教学工作计划可以促进教师的职业发展和专业成长,使其在教学实践中不断提升自己的能力和水平。通过查看以下的教学工作计划范文,很多问题或许能够得到解答。
商的变化规律课教案(优秀23篇)篇一
教学内容:
教科书第57~58页,例2、试一试、练一练,练习十第3题。
教学目标:
1、使学生结合具体情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向平移后该图形覆盖的总数,并能解决简单的实际问题。
2、使学生主动经历自主探索和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾和反思探索规律过程的意识。
3、在小组合作与交流中,努力克服数学活动中的困难,获得成功的体验。
教学过程:
一、复习引入。
1、12345678910111213141516。
每次框出3个数,需要平移几次?可以得到几个不同的和?
说说自己的方法。
2、今天我们继续学习图形被覆盖的次数的规律。
板书课题:找规律。
二、教学新课。
1、出示例2。1、如果小芳家浴室的一面墙上改用由4块瓷砖拼成的图案贴在这面墙的任意一个位置,有多少种不同的贴法?(出示情境图)。
理解题意。
3、不论你贴在哪,最多能够有多少种方法?你们能解决吗?
请同桌两人合作平移,看有多少种不同的贴法。平移好了后就请大家围绕下面三个问题在小组里讨论。(电脑出示)。
(1)怎样贴,才能做到既不重复有不遗漏?
(2)沿这面墙的长贴一行有多少种贴法?沿着宽贴一列呢?
(3)一共有多少种贴法,与这面墙的长和宽各有多少种贴法是什么关系?
学生动手操作,完成后小组交流讨论。
4、交流汇报。
怎样数才能做到比较有序?
学生边汇报边演示。沿着长一行一行的贴,沿着宽一列一列的贴。(电脑演示)。
师:沿这面墙的长贴一行有多少种不同的贴法呢?
学生回答:8—2+1=7(板书:8—2+1=7)(电脑演示)。
师:平移了几次?有几种贴法?
学生回答。(电脑演示)平移了几次?有几种贴法?
(板书:6—2+1=5)。
师:这样一列一列的贴,贴了这样的7列,求贴法总数,就是求7个5。
师:5个7或7个5都可以写成5×7=35。
5、一共有多少种方法?与这面墙沿长和宽贴各有多少种贴法有什么关系?
得出:贴法总数=沿长的贴法×沿宽的贴法。
6、小结规律。
7、试一试。
1、小芳家阳台上的一面墙要贴这种图案的瓷砖,你能算出有多少种不同的贴法吗?(出示情境图)学生尝试练习,教师讲解。(电脑演示)。
板书:10—3+1=86—2+1=55×8=40。
师:为什么一个减3,一个减2?
2、如果贴的瓷砖图案是这样呢?有多少种不同的贴。
法呢?仔细观察以下,这个图形与刚才的图形有什么不同?(电脑演示)。
学生异口同声:长方形。(电脑演示)。
师:你是怎样想的,可以和小组里的同学交流。
8、练一练。
独立完成。
汇报交流自己的思考方法。
三、巩固练习。
1、完成练习十第3题。
理解题意。
指导方法。
任意框9次?看看框出的每个数的和是多少?与中间的数有什么关系?
根据这个发现,你能解决第(2)小题的问题吗?
说说你是怎样框的?
2、独立完成第(2)、(3)小题。
说说思考过程。
四、课堂小结。
商的变化规律课教案(优秀23篇)篇二
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
教学设计:
一、出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
非常好!同学们,请仔细观察上面每组算式,你能根据每组算式的特点接着再往下写2个算式吗?试一试。
学生独立写出。
二、自主学习,探索新知。
1.现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3.猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
5.同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
6.你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
59页3、2、4、5。
四、结束。
商的变化规律课教案(优秀23篇)篇三
教学内容:
教学目标:
知识与技能。
(1)、通过观察、操作、猜测、推理等活动使学生初步认识图形与数字的排列规律,能找出数字的排列规律。
(2)通过观察、操作等活动,培养学生的观察能力、动手操作能力和推理能力。
过程与方法。
通过颜色、数量、形状等方面的探究活动,继续让学生经历发现数字规律的过程。
情感态度与价值观。
结合教学内容,培养学生发现和欣赏数学美的意识;培养学生积极思考、善于与人合作交流等良好的学习习惯。
教学重难点:
教学重点:初步认识图形与数字的排列规律,能找出数字的排列规律。
教学难点:培养学生的观察能力、动手操作能力和推理能力。
教具、学具准备:
教具:课件、正方形、三角形、圆片、小棒。
学具:正方形、三角形、圆片、小棒。
教学过程:
一、复习旧知,引入新课。
师:同学们,昨天我们学习了“找规律”,你们掌握了找规律的方法吗?现在老师先来检查一下大家掌握得怎样?有没有信心接受挑战?课件出示“我能选”。请看大屏幕,这里有三组图,请你观察这些图缺少了哪个图,然后快速地选出横线上的图形。
指名回答。
指名回答怎样排并说规律。
师:看来同学们昨天掌握的不错。今天老师将继续和大家一起来找规律。
板书课题:找规律二。
全班同学齐读。
二、创设情境,探索新知,发现规律。教学例2,找规律填数。
逐个图例出示,每出示一个图形,让学生思考可用几来表示它的数量。在这过程中感受图形与数字的关系。
思考:每组图形,缺少什么数字?怎么分组?每组有几个数字呢?
(1)缺少2和3,2个碗和3个碗为一组,每2个图一组,每组有2个数字,总是2、3,2、3地出现的。
(2)缺少1和3,一只母鸡和3只小鸡为一组,每组有2个数字,总是1、3,1、3地出现的。
练习:做一做学生观察图形抽象出数字后填写缺少的部分。
三、巩固练习。
(一)相应练习。
学生说老师依次在电脑上出示数字:4、3、4、3、4、3。
你们会看着图形写出数字吗?
小结:从图形中可以找出对应的数字规律。
2、(课件出示图)。
师:上面的`图形有规律吗?什么规律?你能用数字表示吗?
3、拓展练习。(课件出示图)。
(1)想一想,有什么规律?可以用什么数字来表示这个规律吗?
小结:看来从图形中还可以找出对应的数字规律。
(2)你知道横线上填什么数字吗?说一说你是怎样想的。
四、智力闯关,巩固练习。
师:这节课你们学习很认真,老师带你们去玩游戏,想玩吗?
第一关:找规律,填一填,你能用数字表示这个排列吗?
第二关:填一填。看图写出有规律的一列数。
第三关:考考你。老师说出一列数,请同学们根据老师说的数用学具(小棒、学具盒内的图形)摆出来。
老师说数字,学生摆。
四、动手操作,创造规律。
师:我们学习了有规律的图形排列,接下来请小朋友们2人一组合作来创造规律。
课件出示:创造规律。
先用学具摆出有规律的排列,并写出相应的数字规律。动手吧,比一比,看哪些小朋友合作得最好。
五、全课总结。
这节课我们学习了什么?你有什么收获呢?
通过今天的学习,我们发现除了物体、图形的摆放可以有规律,涂颜色可以有规律,从图形中还可以找出对应的数字规律。规律无处不在。
找找身边哪些事物是很有规律地排列的?
老师给出1、5两个数字,你能用1和5很快地写出一列有规律的数字来吗?
