倒数(微机显示)。
提示:如有困难,可先自学课本,或请教你的好朋友,找不同层次的学生回答。
第三层次——回顾、交流。
2、全班交流,突出重点:(1)互为倒数的两个数有何特点?(2)强调:到数可用“—”表示,不能用=表示。(3)重点讨论“9”和“15/8”的倒数求法过程,动态演示成:(见演示稿)。
此环节引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建。”
(四)辨析比较,弄清特例。
微机显示:你最喜欢下面哪个数的倒数?为会么?(见演示稿)。
设计这样一个针对性练习,既突出本课的重点,又有利于突破难点;既有对刚刚学过的倒数求法的运用,又使学生产生新的认知冲突:1的倒数为什么是它本身?0有没有倒数?为什么0没有倒数?这样学生在宽松的氛围里,勇于发言、敢于辩论。
(五)回顾、质疑,自我评价。
通过这节课,你学到哪些知识?先闭着眼睛想一想,再同桌的同学互相说一说。
该环节的设计,是让学生在互动中互相启发,共同发展。“自主探究”旨在改变教与学的方式,教师的教是为学生的自主学习、主动探究创造条件,是为学生的独立思考,动手实践,自主探究等合作交流引路搭桥。是让学生真正在探究学习中发展。