三角形内角和教学设计课评课(通用23篇)

时间:2025-02-10 作者:雅蕊

教学计划需要灵活调整,根据实际情况对教学内容和方法进行适当的变动。以下是一些教学计划的案例,通过学习这些范文,你将更好地理解教学计划的重要性和编写方法。

三角形内角和教学设计课评课(通用23篇)篇一

1、使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

2、让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

3、培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

一、激趣导入,提炼学习方法。

1、课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2、继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3、选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4、导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)。

二、动手操作,探索交流新知。

1、分组活动,探索新知。

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2、多方互动,交流新知。

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)。

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3、思想碰撞,夯实新知。

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)。

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)。

四、走进生活,提升运用能力。

1、出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

2、给你三根木条,能做出一个有两个直角的三角形吗?

五、总结。

六、拓展新知,课外延伸。

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

三角形内角和教学设计课评课(通用23篇)篇二

教学目标:

1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教学重点:

教学难点:

教具学具准备:

教材与学生。

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

教学过程:

学生各抒己见。

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)。

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)。

(3)把你没有想到的方法动手做一次。

(使学生更直观地理解三角形的内角和是180的证明过程)。

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示。

撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示。

2.师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现。

四。巩固练习,知识升华。

1.完成课本第28页的“试一试”第三题。

2.想一想:钝角三角形最多有几个钝角?为什么?

3.有一个四边形,你能不用量角器而算出它的四个内角和吗?

试一试,看谁算得快。

师:谁来说说自己的计算过程?

生:它们的内角和都是180度。

[回答可能有二]:

(一种全部说是:)。

师:请问,你们是怎么想的,为什么这么认为?

生:……。

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。

(一种有一部分同学说是,有一部分同学说不是:)。

师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。

(二)动手操作,探究新知。

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)。

生:……。

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)。

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

开始吧!(学生研究,师巡回指导)预设时间:5分钟。

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)。

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)。

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击flash:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)。

生:我们还用了折的方法(生介绍方法)。

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击flash:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)。

生:是个平角。180度。

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识。

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)。

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)。

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)。

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

三角形内角和教学设计课评课(通用23篇)篇三

本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发“三角形内角和是180度”的猜想,再通过组织操作活动验证猜想,得出结论。

1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180o”。

2、让学生学会根据“三角形的内角和是180o”这一知识求三角形中一个未知角的度数。

3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。

教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。

一、提出猜想:

看了这2个算式你有什么猜想?

二、验证猜想:

1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。

老师注意巡视和指导。交流各自加得的结果,说说你的发现。

2、折、拼:学生用自己事先剪好的图形,折一折。

指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。

继续用该方法折钝角三角形,得到同样的结果。

通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。

3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。

在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。

小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180o。

4、试一试:

三角形中,角1=75o,角2=39o,角3=()o。

算一算,量一量,结果相同吗?

三、完成想想做做:

1、算出下面每个三角形中未知角的度数。

在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80o。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。

指出:在计算的时候,我们可根据具体的数据选择更佳的算法。

然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180o。

3、用一张正方形纸折一折,填一填。

4、说理:一个直角三角形中最多有几个直角?为什么?

一个钝角三角形中最多有几个直角?为什么?

1、(第2题)你能连一连吗?

学生独立做,做完后把有疑问的几个选出来交流。

2、在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。

学生围好后,互相检查验证。

3、用一张长方形纸,折出两个完全一样的直角三角形。

用一张正方形纸,折出四个完全一样的直角三角形。

让学生动手折一折,在交流的时候用“对角线“来说一说。

5、你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗?

通过交流使学生明白:画出的线段就是原来三角形的高。

三角形内角和教学设计课评课(通用23篇)篇四

教学内容:。

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:。

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

重点难点:。

教学准备:。

导学过程。

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。

1、读学卡的学习目标、任务目标,做到心里有数。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。

(4)汇报结论(清楚明白的给小组加优秀10分)。

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。

1、填空。

(1)一个三角形,它的两个内角度数之和是110,第三个内角是().

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断。

(1)一个三角形中最多有两个直角。()。

(3)有一个角是60的等腰三角形不一定是等边三角形。()。

(4)三角形任意两个内角的和都大于第三个内角。()。

(5)直角三角形中的两个锐角的和等于90。()。

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

教学反思。

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

三角形内角和教学设计课评课(通用23篇)篇五

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生动手实践,动脑思考的习惯。

教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。

学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。

一、呈现真实状态。

学生各抒己见。

二、提出问题:

师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。

(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。

(2)组内交流。

(3)全班交流。由小组汇报测出结果(三角形内角和)。

(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。

意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]。

三、自主探索、研究问题、归纳总结:

(一)组内探索:

(1)以小组为单位探索更好的办法。

(2)以小组为单位边展示边汇报探索的过程与发现的结果。

(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)。

(3)把你没有想到的方法动手做一次。

(使学生更直观地理解三角形的内角和是180的证明过程)。

(4)根据学生的反馈情况教师进行操作演示。

(二)教师演示。

撕拼法:

1、教师取出三角形教具,把三个角撕下来,拼在一起,

2、师:这三个内角放在一起你有什么发现?

生:发现三个内角拼成一个平角。

师:平角是多少度呢?说明什么?

生:180?说明三个内角和刚好等于180。

师:这种方法是不是适用各种三角形呢?

进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。

折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。

你们也来试一试好吗?