商的变化规律课教案(优秀23篇)篇四
《积的变化规律》是整数四则运算内容中的一个重要内容,本节课教材以两组较为简单的乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律,使学生在探索的过程中理解两个因数相乘时,积随着基中的一个因数的变化而变化。本节教学流程是:“研究具体问题——引导发现规律——举例验证规律——总结规律——应用规规律”。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随着其中一个因数或两个因数的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。
把课本表格的数字编成应用题,请学生列式计算,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。一是引导学生从上往下观察算式,研究一个因数不变另一个因数变大,积的变化情况;二是引导学生从下往上观察算式,研究一个因数不变,另一个因数变小,积的变化情况;三是引导学生将两个发现总结到一起形成积的变化规律,形成板书,并揭示课题。
注重了练习的层次性和开放性,让学生在练习中不但学会运用积的变化规律解决问题,同时训练了思维的广度与深度,体验到发现规律是一件快乐的事情。
商的变化规律课教案(优秀23篇)篇五
“商的变化规律”是人教版四年级上册第五单元最后一个教学内容,教材内容主要分两部分,第一部分是商变化规律,第二部分是商不变规律,商无规律的变化也得参与。教学目标:
1、让学生经历感悟、体验、猜想、观察、验证、应用等学习过程,使学生理解、掌握商不变规律和商的变化规律。
2、结合教学过程、学习材料培养学生观察、比较、抽象和概括的能力,并渗透“变与不变”、“对立与统一”等辨证唯物主义观点的启蒙教育。
3、引导学生善于发现、提出问题、探究问题、合作交流的学习能力。教学重、难点:商的变化规律的理解、掌握及应用。
探究学习法。
1、填空:(出示课件)。
一、创设情境,导入新课。
师:这一单元我们学习了除法,大家猜想一下,如果被除数或者除数发生变化,商有没有变化规律呢?有什么变化规律呢?今天老师带大家进行快乐一课游,咱们一起去数学大世界的游乐园去玩一玩,你们想去吗?但是大家要用自己的智慧赢得机会,大家有信心吗?(出示课件)。
二、观察算式,找规律:课件出示:(体育用品店)。
1、师:这是体育用品店,从这个画面中你知道了哪些信息?学生找图中的信息。
2、学生列出算式,算出结果。
除数。
商
师:看看这三个算式,哪些没变?哪些变了?当被除数没变的时候,除数和商是怎样变的?下面请同学们结合我的提示,完成导学单第一题出示提示:
1、从上往下观察,任选两个算式比比看,除数和商分别发生了怎样的变化?
2、从下往上看,任选两个算式比较,除数和商分别发生了怎样的变化?生汇报交流。
变?谁变了?怎样变的?
在分组讨论中,教师深入小组,引导学生探究:讨论:是不是可以乘或除以任何数?
师:同学们表现好极了!第一关顺利通过。挑战第二关。出示课件:乘船问题。
请一个学生读信息,师:你们能帮他们解决问题吗?学生列算式,算出结果。
师:认真观察这三个除法算式你发现了什么?【完成导学单第二题】。
结合刚才的探究方法,先自己想想,再把你的想法和小组里的伙伴探讨一下。
(小组讨论,汇报交流)。
学生结合第一题的方法,有顺序的汇报。
师:谁能用完整的话说一说,当除数不变时,被除数和商是怎么变化的?师:小结:当被除数不变时,商会随着除数的变化而变化,当除数不变时,商会随着被除数的变化而变化。这就是我们这节课共同探究的内容板书:商的变化规律。
三、巩固练习,应用规律。
师:我们能把商的变化规律大声的告诉我吗?全班齐读。
四、课堂小结:
你今天最大的收获是什么?你能对自己或同学或老师用一句话来评价一下吗?
五、课后实践:
用今天学到的学习方法,思考以下题目有什么规律?
32÷4=816÷8=264÷2=32。
商的变化规律课教案(优秀23篇)篇六
四年级上册教材58页例4,做一做,练习九第1—4题。
1.知识技能:尝试用简洁的语言表达积的变化规律,培养学生初步的概括表达能力;
3.情感态度:培养学生团结协作、敢于交流表达的学习精神,体会与人交流和学习成功的体验,培养学生集体荣誉感。
1.用简洁的语言概括“一个因数不变,另一个因数改变引起积的变化规律”;
2.有序交流、表达自己的想法。
一、探究“一个因数不变,另一个因数扩大几倍,积就扩大几倍”
1.初步感受问题。
2010年8月,舟曲、汶川等地发生了严重的泥石流灾害,当地人民的生命和财产遭受了巨大的损失。为了帮助灾区人民渡过难关,4.1班的同学积极奉献自己的爱心,踊跃捐款,平均每人捐款约3元,照这样计算:
2名同学捐款多少元?(3╳2=6)。
20名同学捐款多少元?(3╳20=60)。
200名同学捐款多少元?(3╳200=600)。
(1)学生说出算式、口算;
(2)教师板书算式;
(3)进行德育。
2.研究问题。
观察算式,独立思考:以上算式有什么联系和规律?
3.归纳规律。
(1)小组交流:在小组内发表自己的看法,大家商讨:怎样用清楚简洁的语言记录表达所发现的规律。
4.验证规律。
(1)另外写一组算式,验证规律的正确性;
(2)根据发现的规律,在上面的算式下面再写两个算式。
二、探究“一个因数不变,另一个因数缩小几倍,积就缩小几倍”
1.按从下往上的顺序观察刚才的算式组,感知问题;
2.研究问题:思考,有什么规律;
3.归纳规律:
(1)在小组内用自己的话说说发现的规律;
(2)全班交流。
4.验证规律:
(1)小组内举例验证;
(2)按发现的规律把下面的算式再写两个:
80╳4=320。
40╳4=160。
20╳4=80。
三、运用规律、解决问题。
1.做一做:学生独立完成;说出思考过程。
2.练习九第1题:独立完成;说明,补充。
3.练习九第2题:齐读题;独立思考;小组交流;讲解。
4.练习九第3题:独立完成;;小组交流;讲解。
四、补充练习。
练习九第5题。供。
五、课堂总结。
六、作业:练习九第4题。
七、课后反思:
商的变化规律课教案(优秀23篇)篇七
教学过程:
一、创设情景,提出问题。
1.呈现研究素材:
6×2040×5。
160×56×10。
6×4080×5。
2.口算出得数。
3.观察这组算式,你能分一分吗?为什么这么分?
再次呈现:6×10=60160×5=800。
6×20=12080×5=400。
6×40=24040×5=200。
4、仔细观察、比较这组算式,你能发现什么?
学生自由说。
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律。
2、学生小组讨论,教师巡视。
3、学生交流讨论结果。
4、教师相机总结:一个因数不变,另一个因数乘几,积也乘几。
5、师生共同探究第二组算式,并总结出规律:一个因数不变,另一个因数除以几,积也除以几。
学生举例说明。
7、师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
学生说,教师引导学生说简单些。总结出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
8、师:这个规律我们已经在不知不觉中使用,你知道什么地方我们使用过?
三、运用规律,解决问题。
1、根据8×50=400,直接写出下面各题的积。
16×50=32×50=8×25=。
指名学生回答。
2、神奇缺8数来挑战。
12345679×9=111111111。
12345679×18=。
12345679×27=。
12345679×36=。
3、一辆汽车在公路上以60千米/时的速度行使,4小时可以行()千米。一列火车在铁路上行驶的速度是汽车的2倍,这列火车用同样的时间可行()千米。
先学生独立思考,然后交流解法,鼓励学生用两种方法解答。
四、全课总结,拓展延伸。
师:在这节数学课上,你们还有什么收获吗?
学生回答。
五、巩固练习:
1、找出规律再填空。
16×17=272。
16×34=272×()。
16×34=272×()。
(16÷)×17=272÷4。
2、判断题。
(1)两数相乘,一个因数不变,另一个因数乘4,积应该乘5。()。
(2)两数相乘,一个因数不变,另一个因数除以10,积应该除以10。()。
(3)长方形的面积=长×宽,如果长不变,宽变为原来的3倍,则面积也变为原来的3倍()。
(4)路程=速度×时间,如果时间不变,速度变为原来的几倍,路程也会变相同的倍数()。
3、算一算,想一想,你能发现什么规律?
18×24=432。
(18×2)×(24÷2)=。
(18÷2)×(24×2)=。
商的变化规律课教案(优秀23篇)篇八
本课主要是介绍一些图形简单的排列规律以及数形结合下的简单的数字的排列规律,培养学生用数学观点发现规律的意识,通过物品的有规律的排列,使学生初步感知简单的排列规律,并会根据规律找出下一个物品。体验数形结合的规律特征,能用数字表示图形的规律。在此基础上,再培养学生完整的语言表达能力,让学生在发现规律的过程中能用完整的数学语言表达规律。通过涂色、摆一摆、画一画的活动,培养学生的动手操作能力并激发学生的创新意识。为进一步学习有关数的排列规律做好准备。新教材对这部分知识的编排,结合学生日常生活实际,从联欢会装饰物有规律的排列现象,引出图形排列的一些简单规律,使学生感受生活中的规律美,以及规律在生活中的广泛应用性。
本课主要采用学生独立思考、创造的教学方式,由浅及深,环环相扣。以学生感兴趣的主题图引入,让学生充分观察并感知图中的事物,如:彩旗、小花、灯笼、人物的排列规律。同时也使学生感知颜色是有规律的排列的。教师的问题中涉及“排列”二字,让学生初步理解排列的含义并为后面的“重复排列”这个概念做铺垫。为了让学生能更亲近新知,设计了让学生上来摆一摆的活动,不仅活跃了课堂氛围而且引入了本节课的难点“以某某为一组重复排列”的完整数学语言的表达。再结合学生们的作品以及利用多媒体技术,让学生多说一说,使学生逐渐掌握找规律的方法及能完整的表达规律的排列。通过观察同学们的作品也使学生发现,同一种物品能摆出各种各样的规律。为了使学生更好的掌握找规律的方法以及体验规律的不同变化,在此设计了丰富多彩的层次分明的小游戏,如:学生做操,拍掌游戏,让学生充分掌握到找规律的方法以及体会生活中的各种事物都可以有规律。为了使本课的学习不枯燥,让学生将生活与课堂联系起来,在教室和生活中找规律,培养了学生的数学练习实际的能力,也培养的学生的观察能力。
不足之处在于,教师的`提问不够准确,学生没有听清老师的提问而答非所问。教师应用简洁明了的问题,提出问题的重点使学生理解;在设计习题时没有避免矛盾,比如:在教师拍手时,这个规律可以说113,也可以说成23,在这里学生课下的反馈使我明白,习题的设计要贴近实际知识并要经过反复练习研究再确定是否可用。
商的变化规律课教案(优秀23篇)篇九
2、增强学生抽象、概括能力。
3、养成善于观察勤于思考,勇于探索的良好习惯。
4、观察、比较、探索商不变的规律。
通过观察、比较、探索商不变的规律。
1、导入。
在上课之前,我们要先来做个游戏,题目是抢答,在游戏开始之前,老师要说规则,规则很简单就是要等老师说开始之后举手抢答,不可以乱喊乱叫。现在老师开始出题了,同学们看仔细了哦。
板书:80÷4=150÷15=。
80÷8=300÷15=。
80÷16=450÷15=。
同学们真棒,这么快就抢答完毕了,真是抢答高手!
2、抢答结束,现在老师请同学们仔细观察左边的一组算式,其中的被除数、除数、商都有什么变化特点呢?同桌讨论下,一会儿老师要请同学们来说说你们的发现。
纠正错误,出示,被除数不变,除数扩大(缩小)几倍,商反而缩小(扩大)几倍。你真厉害真会概括。
现在请同学们看看右边的这组算式,你们能发现什么呢?可以采用刚刚的观察方法来说一说。还可以用刚刚概括地方法说一说规律。
除数不变,被除数扩大(缩小)几倍,商也扩大缩小几倍。
同学真会观察发现,这么快就找到了商的变化规律,除数和被除数变化时,商一定变化吗?怎么样商才不变呢?先认真想想,想好的同学举手告诉老师,一会儿老师要请同学说说你的猜想。
1若学生没有得出猜想,举例引导请同学们列出三条商为4的算式如:
16÷4=。
32÷8=。
64÷16=认真观察你有什么发现呢?
看来同学们都有发现,那现在先和同桌说说你的发现。
2得出一种猜想,你们可真是会猜想,现在打开书本93页,完成表格,验证下你们的猜想。通过表格,证明你们的猜想在表格中是成立的,那现在请同学们赶紧举个例子证明自己的发现吧。小组讨论,这些算式对不对呢?通过同学们的动手实践,我们得出了商不变的规律。
3得出多种猜想时,同学的猜想可真不少,学生说猜想老师板书,请同学们举举例子证明自己的猜想。刚刚同学用自己的例子证明了猜想,现在请同学们打开课本93页,再一次验证下你们的猜想。通过同学们的动手实践,我们得出了商不变的规律。
被除数、除数同时扩大或缩小相同的倍数,商不变。(齐读)。
3、巩固练习,光说不练可不好,现在老师就要让大家练一练。
(1)运用商不变规律口算。
120÷40=640÷80=810÷90=360÷60=。
7200÷400=2400÷200=6400÷800=。
哪一组举手的人最多老师就请哪一组开火车。其他组的同学认真听,他们组的答案对不对。
(2)学习了商不变的规律可以使我们的计算更为便捷,做一做。
196÷4=392÷8=1960÷40=19600÷400=。
28÷4=56÷8=168÷24=1680÷240=。
课堂小结:通过这一节课的学习,你们都有什么收获呢?起来说一说。
商的变化规律课教案(优秀23篇)篇十
《商的变化规律》这部分内容是在学生熟练掌握除数是两位数商一位和两位的笔算除法的基础上教学的,让学生掌握这部分知识,既为学习简便运算作准备,也有利于以后学习小数除法、分数和比的有关知识,是小学数学中十分重要的基础知识。
学生能运用已有的计算技能,通过计算,发现商随着被除数或除数的变化而变化,教师应充分利用学生已有的知识和经验基础,放手让学生通过计算、观察、比较等活动去发现规律,同时,注意发挥教师的引导作用。
基于以上的认识,遵循“知识与技能的学习必须以有利于其他目标(数学思考、解决问题、情感与态度)的实现为前提”的重要理念。为了完成以上目标,突出教学重点:发现规律,掌握规律;突破教学难点:利用商的变化规律进行简便计算。
因此,本节课主要采用了发现式教学法,小组讨论式教学法。教师以组织者、引导者和合作者的身份创设和谐的教学环境,实现教与学的和谐多元化互动,通过启发、引导学生积极参与到整个教学中去。学生一方面尝试发现,体验创造的过程;另一方面也可以增强合作意识,在小组交流,全班交流过程中相互学习、相互借鉴,逐步归纳出商的变化规律。
从四个环节进行,首先,谈话导入,揭示新课。在这环节没有创设情景,我认为这种探究规律课,直接进行探究要好些,另外,本课内容较多如果创设过多情景,可能难以上完。所以我直接安排学生快速抢答九道题,然后由学生分类,教师顺势提问:你是怎么分类的?由学生说出:按被除数不变、除数不变、商不变分类。这样直接为后面探究进行铺垫。
第二环节,探究规律,建构新知。从三个方面进行。
1、被除数不变,商的变化规律。这个规律要强细讲解,先要学生整体观察什么变了?什么没变?被除数不变,除数从上往下变大了,商从上往下反而变小了,反之除数从下往上变小了,商反而变大了。然后再详细讲解从上往下怎么变化,由学生总结规律;从下往上又怎么变化,又由学生总结规律。最后要求学生把以上两个规律用一句话表达出来。及时练习,在这我设计了231÷11=21231÷33=231÷77=这组题学生不可能直接口算,必须要用以上学习的规律才能简便运算,所以,计算后要学生说理,这有利于突破难点。另外,实物展示,把教材中枯燥、抽象的知识,编成学生亲身经历富有情趣的生活问题,使学生在真实的生活情景中,自觉、自主地完成学习的创新要求,体验到了学习的乐趣。