在学生完成这一实践后肯定这一发现。

四、巩固练习,知识升华。

1、完成课本第28页的“试一试”第三题。

2、想一想:钝角三角形最多有几个钝角?为什么?

3、有一个四边形,你能不用量角器而算出它的四个内角和吗?

意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。

五、总结延伸。

这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:

当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。

三角形内角和教学设计课评课(通用23篇)篇六

人教版四年级下册第85面——87面。

1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。

3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。

让学生经历“三角形内角和是180°”这一知识的发现过程。

教具:多媒体课件、三角板一个、两个完全一样的直角三角形。

学具:锐角三角形、直角三角形、钝角三角形各一个。

(一)创设情境,提出问题。

师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,

今天老师还给大家带来了一个老朋友,请看,是什么?

生:三角形!

师:前面我们已经认识了三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。

(学生叙述到部分主要内容即可)。

师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击flash出示直角三角形实物图)。

师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?

师:答的真准确,(flash:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。

(flash:生说完后师点击出第二个三角形,边说边点出度数)。

[u1]试一试,看谁算得快。

师:谁来说说自己的计算过程?

生:它们的内角和都是180度。

[回答可能有二]:

(一种全部说是:)。

师:请问,你们是怎么想的,为什么这么认为?

生:……。

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。

(一种有一部分同学说是,有一部分同学说不是:)。

师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。

(二)动手操作,探究新知。

[u3]。

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)。

生:……。

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)。

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

[u4]开始吧!(学生研究,师巡回指导)预设时间:5分钟。

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)。

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)。

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击flash:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)。

生:我们还用了折的方法(生介绍方法)。

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击flash:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)。

生:是个平角。180度。

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识。

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)。

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)。

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)。

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

三角形内角和教学设计课评课(通用23篇)篇七

【教学目标】。

1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】。

使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。

【教学难点】。

【教学准备】。

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

【教学过程】。

一、激趣导入,提炼学习方法。

1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4.导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)。

二、动手操作,探索交流新知。

1.分组活动,探索新知。

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2.多方互动,交流新知。

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)。

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3.思想碰撞,夯实新知。

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)。

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180。(板书:三角形的内角和是180)。

四、走进生活,提升运用能力。

1.出示课前那架柁标出它的顶角是120,求它的一个底角是多少度?

2.给你三根木条,能做出一个有两个直角的三角形吗?

五、总结。

六、拓展新知,课外延伸。

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

三角形内角和教学设计课评课(通用23篇)篇八

三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索.实验.发现.验证三角形内角和是180度。

知识于技能:让学生通过亲自动手量.剪.拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。

情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。

学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手操作能力和主动探究能力。因此概念的形成是通过量.算.拼等活动,让学生探索.实验.发现.讨论.推理.归纳出三角形的内角和是180度。

1.关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。

2.从学生已有的知识和生活经验出发,让学生通过操作.观察.思考.交流.推理.归等活动,培养学生的学习兴趣,体验数学的价值。

教具准备;多媒体课件.一副三角板。

学具准备:量角器.各种三角形.剪刀等。

三角形内角和教学设计课评课(通用23篇)篇九

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了试一试,练一练的内容。已知三角形两个内角的度数,求出第三个角的度数。

三角形内角和教学设计课评课(通用23篇)篇十

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3、培养学生动手动脑及分析推理能力。

一、复习。

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。

二、新知。

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。

1、读学卡的学习目标、任务目标,做到心里有数。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。

(4)汇报结论(清楚明白的给小组加优秀10分)。

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。

三、知识运用(课件出示练习题,生解答)。

1、填空。

(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(3)等边三角形的3个内角都是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断。

(1)一个三角形中最多有两个直角。()。

(3)有一个角是60的等腰三角形不一定是等边三角形。()。

(4)三角形任意两个内角的和都大于第三个内角。()。

(5)直角三角形中的两个锐角的和等于90。()。

四、拓展探究。

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

三角形内角和教学设计课评课(通用23篇)篇十一

北师大版四年级数学下册。

1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:

1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

二、初建模型,实际验证自己的猜想。

在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三、再建模型,彻底的得出正确的结论。

因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

四、应用新知,巩固练习。

1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)。

2、试一试,在直角三角形中已知其中的一个角求另一个角的度数。

3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

五、拓展与延伸。

通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

三角形内角和教学设计课评课(通用23篇)篇十二

(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。“三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

(二)教学目标。

基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:

1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。

2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。

4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。

(三)重难点的确立:

1、重点:“三角形的内角和等于180°”结论的探究与应用。

处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

基于以上的情况,我确立了本节课的教法和学法:

(一)教法。

基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。

(二)学法。

通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。

具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。

前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。

通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。

活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。

活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。

活动6的设计目的发挥学生主体意识,培养学生语言概括能力。

3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。

三角形内角和教学设计课评课(通用23篇)篇十三

1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

探索发现三角形内角和等于180并能应用。

三角形内角和是180的探索和验证。

师:大家喜欢猜谜语吗?

生:喜欢。

师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一几何图形))

生:三角形。

师:三角形中都有哪些学问?

生:三角形有三条边,三个角,具有稳定性。

生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

生:三角形的内有和是180。

生:(一脸疑惑)

师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

生:每个三角形的内角和都是180吗?

(根据学生的问题,在三角形的内角和是180后面加上一个?)