2、除数不变,商的变化规律。这个规律先通过计算、观察、比较、讨论等教学活动教师可以适当点拨,由学生总结规律,然后练习巩固。在这我也设计了一组练习:132÷12=11264÷12=1320÷12=做题过程同上。
3、商的不变规律,完全由学生先猜测规律,然后自己用计算、观察、比较、讨论等方法论证规律,最后用语言总结规律。这时教师要提醒学生注意同时乘几(或除以几),乘的数字或除以的数字一定要相同,并且问一问这个数字能不能是“0”?为什么不能为“0”?最后也象前面两规律一样练习巩固。
第三个环节应用练习,拓展提升。这环节有三题:
2、谁是它的朋友。学生通过计算就会发现320÷80与160÷40、3200÷800,1800÷600与180÷60是好朋友,而360÷60没有朋友,孤零零的请同学们帮助它找到朋友。开放性习题要开放性的练,才能真正拓展学生的思维,激活学生的思维,找朋友习题的设计一改以往“一对一”形式,让学生领悟到这种开放题的实质——不对应,激发了学生极大的参与意识和参与热情;这样“找”,为每个学生都创设了主动发展的空间。伴随学生情感参与的游戏练习,调动了学生学习积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
3、思考题,填空。即可以巩固新知,又可以发散学生思维。尤其是第四小题,可以同时填乘也可以同时填除以,后面正方形中可以填不为“0”的任何数。设计此题是为了更好的照顾每个学生,让学优生吃得饱,让学困生吃得好,让人人在数学学习中得到提高。
第四环节课堂小结。通过这节课,你学到哪些知识?
帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的体验。
在上新课时充分利用学生已有的知识和经验,放手让学生能过计算、观察、比较、讨论等活动去发现规律。该课的教学让我真正感到了学生是学习的主体,是创造的主体。为学生营造一个充分发挥思维能力和创造能力的氛围。给他们充足的时间和空间,就会收获希望,碰撞出思维的火花,达到真正感受数学的魅力。
商的变化规律课教案(优秀23篇)篇十一
教学要求:
1.使学生进一步学会用计算器进行整数、小数四则混合运算和大数目的计算,提高学生使用计算器计算的熟练程度,以及计算能力。
2.使学生能进一步学会用计算器探究运算的一些规律,培养学生探索问题和独立解决问题的意识和习惯。
学具准备:学生每人准备一个计算器。
教学过程:
一、揭示课题。
1.口算。让学生口算练习十七第8题。
2.揭示课题。
今天这节课,我们继续练习用计算器进行计算。(板书课题)。
通过练习,要进一步掌握用计算器进行整数、小数四则运算的方法,能正确用计算器进行整数、小数四则混合运算,并能通过计算器的计算来探索和验证运算里的一些规律。
二、计算方法练习。
1.用计算器计算。
934x1641000÷6.25‘、
学生练习后提问:用计算器进行整数、小数的四则主算,你是怎样进行计算的?
2.做练习十七第9题。
让学生自己计算,在课本上连线。集体交流计算结果。选择两题让学生说说是怎样算的,并说明一般按计算顺序分步依次计算出得数。
三、探索规律。
l做练习十七第11题。
(1)指名一人板演第(1)组前三题,其余学生做在练习本上。
提问:你发现这三题的积有什么有趣的地方?
请大家讨论一下,这里的得数有没有什么规律?
集体讨论前三题的得数有什么规律,发现积的数字与第一个乘数的数字完全一样,只要能确定积的最高位是哪个数字,就可以按顺序写出它的积是多少。让学生写出后两题的积,并用计算器进行验证我们发现的规律是否正确。
(2)分小组做第(2)组题。
让学生相互合作进行计算和讨论,并写出每一题的得数。组织学生在全班进行交流,说说前三题的结果和得数的规律,以及后两题的结果。要求学生对后两题的得数进行检验。
(3)你能把第11题里发现的有趣的现象用自己的话来说给。
大家听一听吗?
2.做练习十七第12题。
把学生分成几个小组,合作进行计算和讨论前三题有什么规律,写出最后一题的得数。
组织学生进行交流。
3,说明:在数学里有许多有趣的现象,它实际上是一种规律,只要我们平时多注意、多探究,我们就能发现这些规律,学到许多知识,甚至会有自己的发明和创造。
四、讲解思考题。
让学生读题。
分小组讨论,让学生找出规律,然后组织交流。
指出:只有当十位上的数都最大时,它们的积才能最大;反过来,也只有当十位上的数最小时,它们的积才能最小。
五、课堂。
这节课你进一步掌握了哪些内容?发现了些什么?你对学习数学有哪些想法?
商的变化规律课教案(优秀23篇)篇十二
我讲的是人教版小学数学四年级上册第五单元“商的变化规律”,这是一节新授课,“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。通过计算比较,提出问题,引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好习惯。
通过本节课的教学,使学生理解掌握商不变的性质,会用商不变的性质对口算除法进行简便运算。学生在参与,观察,比较,猜想,概括,验证等学习过程中体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
根据课程标准要求:小学数学教学要达到知识与技能,过程与方法,情感态度与价值观三维目标的有机结合,由此我定了一下教学目标:
通过计算,观察,比较,探索,使学生发现商随除数(或被除数)的变化而变化的规律。培养学生初步抽象和概括的能力。培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的'兴趣。
教学重点难点:通过观察比较,探讨发现商的变化规律,掌握规律。
教学方法:探究法,合作法,观察法,比较法。
教具准备:实物投影,题卡、小黑板。
我们的校本研修主题是:在数学课堂中如何使用激励性语言。我在本节课中的每一个教学环节,都要抓住适当的时机,适时,适当,适量的对学生进行激励性评价,建立评价目标多元,评价方法多样的评价体系,以达到全面了解学生的数学学习历程,激励学生学习热情,促进学生全面发展的目的。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。
在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。
我把整个教学过程分为六大环节进行的。
第一环节谈话引入,有利于吸引孩子注意力,激发学生学习兴趣。
第二环节,探究新知。我把例题用投影展示,既直观形象,又节省时间,快速达到目标。在这一环节当中有三个变化规律要探讨,第一个规律是被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,再放手让学生自学这一规律,就很容易了。第三个规律,是被除数和除数同时变化,相同的倍数(零除外)商不变。这是本课的重点内容,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。
第三环节是运用规律。采取了由易到难的设计方案,首先完成练习十七的四题,直接运用本节课所学的规律;第二完成五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。
第四环节,拓展训练。难度在此基础上又加大了一点,即锻炼学生的思维能力,又加深了对商不变规律的进一步理解。反馈练习加深巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。
第五环节,归纳总结,启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。
六、板书设计、
这样设计的板书简洁明了,使学生对本课的重点一目了然。在对比下,便于学生掌握商的变化规律。
商的变化规律课教案(优秀23篇)篇十三
教学内容:积的变化规律(人教课标版《数学》四年级上册第58页例四,59页练习九)。
教学目标:
1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
教学过程:
一、创设情景,提出问题。
师:谁来帮忙解答第一个问题?
生:6╳2=12(元)。
师:你能说说在这道乘法算式中,6和2是什么?12又是什么?
生:6和2是乘法中的两个因数,12是积。
师:说得好!第二个问题呢?
生:6╳40=240(元)。
师:接着说第三个问题?
生:6╳200=1200(元)。
师:和他们想法一样的请举举手。(同学们纷纷举起手来)。
师:仔细观察、比较这组算式,你能发现什么?
6╳2=12(元)。
6╳40=240(元)。
6╳200=1200(元)。
生1:有一个因数都是6。
生2:对,一个因数相同,另一个因数不同,积也不同。
师:观察得真仔细!一个因数相同可以说一个因数不变,那另一个因数呢?
生3:另一个因数变了,积也变了。
生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。
师:你是从上往下观察的,还可以怎样看?
生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律。
生:(2)式与(1)比,一个因数不变,另一个因数2括大20倍是40,积12扩大20倍是240。
师:2括大20倍是40,也就是另一个因数乘2,积呢?
生:一个因数不变,另一个因数乘2,积也乘2。
师:说得很清楚。再把(3)式和(1)式比看?
生:一个因数不变,另一个因数乘100,积也乘100。
师:大家比的结果和他一样吗?
生(全体):是。
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
生2:(2)式与(3)比,一个因数不变,另一个因数除以5,积也除以5。
生3:(1)式与(3)比,一个因数不变,另一个因数除以100,积也除以100。
生4:老师,我发现一个因数不变,另一个因数除以几,积也除以几。
生:我们可以自己找一些乘法算式的例子用刚才的比较方法研究,看看积的变化是不是具有相同的特点。(其他同学向他投去敬佩的目光)。
生1:把60乘9等于540,另一个因数8不变。
师:你猜猜看,积会怎样?
生1:积也会乘9,等于4320。
师:那你们横着算,540乘8是等于4320吗?
生2:也是4320。
师:祝贺你们猜对了。再来试一次。
生3:我把60不变,另一个因数乘30,猜积也乘30。
师:你们横着算一算。
生4:对,也是14400。
生5:你们都举的是乘几的变化,我来出个别的,60除以12等于5,8不变,积也除以12,是40,横着算,5乘8的确等于40。
师:你的研究意识真强。除次以外,还可以有多少种变化.。
生:无数种。
师:下面,你们同座位之间也这样相互出一道乘法算式作标准,自己将其中一个因数不变,,另一个因数变化观察积的变化情况。,好吗?计算比较大的数时,可以用计算器帮忙,开始!
汇报情况略。
师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
生:一个因数不变,另一个因数乘几,积也乘几;一个因数不变,另一个因数除以几,积也除以几。
师:数学讲究简洁美,能把它说得再简单点吗?
生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
师:说得太棒了!
小精灵:同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?那就跟我走吧!
三、运用规律,解决问题。
1、根据8×50=400,直接写出下面各题的积。
16×50=32×50=8×25=。
……。
师:32×50的积是多少?
生1:等于1600。
师:怎样算的?
生2:以8×50=400为标准,把32×50与它作比较,一个因数50不变,另一个因数乘4,积也乘4等于1600。
生3:还能以16×50=800为标准,把32×50与它作比较,一个因数50不变,另一个因数乘2,积也乘2等于1600。
师:很有数学头脑,运用规律算得可真快。
……。
行()千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的。
时间可行()千米。
生:一辆汽车4小时可以行驶240千米,用60乘4等于240千米。
师:根据什么数量关系来列式计算?
生:速度乘时间等于路程。
师:第二个问题呢?
生:60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。
师:还有其它解法吗?
生:240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。
师:能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?
生:喜欢第2种,只需一步计算。
师:多关注已有信息,灵活运用规律能使解题思路更开阔。
……。
四、全课总结,拓展延伸。
生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
生3;我还学会了研究规律的方法。
……。
师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。
18×30=18×15=。
18×5=54×5=。
……。
商的变化规律课教案(优秀23篇)篇十四
尊敬的各位评委老师:
大家好!(鞠躬)我是小学数学组几号考生,今天我说课的题目是《积的变化规律》,下面开始我的说课。
依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,首先我想谈一谈我对教材的理解。《三位数乘两位数》是人教版四年级上册第四单元《三位数乘两位数》中第二课的内容,学生在学习这节课之前,已经掌握了三位数乘两位数的基本运算法则,这为本节课的学习奠定了良好的认知基础,而本节课的学习也为后边进一步学习乘除法做了铺垫,所以本节课在教材中有着重要的地位和作用。
一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。
根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:。
知识与技能目标:能理解并掌握积的变化规律,并能够熟练运用规律进行简单计算。
过程与方法目标:通过观察独立思考,经历小组合作探究,归纳积变化规律的过程,提高简单计算数问题的能力。
情感态度价值观目标:在参与学习的过程中,感受数学思考过程的条理性和魅力,体验成功的喜悦,激发学习数学的兴趣。
根据教学目标,我确定了本节课的重点和难点。重点为掌握乘法里积的变化规律,,而理解积的变化规律的归纳过程为本节课的难点。
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。
为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课。
为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放向学生展示两组算式,6×2=12,6×20=120,6×200=1200;20×4=80,10×4=40,5×4=20六个式子,然后我会学生抛出问题,这两组式子都有什么样的特点,又有呢些规律呢?继而引出本节课课题--积的变化规律。(板书题目)。
多媒体课件展示两组乘法算式有关的内容,更有利于激发学生深厚的学习兴趣和求知欲望,快速的进入学习状态。
(二)自主探究,感受新知。
进入正式的新课讲授环节,我会继续向学生提问,那我们回到刚才这个问题,这两组式子都有什么样的特点呢?然后安排学生进行独立思考,经过学生独立思考不难看出,这两组式子第一组式子中第一个因数不变,第二个因数不断变大,积也在不断变大,在第二组式子中一个因数不变,另一个因数不断变小,积也同样的在不断变小。
我将继续向学生提问仔细观察着两组式子,每一组式子中三个式子之间又有什么样的规律呢?接下来组织同桌两人进行交流,经过同桌交流,同学们基本可以得到第(1)组题中,第2、3题同第1题比,第二个因数分别乘了10、100,同样的第2、3题的积同第1题相比各分别乘了10倍和100倍。
第(2)组题中,第2、3题同第1题比,第一个因数分别除以了2、4,同样的第2、3题的积同第1题相比各分别除以了2倍和4倍。对学生的结论我会给与表扬和肯定。
随后我会继续引出,上边这两组例子,在我们计算乘法和除法的过程中,能给我们带来哪些启示呢,这个规律具不具有普遍性呢?组织学生进行小组讨论验证,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
经过学生小组讨论不难得出在乘法计算当中,一个因数不变,另一个因数乘以几,积也乘以几,同样的,一个因数如果除以几,0除外,那积也需要除以几,继而引出,这就是本节课所要学习的积的变化规律。
以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。
(三)巩固练习,强化知识。
我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。
(四)课堂小结。
我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。
(五)布置作业。
针对学生的年龄特点,我会让学生在课下仔细观察自己家中有哪些利用平行四边形而创造的物品并记录下来,在下节课将一起来交流、讨论。
(六)说板书设计。
一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。
以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)。
商的变化规律课教案(优秀23篇)篇十五
教学目标:
知识与技能:使学生经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律。
过程与方法:1、初步获得探究规律的一般方法和经验,发展学生的推理能力。
2、在学习过程中培养学生的探究能力,合作交流能力和归纳总结能力。
教学准备:课件。
教学过程:
一、迁移旧知,巧导入。 。
2、543+380=()。
1、543+382=()。
3、546+382=()。
师:出示1题,用自己喜欢的方法算,有困难的同学可笔算。
师:大家算的真的挺快啊,这是个小小的热身,比赛开始。 。
出示2题,这么快啊,快说说你是怎么算的?