1、理解内角 师:什么是内角?

生:我认为三角形的内角就是指三角形的三个角。

师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

2、理解内角和。

师:那三角形的内角和又是指什么?

生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

3、实践验证

师:每个三角形的内角和都是180吗?用什么方法来验证呢?

生:量一量每个角的度数,然后加起来看看是不是180。

师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

师:谁愿意把你的劳动成果和大家分享一下?

生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

师:你发现了什么?

生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

师:看来三角形的内角和不一定是180。

生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

生:都接近180就能说一定是180吗?

师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

生:我们小组也有折的直角三角形,钝角三角形。

(其它的成员展示不同的三角形)

师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

师:哪个小组和他们的方法不一样?

生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

师:这个小组的方法简便,易操作,很好。

生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

4、小结

生:没有。

师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

1、说一说每个三角形的内角和是多少度

师:(出示一个大三角形)这个大三角形的内角和是多少度?

生: 180

师:(出示一个小三角形)这个小三角形的内角和是多少度?

生:180

师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

生:180

生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

生:180

2、求下面各角的度数

师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

(出)

3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

生:用量角器量一量

师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

四、回顾总结,拓展延伸

师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

生:我知道了三角形的内角和是180。

生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

师:我们学习知识,必须知其然并知其所以然。

师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

三角形内角和教学设计课评课(通用23篇)篇十四

1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

通过多种方法验证三角形的内角和是180 。

课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。

一、激趣导入,提炼学习方法

1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”

2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

4.导入新课。

图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)

二、动手操作,探索交流新知

1.分组活动,探索新知

根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。

量一量组同学发给以下几种学具:

折一折组同学发给上面的三角形一组。

拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。

在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。

2.多方互动,交流新知

师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。

(1)首先要求学生说一说你们小组是怎样进行探究的。

(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)

(3)请学生说说通过探究活动你们组得出的结论是什么。

师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?

引导这一组从探究的过程和结论与同学、老师交流。

师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。

同样引导这一组从探究的过程和结论与同学、老师交流。

3.思想碰撞,夯实新知

师:三个徒弟你们能说说谁的方法最好吗?

学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)

师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )

四、走进生活,提升运用能力

1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?

2.给你三根木条,能做出一个有两个直角的三角形吗?

五、总结

六、拓展新知,课外延伸

师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。

大屏幕出示:

能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?

三角形内角和教学设计课评课(通用23篇)篇十五

1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。

2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。

3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。

重点:让学生亲自验证并总结出三角形的内角和是180度的结论。

难点:对不同验证方法的理解和掌握。

(一)质疑——发现问题,提出问题。

交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?

引导学生得出三角尺的三个内角的度数和是180度。

提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)。

你有什么办法验证这一结论呢?(动手操作,寻找答案)。

方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)。

方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。

(二)探究——分析问题,解决问题。

出示三个三角形:直角三角形、锐角三角形和钝角三角形。

引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。

提问:你有什么办法来验证这一猜想呢?

拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。

方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。

引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。

方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。

方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。

方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。

(三)归纳——获得结论。

交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?

总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。

(四)拓展——巩固练习。

1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?

2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?

三角形内角和教学设计课评课(通用23篇)篇十六

1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

对不同探究方法的指导和学生对规律的灵活应用。

课件、表格、学生准备不同类型的三角形各一个,量角器。

一、激趣引入。

1、猜谜语。

师:同学们喜欢猜谜语吗?

生:喜欢。

师:那么,下面老师给大家出个谜语。请听谜面:

形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?

生:三角形。

师分别出示卡片贴于黑板。

3、激发学生探知心里。

师:大家会不会画三角形啊?

生:会。

师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!

生:试着画。

师:画出来没有?

生:没有。

师:画不出来了,是吗?

生:是。

师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”

二、探究新知。

看看这三个字,说说看,什么是三角形的内角?

生:就是三角形里面的角。

生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)。

生:三角形里面的角加起来的度数。

生:算一算:90°+60°+30°=180°90°+45°+45°=180°。

师:180°也是我们学习过的什么角?

生:平角。

生:

4、操作、验证。

师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?

要求:

(1)每4人为一个小组。

(3)验证的方法不只一种,同学们要多动动脑子。

师:好,开始活动!

师:巡视指导。

师:好!请一组汇报测量结果。

生:通过测量我们发现每个三角形的三个内角和都在180度左右。

师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。

生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。

师:好!非常好!

师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)。

生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。

师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)。

生:180度。

师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。

三、解决疑问。

师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?

生:没有。

师:那你能用这节课的知识解释一下为什么画不出来吗?

生:两个直角是180度,没有第三个角了。

师:如果想画出有两个角是钝角的三角形你能画出来吗?

生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。

师:学会了知识,我们就要懂得去运用。

三角形内角和教学设计课评课(通用23篇)篇十七

北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。

二、说目标。

1、知识目标:掌握“三角形内角和定理的证明”及其简单的应用。

2、能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。

3、情感、态度、价值观:

在良好的师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。

4.教学重点、难点。

重点:三角形的内角和定理的证明及其简单应用。

三、说学校及学生现实情况。

我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。

四、说教法。

根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。

〈一〉、创设情景,直入主题。

一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。

〈二〉、交流对话,引导探索。

1、巧妙提问,合理引导。

证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。

2、恰当示范,培养学生正确的书写能力。

在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。

3、一题多解,放手让学生走进自主学习空间。

正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。

4、展示归纳,合理演绎。

利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。

5、反馈练习。

用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。

〈三〉、课堂小结。

1采用让学生感性的谈认识,谈收获。设计问题:

2(1)、本节课我们学了什么知识?