预设:
出示3题。学生用刚才发现的规律很快的说出了结果,有困难的学生也会了方法。
师:说说你为什么算的快?
师:你能不能把你的发现,用自己的话说说呢?
二、引导观察,巧探究。
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
师:先自己算算,再想一想你发现了什么,在小组中交流你的发现,准备汇报。 。
汇报:先说结果,哪小组愿意上来边指边说你们的发现?
预设:1、在第一组中,6是一样的,第二个因数变了,积也不一样。
2:我发现6都是一样的,第二个因数一个比一个后面多一个0。积也多一个0。
师:在第二组中有没有这样的规律呢?哪组愿意说?
师:能不能把你们的发现用一句话概括呢?
预设:一个因数不变,另一个因数乘几,积也乘几。
师:一个因数不变,另一个因数乘4,积会怎样?
一个因数不变,另一个因数乘4,积乘5,行吗?为什么?
(说明这两个“几”是一样的数。)。
请2-3个组汇报。(边指边说) 。
预设:1、一个因数不变都是6,另一个因数除以10,积也除以10。
2、一个因数不变,另一个因数除以4,积也除以4.
……。
你能不能也用一句话概括一下你的发现呢。
预设:一个因数不变,另一个因数除以几,积也除以几。
有没有想说的?
总结规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
这条规律是不是真的试用呢,你能用这个规律写一组算式吗?
谁 和 老师合作,你说一个算式,我来写第二个,好吗?
7×=可以吗?
预设:不可以,因为0不能做除数,学生会发现,在这条规律中应加上(0除外)。
三、巩固拓展,巧运用。
1、师:我们找到了规律,有什么用啊?我们来做组练习吧。(课件出示)。
2、想想?是谁。 。
4×50=200。
(4×2)×50=200×?
4×(50×3)=200×?
(4×2)×(50×3)=200×?
板书设计:
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
规律:------------------。
课后反思:
本节课充分体现了“让过程和方法进课堂”的新理念。
1.精心选题,巧引入。
2.合作探究,体快乐。
3.学练结合,显梯度。
整节课的设计,把自主、合作、探究落到了实处。
商的变化规律课教案(优秀23篇)篇十六
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
商的变化规律课教案(优秀23篇)篇十七
《积的变化规律》是在学生掌握一定的乘除法计算方法和用计算器进行计算的基础上教学的,本课用计算器来探索一些积的变化规律。
本课的教学思路:用口算导入,其中口算中安排了一些因数变化的对比题,如:25×4和25×8等。口算完成后,教师板书:3564×158=?你能口算吗?怎么办?使学生明白用计算器方便我们进行大数目的或复杂的运算。
新课教学,出示教材中的例题,帮助学生理解题意:积的变化是什么意思?跟谁比变化了?怎样计算?在计算前,先让学生猜一猜:你觉得积会怎样变?能提出你的猜想吗?然后学生借助计算器进行计算,填写教材中的表格。集体交流,提出问题:你的猜想正确吗?那在其他的乘法算式中还有没有这样的规律呢?写出一道算式,运用刚才的方法去试一试,并在你的小组里交流。小组汇报,并总结出积的变化规律——一个因数不变,另一个因数乘几,得到的积就是原来的积乘几。
巩固练习,由浅入深。先是模仿例题的练习,根据规律直接填表;然后是直接根据一道算式填出变化后的得数;最后是应用规律解决生活中的实际问题,如:购买同一种商品,数量发生变化,总价也跟着发生相同的变化。
教学后,有几点体会:
一、在充分经历中感悟。
在本课教学中,我就充分注意这一点,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。
二、在充分感悟中提炼。
在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
不足之处:
一、教师的语言不够凝练。如:引导学生用计算器探索变化规律时,提的问题太多,不利于学生独立分析和思考。
二、缺乏耐心,不善等待。如:第1题练习,当学生没有自觉地应用规律进行计算时,教师缺乏耐心,直接请发现规律的同学起来说。如果当时能引导这位同学观察一下,因数怎样变化的,能不能不计算就报出积是多少?等待会让课堂和谐和大气。
三、练习设计可以更有深度。如:设计逆向思维的练习,在表格中加入已知积的变化求因数的变化;拓展练习,因数同时变化,求积等。
将本文的word文档下载到电脑,方便收藏和打印。
商的变化规律课教案(优秀23篇)篇十八
教学内容:人教版小学数学四年级上册第58—59页内容。
教材分析:积的变化规律是学生计算思维能力的一次飞跃,它是学生的思维由单一、松散向灵活、多样化转变的一个突破口。它是在学生熟练掌握两位数乘法口算、笔算基础上进行的,同时又是学生对以前所学乘法计算的一个规律性的总结,它引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。
学情分析:四年级的学生已具有初步的分析和探索能力,本节课在教学安排上充分体现了以学生为主体,去探究新知。
教学目标:
知识与技能:使学生经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律。
过程与方法:1、初步获得探究规律的一般方法和经验,发展学生的推理能力。
2、在学习过程中培养学生的探究能力,合作交流能力和归纳总结能力。
情感与态度:在经历探究的过程中,使学生感受到发现数学中的规律是一件十分有趣的事情。
教学准备:课件。
教学过程:
一、迁移旧知,巧导入。
同学们,刚才我们相互了解了,其实,我最想知道的是,你们的计算能力强不强?真的很强吗?我可找到对手了。
2、543+380=()。
1、543+382=()。
3、546+382=()。
师:出示1题,用自己喜欢的方法算,有困难的同学可笔算。
师:大家算的真的挺快啊,这是个小小的热身,比赛开始。
出示2题,这么快啊,快说说你是怎么算的?
预设:
生:我发现543是一样的,382变成380少了2。所以我想,和也少2,就是923。师板书学生的发现。
师:好眼力,通过你的细心观察,发现了规律,还能利用规律,形成了计算的技巧。敢不敢再来一道。
出示3题。学生用刚才发现的规律很快的说出了结果,有困难的学生也会了方法。
师:说说你为什么算的快?
预设:我发现,382没变,546比543多3,所以,和也多3,就是928。
师:你能不能把你的发现,用自己的话说说呢?
预设:如果一个加数不变,另一个加数加几,和就加几,要是另一个加数减几,和就减几。
(设计意图:小小的巧算环节,兼顾着不同学生的需求,会使学生的特殊需要得到满足。将学生的学习兴趣充分调动起来了,由不会巧算到算得很快。同时为探究积的变化规律作了一个很好的铺垫。学生很自然的利用知识的迁移,去探究新知。也暗示了先观察,再发现规律,并运用规律,这一探究的方法。)。
二、引导观察,巧探究。
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
师:先自己算算,再想一想你发现了什么,在小组中交流你的发现,准备汇报。
汇报:先说结果,哪小组愿意上来边指边说你们的发现?
预设:1、在第一组中,6是一样的,第二个因数变了,积也不一样。
2:我发现6都是一样的,第二个因数一个比一个后面多一个0。积也多一个0。
3:我发现6不变,第二个因数2乘10得20,积也乘了10。第二个因数乘100,积也乘100.(组内可补充)。
师:在第二组中有没有这样的规律呢?哪组愿意说?
预设:我发现4不变,5乘2的10,积由20乘2得40。5乘4得20,积也乘4得80。
师:能不能把你们的发现用一句话概括呢?
预设:一个因数不变,另一个因数乘几,积也乘几。
师:一个因数不变,另一个因数乘4,积会怎样?
一个因数不变,另一个因数乘4,积乘5,行吗?为什么?
(说明这两个“几”是一样的数。)。
(设计意图:这一环节让学生充分经历了学习的过程,学会了研究问题的一般方法:研究具体问题---归纳发现的规律---解释说明规律。使学生尝到了探究新知的甜头,感受到探究的快乐。)。
师:你们真的太厉害了,其实啊,在这算式中还有规律呢?刚才我们是怎么观察的?(从上往下),如果我们倒着看,你又能发现什么呢?先想想,在于小组同学交流。
请2-3个组汇报。(边指边说)。
预设:1、一个因数不变都是6,另一个因数除以10,积也除以10。
2、一个因数不变,另一个因数除以4,积也除以4.
……。
你能不能也用一句话概括一下你的发现呢。
预设:一个因数不变,另一个因数除以几,积也除以几。
有没有想说的?
(设计意图:既然是猜想,给了学生更加广阔的思维和想象的空间。前面已经探究出一个规律,这里教师就放手了,让学生用刚才掌握的研究过程实现方法的迁移运用。最后疑问的提出,是想看看学生能不能想到0除外的问题。)。
师:孩子们我们数学追求的是准确,简练。你能不能把这两句话合并为一句呢?先独立想,在汇报。
总结规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
这条规律是不是真的试用呢,你能用这个规律写一组算式吗?
要求:同桌合作,左边的同学写一个算式,右边的同学运用规律写一个算式。比一比谁做的快。
汇报,这几组同学说的都是一个因数不变,另一个因数乘几,积也乘几的算式。还可以写怎样的呢?(除以几的)再写一组,同桌交换。
谁和老师合作,你说一个算式,我来写第二个,好吗?
预设:当学生说算式7×9=63我来写了,我想让7不变……。
7×=可以吗?
预设:不可以,因为0不能做除数,学生会发现,在这条规律中应加上(0除外)。
(设计意图:让学生动脑、动口、动手,相互交流,进一步培养学生的合作交流意识。这个设计表面看是对新知的巩固,其实,暗含着对0除外的问题解决。同时让学生体会到对待数学要有严谨的态度。)。
三、巩固拓展,巧运用。
1、师:我们找到了规律,有什么用啊?我们来做组练习吧。(课件出示)。
2、想想?是谁。
4×50=200。
(4×2)×50=200×?
4×(50×3)=200×?
(4×2)×(50×3)=200×?
(设计意图:练习的设计充分体现了层次性、灵活性、启发性、挑战性。通过学生进行不同类型的练习,可以有效的激发学生的学习兴趣,拓展学生的思维空间,是不同的学生得到不同的发展。)。
四、课堂小结:孩子们,短暂的40分钟过得很愉快,你们开心吗?这节课你都记住了什么。
板书设计:
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
规律:------------------。
课后反思:
本节课充分体现了“让过程和方法进课堂”的新理念。
1.精心选题,巧引入。
俗话说,良好的开端是成功的一半。在课的伊始,利用学生的好胜心里,引导观察,激发学生的欲望,扣住学生的心弦,有利于架起已知与未知的桥梁,发现一些新的结论。
2.合作探究,体快乐。
本节课我引领学生经历科学发现的完整过程,注重学生对比较,猜测,验证,思辨等数学方法的习得,同时让学生在探究过程中获得成功的体验,积累探究经验,从而为学生探究能力的提高提供了全方位的保障。让学生学得开心,真正体验到学习得快乐!
3.学练结合,显梯度。
本节课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学练相得彰显,最后练习的设计既注重了基础知识巩固,又注重了不同层次学生的需求。
整节课的设计,把自主、合作、探究落到了实处。
商的变化规律课教案(优秀23篇)篇十九
《商的变化规律》一课属于比较传统的知识,它是在学生学习了笔算乘法、除法的基础上进行教学的。与旧教材相比,教材对本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变商随除数变化的规律和除数不变商随被除数变化的规律,提升了学生自由探究数学问题的空间,因此颇具挑战性。那么老师怎样做到“老课新上”?做到在“主动教育”模式下始终让学生成为课堂教学活动中的小主人,怎样在自主活动中发现问题、探索问题、解决问题以及主动优化,努力实现数学课堂的真正高效?基于以上几点,我们的教学策略定为:扶放结合、引导探索、自主参与、学会学习、培养能力。
在课堂呈现上余老师紧紧地把握住了以下三点:
1、“问题生成单”是主动教育课堂的“魂”。
我校的“主动教育”教学模式的基石是“问题生成单”,我们在设计本节课之处就始终用“问题生成单”作为课堂的主线,经历试教之处的时间不够用、教学环节不够精简、课堂探究不够深入、课堂效率不够高效等问题后,我们对预习生成单进行了再次设计,将教材中简单、静态、结果性的文本,设计成为丰富、生动、过程化的“问题生成单”,让问题生成单成为整堂课的“魂”。在整堂课中,“问题生成单”分三次呈现。
第一次呈现:在开课环节,教师设计了第一层次的旧知复习,用积的变化规律旧知为新知搭桥铺垫,为探讨除法中商的变化规律起到了方法上的迁移。
第二次呈现:教师要求学生根据问题生成单研究当被除数不变时,研讨除数变商会怎样?除数不变,商会随着被除数的变化而发生怎样的变化,起到了为学生分散难点的目的。
第三次呈现:老师要求学生根据第二次的呈现,对被除数、除数都变,商会怎样变进行合理猜想。
一张小小的问题生成单凝聚着老师课前精心解读教材的心血,三次精彩的呈现为学生提供了探究的空间,使学生为完成一定任务而进行设想、预见、磋商、探究、讨论、辩解,思维发生碰撞,构筑了课堂上有活力、有价值的教学资源,成为了主动教育的“魂”,进而促进学生在有限的40分钟课堂里获得了最高效的主动发展。
2、“学生自主探究”成为了主动教育课堂的“根”。
“让过程和方法进课堂”可谓余老师上课的特色。整节课余老师非常注重培养学生在学习过程中对数学问题的探究,体现了学生的主动和教师的主导,师生和谐共荣,极符学生的认知规律、新课程标准和我校主动教育模式要求。课堂上我们看到教师始终把激励学生学习、为学生搭建学习平台作为教学的主线,让小组中的每个学生都在宽松的氛围中,始终处于一种积极求知、好学向上的状态,奠定了学好数学信心的基础;同时重视合作、探究,使得学生愿意与伙伴交流,敢于自由表达自己的想法,在参与中体验到学习的乐趣。
课堂上一次次探究活动真正成为师生互动、生生互动,共同发展的数学活动过程,使学生在课堂上有了自主,有了发扬个性、施展才能的空间,成为了主动教学的“根”。
3、“学生自主构建、归纳、总结、提炼”,成为主动教育课堂新的增长点!