(2)、你有什么收获?

目的是发挥学生主体意识,培养其语言概括能力。

六、说教学反思。

本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。

三角形内角和教学设计课评课(通用23篇)篇十八

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

3、培养学生动手动脑及分析推理能力。

一、复习。

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。

二、新知。

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。

1、读学卡的学习目标、任务目标,做到心里有数。

4、验证:

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。

(4)汇报结论(清楚明白的给小组加优秀10分)。

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。

三、知识运用(课件出示练习题,生解答)。

1、填空。

(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断。

(1)一个三角形中最多有两个直角。()。

(3)有一个角是60的等腰三角形不一定是等边三角形。()。

(4)三角形任意两个内角的和都大于第三个内角。()。

(5)直角三角形中的两个锐角的和等于90。()。

四、拓展探究。

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。

2、汇报结果。

3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

六、谈谈自己本节课的收获。

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

三角形内角和教学设计课评课(通用23篇)篇十九

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

知识与技能

1.理解和掌握三角形的内角和是180度。

2.运用三角形的内角和的知识解决实际问题。

过程与方法

经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

情感态度与价值观

在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

重点:理解和掌握三角形的内角和是180度。

突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

用三角形的内角和解决实际问题。

突破方法:推理分析计算。运用推理,正确计算。

教法:质疑

引导,演示讲解。

学法:实践操作,小组合作。

多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

一课时

一.创设情境,引入新课

生:三类,分别为锐角三角形,直角三角形,钝角三角形。

师:嗯,真好,那么对边的分类呢?

生:俩类,分别为等腰三角形,等边三角形。

师:老师想让同学们帮老师画一个三角形,能做到吗?

生:能。

师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

生:想。

师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)

二.探究新知

师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。

生1:锐角三角形。

生2:直角三角形。

生3:钝角三角形。

生:里面的三个角,可以用角1,角2,角3来表示。

生:三角形的内角和是180度。

师:那么我们能不能一起用一些好的办法来验证一下呢?

生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

师:还有其他的办法吗?

生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

生3:我可以用折的方法,把三个角的度数折在一起。

师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

三.总结任意三角形的内角和是180度并做适当练习。

四.板书设计

三角形的内角和

量一量锐角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

钝角三角形:120度+38度+22度=180度

拼一拼图形呈现

折一折图形呈现

三角形内角和教学设计课评课(通用23篇)篇二十

1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:

1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

二、初建模型,实际验证自己的猜想。

在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三角形的形状。

内角和。

锐角三角形。

钝角三角形。

直角三角形。

等腰三角形。

等边三角形。

三、再建模型,彻底的得出正确的结论。

因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

四、应用新知,巩固练习。

1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)。

2、试一试,在直角三角形中已知其中的一个角求另一个角的度数。

3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

五、拓展与延伸。

通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

三角形内角和教学设计课评课(通用23篇)篇二十一

教学内容:

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:

1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

3、培养学生动手动脑及分析推理能力。

重点难点:

教学准备:

导学过程。

一、复习。

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。

二、新知。

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。

1、读学卡的学习目标、任务目标,做到心里有数。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。

(4)汇报结论(清楚明白的给小组加优秀10分)。

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。

三、知识运用(课件出示练习题,生解答)。

1、填空。

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断。

(1)一个三角形中最多有两个直角。()。

(3)有一个角是60的等腰三角形不一定是等边三角形。()。

(5)直角三角形中的两个锐角的和等于90。()。

四、拓展探究。

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。

三角形内角和教学设计课评课(通用23篇)篇二十二

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了试一试,练一练的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】。

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】。

能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标:让学生体会几何图形内在的结构美。

【教学过程】。

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为三角形内角和的大小爆发了一场激烈的'争吵。

钝角三角形大声叫着:我的钝角大,我的内角和一定比你们的内角和大。锐角三角形也不示弱:我的锐角虽然比钝角小,但我的内角和并不比你小。直角三角形说:别争了,三角形的内角和都是180。我们的内角和是一样大的。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)。

二、自主探究,验证猜想。

生1:能。我量出三角形的三个内角和度数,加起来是否接近180(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上1、2、3,以免在剪拼时把内角搞混了。)。

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

(设计意图:验证猜想为学生提供了做数学的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)。

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

实验报告单。

实验名称。

实验目的。

实验材料。

尺子。

剪刀。

量角器。

我的方法。

我的发现。

我的表现。

自评。

互评。

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和教学设计课评课(通用23篇)篇二十三

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

导学过程。

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。

1、读学卡的学习目标、任务目标,做到心里有数。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。

(4)汇报结论(清楚明白的给小组加优秀10分)。

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。

1、填空。

(1)一个三角形,它的两个内角度数之和是110,第三个内角是().

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(3)等边三角形的3个内角都是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断。

(1)一个三角形中最多有两个直角。()。

(2)锐角三角形任意两个内角的和大于90。()。

(3)有一个角是60的等腰三角形不一定是等边三角形。()。

(4)三角形任意两个内角的和都大于第三个内角。()。

(5)直角三角形中的两个锐角的和等于90。()。

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。

2、汇报结果。

3、课件提示帮助理解。

教学反思。

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

猜你喜欢 网友关注 本周热点 精品推荐
发言稿能够帮助演讲者更好地组织语言和思路,使演讲更加清晰和有条理。通过学习和阅读一些著名人物的发言稿,我们可以提升自己的演讲能力。各位领导、各位同事:你们好!从
演讲稿是演讲者在演讲前准备的重要内容,它包含了演讲的主题、结构、论据等要素。这些演讲稿范文是由经验丰富的演讲者撰写,并经过多次演讲实践的检验。一个自信的性格,一
教师总结有助于发现教学中的问题和短板,并为下一学期的教学提供参考和借鉴。接下来,我们将分享一些经验丰富的教师的总结范文,希望能够给大家带来一些灵感。
教学工作计划的调整是根据学生学习情况和教学效果,及时对教学计划进行修正和改进。希望以下这些教学工作计划范文能给正在编制教学工作计划的教师们提供借鉴和参考。
优秀作文是一种独特的表达方式,它能够引起读者的共鸣和思考。现在,请大家一起阅读一些优秀作文的范文,希望能够提高大家的写作水平。你看同学们个个高举双手,双眼直直地
读后感是对书中情节、人物和主题的理解和感悟的表达方式。接下来,我将与大家分享一些读后感好文,希望能够给大家带来不同的思考。他如何从一个很不听话、调皮捣蛋的孩子,
开学典礼是一次契机,它提醒着学生们要以积极的心态投入到学习和成长的道路中。以下是一些成功举办开学典礼的经验分享,希望对大家有所帮助。尊敬的各位领导、老师,亲爱的
教师工作计划的落实需要持之以恒,每日细化,及时调整,确保实现既定的教育目标。下面是几个教师工作计划的实施效果和反馈,供大家借鉴和参考。积极多渠道学习党报党刊及国
幼儿园大班的学生对身边的事物有了更加深入的认识和理解。幼儿园大班是孩子们开始进入小学的重要阶段,他们在这里经历了无数的挑战与收获。总结是在一段时间内对学习和表现
加盟模式适用于各行各业,无论是餐饮、零售还是服务业都有成功的案例。以下是小编为大家收集的加盟范文,仅供参考,以帮助大家更好地了解加盟的过程和要点。合伙人:甲(姓
范文是对某种文字表达形式的典型样例,通过阅读范文,我们可以更好地理解和掌握这种文字表达方式。通过阅读这些范本,我们可以拓宽自己的思路,丰富自己的写作素材。
在经营中,我们需要建立良好的品牌形象和市场声誉,以吸引更多的客户。经过多年的市场实践和总结,我们总结出了一套行之有效的经营方法和工具。授权许可方(甲方):法定代
月工作总结可以帮助我们发现并改进工作中的短板,持续提升自己的专业能力。接下来是小编为大家搜集的一些经典月工作总结范文,供大家参考和学习。各位领导,各位同事,大家
撰写演讲稿需要注意语言规范和修辞技巧,同时也要考虑听众的背景和需求。以下是小编为大家收集的演讲稿范文,供大家参考和学习。“地球一小时”活动是世界自然基金会针对“
应急预案可以帮助组织和个人在突发事件发生后能够迅速反应和做出正确的应对措施。如果您正在面临应急预案的编写,以下是一些范文可供您参考。根据市人防办、市教育局文件指
在半年总结中,我们可以评估过去的计划和目标的实施情况,及时调整和修正自己的发展方向。以下是小编为大家收集的半年总结范文,希望能给大家提供一点启示和参考。
通过撰写计划书,我们可以更好地把握时间,避免工作或学习中的盲目性和随意性。在下面的范文中,你可以看到不同类型的计划书,包括教育、商业、科研等领域。创业第一步:做
优秀作文具有感染力和传递力,能够深入人心,影响读者。探索优秀作文的奥秘,我们可以从这些范文中找到一些启发和技巧。春天的天气,是温暖的。它是冷与热的过渡。在这个季
在工作报告中,我们可以详细描述自己所负责的工作内容、完成情况以及遇到的问题和解决方案。以下是小编为大家收集的优秀工作报告范文,供大家参考和学习。学校总务后勤工作
编写工作计划书可以帮助我们合理安排工作事项的优先级。最后,祝愿大家编写出一份完美的工作计划书,实现自己的工作目标和任务。20xx年,xx市分行纪检监察部决心在上
工作计划书是工作的蓝图,能够帮助我们把握整体思路和目标,更好地推动工作进展。下面是一份详尽的工作计划书范文,通过学习其中的步骤和方法,我们可以提高工作计划的可行
实践报告能够帮助我们锻炼综合分析和写作能力,提高自身学术水平。看看他人的实践报告,可以帮助我们更好地理解实践报告的写作要点和结构。有一种生活,你没有经历过,就不
家长会旨在共同探讨孩子的学习问题,互相借鉴经验,共同提供帮助。如果您对如何组织一场高效的家长会感兴趣,以下是一些精选的家长会指导材料,希望对您有所启发。
没有什么能够阻挡那些坚持努力的人,时间会证明他们的价值。以下是小编为你精心挑选的励志总结范文,读完后或许会对你产生一些积极的影响。同学们:大家好!新学期第一节课
个人简历可以展现我们的学历、工作经验、专业技能和个人特长,有助于给雇主留下深刻的印象。个人简历不仅是求职的必备资料,也是自我展示的机会,通过简洁明了的写作可以突
今天,我以主持人的身份出现在大家面前,我将竭尽全力给大家带来一场精彩绝伦的活动。希望这些总结范文能够给你提供一些案例和参考,让你写出更具有价值和深度的总结。
安全演讲稿要注重实效性,不仅在演讲结束后能够留下深刻印象,更要使听众在日后的生活中能够真正运用起来。这些安全演讲稿范文既充满了专业性,又集思广益,希望对大家的演
活动方案是指在一定的时间和空间范围内,为了完成某项任务或实现某个目标所制定的详细计划。在这里,小编为大家准备了一些独特的活动方案分享,希望能给大家带来一些新鲜的
写心得体会是一个思考和反思的过程,可以加深对所学知识的理解。心得体会不仅是对经验的回顾,更是对自身思维和行动方式的深入剖析。写心得体会可以运用一些修辞手法来增强
在活动总结中,我们可以对活动的目标、策划、组织和执行等方面进行评估和总结。接下来是一些优秀的活动总结范文,希望能够给大家带来灵感和启示。2014年7月xx日,是
通过编写工作计划范文,我们可以更好地规划和安排工作,使自己的工作更加有条理和有计划。工作计划范文是一种重要的职业素质展示方式,可以让我们展示自己的工作能力和思考
离婚协议的签订需要注意保护未成年子女的权益,合理划分财产,避免给双方带来过大的经济负担。以下是小编为大家收集的离婚协议范文,仅供参考,希望对大家有所帮助。
作为一项重要制度安排,述廉报告在推动廉政建设方面具有积极的作用。请大家参考下面的述廉报告示例,从中汲取经验和启示,进一步推动廉政文化的发展。本人切实履行党委主体
在这个值得纪念的日子里,我有幸成为今天的主持人,真是一种荣幸。以下是小编为大家精心准备的活动流程安排,请各位嘉宾参阅。张:用稚嫩的小手。张:用五彩的画笔。合:去
活动方案的成功与否,往往取决于活动目标的明确性和实施计划的完整性。以下是小编为大家收集的一些活动方案模板,希望对大家有所帮助。针对婚房装修客户举办优惠活动。举办
考试总结是培养学生学习能力和自主学习能力的重要手段。在这里为大家分享一些考试总结的优秀范文,希望对大家有所帮助。经过紧张的复习,严格的考试,焦急的等待,终于过了
个人简历不仅是求职过程中的必备材料,更是主动展示自己的机会。个人简历的范例可以给你一些灵感和思路,帮助你更好地展示自己的能力和特点。姓名:性别:女。民族:汉族。
毕业生是一个重要的群体,代表着学校教育的成果和学生的努力。下面是一些毕业生的职业规划建议,希望能给大家提供一些借鉴和思路。时光如梭,专科生活转眼即逝,然而在这x
讲话稿的目的是通过言辞的表达来引导听众的思想,激发情感,传达信息。通过讲话稿的撰写,我们可以借鉴一些优秀的范文和经典的演讲案例,以获得启发和提高自己的表达能力。
军训心得体会是对军事训练中的收获和体验进行总结和表达的一种重要形式。看看这些学员们写的军训心得体会范文,或许能给你一些写作的灵感。告别了快乐的暑假,迎来了新的学
优秀作文能够吸引读者,引发共鸣,甚至改变人们的观念和思想。下面是一些经典的优秀作文欣赏,希望能给大家带来一些灵感和启发。我的弟弟,他有一张引人注目的小脸蛋。有时
自查报告对于学生来说,是一个重要的学习辅助工具,可以帮助他们总结所学知识,发现不足,做出改进。小编为大家整理了一些自查报告的优秀范文,供大家参考学习,希望对大家
月工作总结是在每个月的末尾,对过去一个月的工作进行总结和回顾。接下来,我们一起来阅读一些优秀的月工作总结范文,探索他们的写作技巧和思路。以《__职业学院学生手册
撰写一份优秀的申请书需要认真思考,准备充分,以及突出自己的亮点。借助以下的申请书样本,希望能够给大家提供一些写作思路尊敬的xx领导:在本部门的工作中,我勤奋工作
汽车产业链的发展带动了许多相关产业的繁荣,包括零部件制造、销售、售后服务等。这是一份关于汽车保险的购买指南,了解一下,避免被坑。甲方:证件号码:乙方:证件号码:
总结过去一段时间的工作经验,分享自己在工作中的收获和体会。以下是一些优秀员工撰写的述职报告案例,供大家学习和参考。在xx区区委组织部的重视下,在xx区司法局党委
通过活动总结,我们可以对活动的过程和结果进行评估和反思。需要写一篇活动总结但不知道从何下手?以下是一些活动总结的范例供大家参考和借鉴。7月28日,中国矿业大学成
社会实践可以开拓学生的眼界,拓宽他们的思维和视野,使他们真正认识到社会的多样性和复杂性。以下是小编为大家收集的社会实践范文,仅供参考,希望能够给大家提供一些思路
优秀作文的语言质量高,运用了丰富的词汇和恰当的修辞手法。以下是小编为大家准备的一些优秀作文赏析,一起来欣赏和学习吧。我有一个好朋友叫朱涵宇,是我们班的学习委员。
在现代工业化社会中,生产是实现资源转化和价值创造的基础。生产是一个复杂而关键的过程,以下是一些行业领先企业的生产经验分享。安全生产是关系到国家、企业和人民群
近年来,许多地方政府对递交述廉报告给予了重要的考核和奖励。通过阅读下列述廉报告范文,我们可以了解到廉政建设在不同单位和个人中的不同表现和特点。&&amp
教师演讲稿能够激发听众的学习热情,引导他们主动思考和参与互动。在这里整理了一些优秀的教师演讲稿,分享给大家,希望能够给您的演讲提供一些启示和帮助。尊敬的老师们、
优秀作文是一首诗,以感动人心的语言唤起读者的共鸣和思考。通过阅读以下这些优秀作文,我们不仅可以欣赏其文采,还可以从中汲取灵感和启发。傍晚5点左右,太阳快要下山了
一个有效的工作方案可以帮助团队在项目中取得更好的成果。以下是一些成功的工作方案分享,希望能够给大家提供一些思路和方法。为贯彻落实市委、市政府关于大气污染治理的决
编写一份计划书可以让我们更加清晰地了解自己的目标和动力,从而更加有针对性地行动。这些计划书范文是由专业人士撰写的,内容全面详实,具有较高的可操作性。
作为一名学生,我们应该努力提升自己的写作水平,争取写出更多优秀作文。以下是小编为大家准备的优秀作文范文,希望可以给大家带来一些启发和指导。有一天,妈妈给我买了一
辞职报告的写作过程也是整理自己在公司获得的知识和经验的契机。以下是小编为大家收集的辞职报告范文,仅供参考,希望能给你一些启发和帮助。尊敬的各位领导,同事们:大家
策划方案的制定过程需要团队合作和集体智慧的体现,因此在决策和执行上要注重多方参与和共识的形成。以下是小编为大家收集的策划方案范文,仅供参考,大家一起来看看吧。
自我介绍是一个学会自我表达的重要环节,它可以提升我们的自信心和说服力。小编特意搜集整理了一些简洁明了的自我介绍范文,供大家参考。xxx:大家好,我
报告是对特定主题或问题进行研究和分析后,以书面形式撰写而成的一种学术或专业性文章,它可以提供客观的信息和结论,帮助读者了解和解决问题。如果你需要撰写一份关于消费
月工作总结是一种对工作进行梳理和整理的过程,可以帮助我们更好地规划和安排下一个月的工作。如果你正在写一篇月工作总结,以下是一些范文供你参考,希望能够帮助到你。
合同协议可以用于各个领域,如房地产、劳务合同、销售合同等。小编精心挑选了一些合同协议范文,以供大家学习和参考。经济类型:法定代表人(单位主要负责人)。登记注册地
优秀作文是对一件事情、一个观点或一个故事进行深入思考和独立分析后所写成的文章。通过学习这些优秀作文,我们可以学到一些写作的技巧和方法,提升自己的作文能力。
通过入团申请书的撰写,初中生可以学会更好地表达自己的观点和想法,锻炼语言表达和思辨能力。接下来是一些初中生填写入团申请书的范文,让我们一起来看看吧。
演讲稿的结尾应该给听众留下深刻的印象,可以使用总结、呼吁、感谢等技巧。在这里,小编为大家汇总了一些优秀的大学生演讲稿,希望对大家有所启发和借鉴。敬爱的老师、亲爱
教师演讲稿是教师展示自己教育理念、教学方法和专业素养的重要方式。在这里,为大家准备了一些优秀教师演讲稿的精选范文,欢迎广大教师们阅读和借鉴,共同提高。
通知应该注重格式和排版的规范,包括标题、日期、接收者姓名等信息的明确。以下是小编为大家收集的通知范文,仅供参考,希望能对你的写作提供一些启示。为进一步提高我公司
范文范本中通常包含了丰富的表达和论述材料,能够帮助我们扩展思路和提升论述能力。接下来是一些优秀的范文范本,希望能给大家带来一些写作的灵感和点子。受托人:委托事项
通过撰写报告范文,我们可以把重要的信息整理出来,便于他人理解和参考。下面是一篇关于品牌推广的报告范文,希望能帮助大家提升品牌形象和知名度。这次实训是为了使学生准
尊敬的各位嘉宾,大家下午好!在这美好的时光里,我将为大家带来一场丰富多彩的活动。以下是一些脍炙人口的主持词案例,它们以幽默的语言和生动的形象描绘,给观众留下深刻
工作计划书是一份重要的工作文件,它可以帮助我们保持工作的有序性和系统性。为了让大家更好地掌握工作计划书的编写方法,我们整理了一些常见问题和解决方案。
好的发言稿能够激发听众的思考和讨论,实现信息传递和沟通的目的。最后,小编整理了一些高分发言稿的要点和技巧,希望能够帮助大家写出更加出色的发言稿。各位同仁:大家晚
教学工作计划可以帮助教师及时发现和解决教学中的问题,促进自身的专业成长。包含在下面这份教学工作计划中的教学思路和设计,将帮助教师更好地指导学生学习,实现教育教学
竞选是用来争取支持和认同的一种方法,我认为我们应该开始竞选了。竞选不仅是一场个人的较量,也是对选民的信任和支持的考验。尊敬的老师、亲爱的同学们:大家好!我是六、
家长会可以为学校改进教育教学工作提供反馈和建议,促进教育质量的提升。以下是小编为大家搜集的家长会范文,供大家参考和学习如何写好总结。三、上个月,我们把以前的不好
写心得体会可以帮助我们更好地认识和了解自己,同时也能够推动自己在学习和工作中的进步。让我们一起来阅读一些优秀的心得体会文章,欣赏他人的思考和总结。首先,军训是一
今天的活动将是一个难忘的经历,让我们一起留下美好的回忆。在下面的视频中,我们将展示一些优秀主持人的精彩表现,供大家参考。乙:亲爱同学们!合:大家好!甲:在世界的
更多申请书可以为你创造一个机会,进入理想的学校或机构进行深造。为了丰富大家的申请书写作经验,下面是一些成功申请者分享的优秀申请书,供大家参考借鉴。敬的房东先生:
作文是语文学习中最重要的一项技能,可以提升我们的表达能力和思维能力。小编为大家整理了一些近期获奖的优秀作文,希望能够给大家以参考和借鉴。回首往事,幼稚、天真、欢
英语是一门国际通用语言,学好英语对我们的个人发展和职业提升都有很大的帮助。搭建一个良好的英语学习环境对于提高英语水平具有积极影响,以下是一些建议供大家参考。
在制定活动方案时,我们需要考虑活动的目的、宗旨以及参与者的需求和特点。接下来我们将为大家呈现一些具有创新性和操作性的活动方案,希望能帮助大家提升活动的效果和价值
通过装修合同的签订,可以为装修工程提供法律保护和有效的索赔途径。大家可以参考以下这些范例,为自己的装修合同增加一些合理的要求和条款。乙方:___________
教师工作总结是教师个人和学校教育发展的重要依据之一,具有很高的实际应用价值。接下来,小编给大家分享一些优秀的教师工作总结范文,希望可以为大家的写作提供一些借鉴和
月工作总结是我们对自己负责、对工作负责的表现,也是对工作同事和上级的一种交代。下面是一些经典的月工作总结例句,希望对大家写好总结有所帮助。为进一步加强学校安全工
它不仅仅是个人的总结,更是一种对过去经验的反思和对未来行动的指导。小编为大家整理了一些成功人士的心得体会,希望能够给大家一些思考与启示。近几个月来,全球范围内的
教学计划应该注重综合素养培养,培养学生的创新思维和实践能力。这是一些教学计划总结的范文,可以让大家更好地理解教学计划的重要性和实施步骤。(一)、复习生活环境,导
优秀作文融合了丰富的文化知识和独到的见解,展示了作者对文学艺术的独特理解和品味。以下是一些优秀作文的片段,希望能够帮助大家提升自己的写作水平。我想,任何父亲即便
通过编写工作计划书,我们可以更好地管理时间,避免拖延和浪费。在下面,小编为大家整理了一些优秀的工作计划书示例,供参考和学习。学校开学前准备工作计划,在学校开学
范文范本可以提供大量的例证和样本,使写作者能够更好地理解和运用各种写作技巧。以下是小编为大家准备的范文范本集锦,希望能够对大家的写作有所帮助。老师们:。在这里代
优秀作文是在充分思考和拟定主题之后,能够有条不紊地展开论述,逐步引导读者进入文章的世界。无忧的微笑:每个人都羡慕他的微笑,因为那是一种无忧无虑的微笑。
幼儿园中班的教学过程中,注重开展灵活多样的游戏活动,激发孩子的学习兴趣和主动性。想要写一篇有启发性和参考价值的幼儿园中班总结吗?不妨来看看以下的范文。
岗位职责是工作职责和职权的界定,它明确了员工在特定职位上的权限和责任。以下是一些经典的岗位职责案例,希望能够为大家提供一些写作上的灵感和参考。根据《中华人民共和
演讲稿需要有一个清晰的结构,包括引言、主体和结论等部分,以便于演讲者有条不紊地进行陈述。通过阅读演讲稿范文,可以提升自己的表达能力和语言组织能力。一个人生哲理故
通过阅读和模仿范文范本,我们可以逐渐形成自己的独特写作风格和个人特色。接下来,我将分享一些优秀的范文范本,希望能够给大家带来启发和指导。我自20xx年考取x大学
合作是人们在工作、学习和日常生活中,共同努力、相互配合,共同完成任务或达到目标的一种行为方式。合作能够提高工作效率,增强团队凝聚力,培养集体荣誉感和责任感,促进
读书心得是对所读书籍的内容、主题和内涵进行整理和总结的一种方式,它能够帮助我们更好地理解和吸收知识。接下来,我们将分享一些优秀的读书心得,供大家参考和借鉴。
述职报告可以反映出一个人在工作中的专业素养和能力水平,也是提升职业形象的一种重要方式。下面是一些优秀的述职报告样板,其中涵盖了不同行业、不同岗位的范例,可以作为
通过写作,我们可以更好地了解自己,认识自己的优势和不足,以便更好地提高和进步。以下是一些优秀作文范文的精选,透过这些范文的文字,我们可以更好地了解和感受优秀作文
个人简历是自我展示的良好途径,通过简洁明了的文字和布局,能够突出个人的优势和特长。如果您对个人简历的写作还存在一些困惑,以下是一些范例供您参考和学习。
个人总结是对自己在一段时间内的学习和工作生活等方面表现的总结和概括。以下是一些成功人士的个人总结范文,希望能激发大家的写作灵感和潜力。可爱听话的孩子,性格独立,