课堂中余老师紧紧抓住探究三条规律的过程,注重让学生构建思考问题的方法,启发学生有序观察,多角度、多方向去挖掘思路,引导学生参与到发现规律、探究规律、总结规律的过程中。在学生发现商的变化有某种规律的萌动时,余老师鼓励学生:“用自己的话讲一讲发现的规律。”并及时给予肯定,让学生在观察、比较、思考、尝试中,实现师生互动、生生互动,激活了学生主动参与获取知识的过程。
整节课教师下放“教学”,只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,既重视学生独立思考的过程,又重视发挥集体的智慧,给学生提供了多向交流的机会。学生在静思、合作、商讨中,轻松、愉快地学到知识,增长本领,从而达到乐学、会学、创造学的境界。
本课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学与练相得益彰。同时教师非常注重总结性的语言,能适时地把学生表达的变化规律的用语,加以提炼并呈现给学生,使学生在全面了解商的变化规律的同时,又培养了学生用数学语言表达数学规律能力。
1、“积”、“商”是一对矛盾的统一体,学生极易混淆,建议可先复习乘法、除法的概念及算式各部分名称,做好知识储备,便于学生表述规律。
2、教师还应加强指导学生表述完整的练习,同时要适时引导、及时纠正,比如学生总结第一个规律时,说被除数不变,除数扩大(或缩小)几倍,商就扩大或缩小几倍。
主动教育是一种教育思想,教育策略,教育艺术,教育境界。教师大胆地把舞台和空间让给学生,把自己隐蔽起来,让学生充分发挥其主动性,这样,课堂就绽放出空灵之美。当然,“冰冻三尺非一日之寒”!模式的创新、思维的转变,也都不是一蹴而就的过程。我们也从这节课中看到了自身许多的不足。
创新终归出于实践,期待在以后的实践中与我们的孩子们共同转变、携手同行!正如我校“主动教育”教学理念中提出的“关注学生兴趣,兴趣焕发生命精彩;关注学生习惯,习惯影响学生未来;关注学生质疑,质疑引发智慧觉醒。”
商的变化规律课教案(优秀23篇)篇二十
例[4]通过学生观察两组乘法算式,引导学生探索当其中一个因数不变时,另一个因数和积的变化情况,并从中归纳出因数和积的变化规律,渗透变与不变的函数变化规律。第一组呈现的是:当一个因数不变,另一个因数扩大几倍,积也扩大几倍;第二组呈现的是:当一个因数不变,另一个因数缩小成原来的几分之一,积也缩小成原来的几分之一。在教学中,侧重的是让学生在计算练习中理解数的变化,至于如何准确的表述出来,并不重要。
练习九的5题练习题都是应用积的变化规律来解决实际问题的,要引导学生先找到变化规律,理解题意后再解答。特别是第4题,苹果5元3千克,不能算出1千克多少元,只能应用变化规律来解答:5元能买3千克,打算买6千克,千克数是原来的2倍,积也是原来的2倍,即5×2=10元。
教学目标。
(2)、初步获得探索规律的一般方法和经验,发展学生的推理能力。
(3)、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学设计:
一出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
二、自主学习,探索新知。
1、现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3、猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
4、同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
5、你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
教学建议和教学思路。
本课内容的学习需要学生的自主探索和合作交流,因此,教学时可以让学生以小组为单位,互相交流自已的想法和发现的规律,对所得到的信息、资源进行整合、概括,教师则作适时的提示、补充和纠正。
商的变化规律课教案(优秀23篇)篇二十一
教学目标:
教学难点:通过观察、比较、探索商不变的规律。
教学过程:
1.导入。
在上课之前,我们要先来做个游戏,题目是抢答,在游戏开始之前,老师要说规则,规则很简单就是要等老师说开始之后举手抢答,不可以乱喊乱叫。现在老师开始出题了,同学们看仔细了哦。
板书:80÷4=150÷15=。
80÷8=300÷15=。
80÷16=450÷15=。
同学们真棒,这么快就抢答完毕了,真是抢答高手!
2.抢答结束,现在老师请同学们仔细观察左边的一组算式,其中的被除数、除数、商都有什么变化特点呢?同桌讨论下,一会儿老师要请同学们来说说你们的发现。
纠正错误,出示,被除数不变,除数扩大(缩小)几倍,商反而缩小(扩大)几倍。你真厉害真会概括。
现在请同学们看看右边的这组算式,你们能发现什么呢?可以采用刚刚的观察方法来说一说。还可以用刚刚概括地方法说一说规律。
除数不变,被除数扩大(缩小)几倍,商也扩大缩小几倍。
同学真会观察发现,这么快就找到了商的变化规律,除数和被除数变化时,商一定变化吗?怎么样商才不变呢?先认真想想,想好的同学举手告诉老师,一会儿老师要请同学说说你的猜想。
64÷16=认真观察你有什么发现呢?
看来同学们都有发现,那现在先和同桌说说你的发现。
2得出一种猜想,你们可真是会猜想,现在打开书本93页,完成表格,验证下你们的猜想。通过表格,证明你们的猜想在表格中是成立的,那现在请同学们赶紧举个例子证明自己的发现吧。小组讨论,这些算式对不对呢?通过同学们的动手实践,我们得出了商不变的规律。
3得出多种猜想时,同学的猜想可真不少,学生说猜想老师板书,请同学们举举例子证明自己的猜想。刚刚同学用自己的例子证明了猜想,现在请同学们打开课本93页,再一次验证下你们的猜想。通过同学们的动手实践,我们得出了商不变的规律。
被除数、除数同时扩大或缩小相同的倍数,商不变。(齐读)。
3、巩固练习,光说不练可不好,现在老师就要让大家练一练。
120÷40=640÷80=810÷90=360÷60=。
7200÷400=2400÷200=6400÷800=。
哪一组举手的人最多老师就请哪一组开火车。其他组的同学认真听,他们组的答案对不对。
(2)学习了商不变的规律可以使我们的计算更为便捷,做一做。
196÷4=392÷8=1960÷40=19600÷400=。
28÷4=56÷8=168÷24=1680÷240=。
课堂小结:通过这一节课的学习,你们都有什么收获呢?起来说一说。
商的变化规律课教案(优秀23篇)篇二十二
规律《积的变化规律》是人教版小学数学四年级上册第三单元的内容,教材安排了积的变化规律的例题学习,掌握这些规律,为学生进一步加深对乘法运算的理解,以及理解小数乘法的计算方法做准备。
本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。
根据对教材和学情的分析,我制定了以下三维目标:
知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。
能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。
情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。
教学难点:引导学生自己发现规律、验证规律、应用规律。
我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。
学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。
小黑板。
谈话导入——猜想规律——验证规律——表述规律,小结探索方法——应用规律——拓展延伸——课堂小结。
1、谈话导入。
课的开始我与孩子进行谈话“学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。”
根据学生的回答,我板书三个算式及其结果:
6×2=12(元)。
6×20=120(元)。
6×200=1200(元)。
设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
(1)我提出问题:观察这三个算式,你会发现什么规律呢?
我引导孩子从上向下观察:因数到因数,积到积有什么规律。
(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。
(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。
设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。
孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。
我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。
设计理念:通过学生分组协作,体验验证数学规律的过程。
4、表述规律,小结探索方法。
设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。
孩子自己完成教材1—4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。
6、拓展延伸。
(1)一个数乘以18积是270,如果这个数乘以54,积是()。
(2)36×10=360。
(36÷2)×(36×2)=。
(36×3)×(36÷3)=。
设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。
这节课你学到了什么?学的高兴吗?
设计理念:培养学生自我总结、自我反思的学习能力。
本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察——独立思考——小组交流——提出猜想——验证规律——运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。
商的变化规律课教案(优秀23篇)篇二十三
教学目标:
2.在探索规律的过程中,培养学生初步的观察、比较、归纳,概括的能力和主动探索数字规律的兴趣。
教学重、难点: