写心得体会可以促使我们提高自我认知,发现并改正不足,从而不断成长和进步。以下是一些写心得体会的经验分享,愿大家都能从中受益。
优质大数据课设的心得体会范文(12篇)篇一
大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?下面是本站小编为大家收集整理的大数据时代。
欢迎大家阅读。
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20xx年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
优质大数据课设的心得体会范文(12篇)篇二
随着信息技术的飞速发展,现代社会中产生了大量的数据,而这些数据需要被正确的收集、处理以及存储。这就是大数据数据预处理的主要任务。数据预处理是数据分析、数据挖掘以及机器学习的第一步,这也就意味着它对于最终的数据分析结果至关重要。
第二段:数据质量问题。
在进行数据预处理的过程中,数据质量问题是非常常见的。比如说,可能会存在数据重复、格式不统一、空值、异常值等等问题。这些问题将极大影响到数据的可靠性、准确性以及可用性。因此,在进行数据预处理时,我们必须对这些问题进行全面的识别、分析及处理。
第三段:数据筛选。
在进行数据预处理时,数据筛选是必不可少的一步。这一步的目的是选择出有价值的数据,并剔除无用的数据。这样可以减小数据集的大小,并且提高数据分析的效率。在进行数据筛选时,需要充分考虑到维度、时间和规模等方面因素,以确保所选的数据具有合适的代表性。
第四段:数据清洗。
数据清洗是数据预处理的核心环节之一,它可以帮助我们发现和排除未知数据,从而让数据集变得更加干净、可靠和可用。其中,数据清洗涉及到很多的技巧和方法,比如数据标准化、数据归一化、数据变换等等。在进行数据清洗时,需要根据具体情况采取不同的方法,以确保数据质量的稳定和准确性。
第五段:数据集成和变换。
数据预处理的最后一步是数据集成和变换。数据集成是为了将不同来源的数据融合为一个更综合、完整的数据集合。数据变换,则是为了更好的展示、分析和挖掘数据的潜在价值。这些数据变换需要根据具体的研究目标进行设计和执行,以达到更好的结果。
总结:
数据预处理是数据分析、数据挖掘和机器学习的基础。在进行预处理时,需要充分考虑到数据质量问题、数据筛选、数据清洗以及数据集成和变换等方面。只有通过这些环节的处理,才能得到满足精度、可靠性、准确性和可用性等要求的数据集合。
优质大数据课设的心得体会范文(12篇)篇三
随着信息技术的飞速发展,大数据越来越成为一个热门话题,以其海量、高速、多样化和价值挖掘四个特点,吸引着越来越多的人关注。作为一个信息管理专业的学生,在学习了大数据相关课程并进行实际实践之后,我对于大数据的感受愈加深刻,本文就是对大数据的一些心得总结。
大数据的价值,不仅体现在了数据的存储和处理能力上,更体现在了对于数据的价值提升和利用上。以商业为例,通过对于海量数据的分析,企业可以更好地了解市场的需求和趋势,做到精确营销,提高营收。在医疗、安防等领域,大数据的运用更是可以让治疗更加精准、安全,社会治安更有保障。总之,大数据为各种行业的发展注入了新的生机和动力。
第三段:挑战与机遇。
但是,随着大数据应用的深入,也带来了诸多挑战。首先是数据质量问题,由于日积月累的数据泛滥,其中也不乏数据噪音、数据缺失等不良信息,如何去除杂质提升数据质量成为重要问题。其次,数据安全也成为了一个让人头疼的问题,因为数据传输和存储中的漏洞,容易被黑客攻击,这也是大数据的一大风险。但是,与此同时,机遇与挑战并存。对这些问题的解决,需要通过技术的革新和人才的培养,正是大数据行业发展的良机,也为我们提供了更多的机会。
第四段:大数据技术。
大数据技术是支撑大数据应用的重要基础。在处理海量数据上,传统的关系型数据库已经无法满足需求,而Hadoop、NoSQL、Spark等大数据技术的进入,大幅降低了海量数据的处理成本和时间,极大地提高了业务智能分析的能力,为大数据的广泛应用提供了技术支持。但是,由于技术本身具有复杂性和高技术含量,因此需要不断地探索、应用、完善,如此才能推动新技术的创新和发展。
第五段:未来展望。
目前,大数据的应用逐渐趋于成熟,从数据收集、整理、处理到数据分析都得到了较好的落实,但是,这只是大数据发展的小小起步,未来大数据还将更广泛地应用于各个领域。在大数据的推动下,人工智能、物联网等新兴技术也会迎来新的发展机遇。因此,我们需要不断地学习和积累经验,在专业性技能的基础上增加创造性思维和创新意识,以适应大数据时代的发展。
总结:
大数据是一个浩瀚无比的世界,它带来了巨大的价值和机遇,但也同时伴随着种种挑战和风险。在大数据时代,只有通过不断学习、完善技能,才能适应和引领时代的变革,让大数据为人类的生产和生活带来更大的便利和奇迹。
优质大数据课设的心得体会范文(12篇)篇四
随着信息技术的快速发展,政府机构越来越多地利用大数据来管理和实施政策。政务大数据已经成为现代政府决策和执行的重要工具。在我近期的实习经历中,我有幸参与了一个政务大数据项目,从中获得了很多宝贵的经验和体会。在这篇文章中,我将分享我对政务大数据的认识和体会。
首先,政务大数据可以提高政府决策的准确性和效率。政府决策需要大量的数据来支持,这些数据来自各个部门和渠道。传统的数据收集和整理方式非常耗时和复杂,往往导致决策者无法及时获得足够的信息来做出准确的判断。而政务大数据则可以通过数十家部门和机构共享信息库,实时地汇集和分析庞大的数据,为决策者提供准确的信息和快速的分析。这种高效的决策过程使得政府能够更好地应对复杂的社会问题。
其次,政务大数据可以帮助政府提供更好的公共服务。政府部门需要通过大数据技术对公共服务进行规划和优化。通过分析大数据,政府可以了解公众的需求和偏好,进而调整和改进服务的内容和方式。例如,在医疗保健领域,政府可以通过政务大数据了解人口的健康状况和疾病发展趋势,进而调整医疗资源的配置和医疗政策的制定,以提供更好的医疗服务。政务大数据的运用可以让政府的公共服务更加贴近民众需求,提高民众的获得感和满意度。
此外,政务大数据也可以提高政府的监督和治理能力。政府的权力需要社会监督,以确保政府行使权力的合法性和公正性。政务大数据可以为公众提供政府工作的透明度和监督渠道。通过公开政府相关的大数据信息,公众可以更好地了解政府的决策和执行过程,监督政府的行为。同时,政务大数据还可以帮助政府打击腐败和执法不公,通过数据分析和比对,提高治理的公正和效率。
然而,政务大数据的运用也面临一些挑战和隐患。首先是数据安全和隐私问题。政务大数据涉及大量的个人隐私和敏感信息,在数据采集和存储过程中需要确保数据的安全性和保密性。政府需要建立完善的数据安全措施和法律法规框架,保护公民的隐私权和信息安全。其次是数据质量和数学模型的问题。政务大数据分析的结果和决策的准确性很大程度上依赖于数据的质量和数学模型的正确性。政府需要投入足够的资源和人才来确保数据的准确性和分析的科学性。
政务大数据是信息时代的必然产物,它为政府的决策和治理提供了前所未有的机遇和挑战。通过有效地运用政务大数据,政府可以提高决策的准确性和效率,提供更好的公共服务,并增强社会的监督和治理能力。然而,政务大数据的运用也需要解决数据安全、个人隐私和数据质量等问题。我相信,随着技术的进一步发展和以人为本的原则的贯彻,政务大数据将为政府和公众带来更多的利益和成果。
优质大数据课设的心得体会范文(12篇)篇五
随着数字化时代的到来,大数据已逐渐成为政务管理的重要手段。政府可以通过收集、分析和利用大数据,为政策制定、资源配置和服务优化等方面提供有力支撑。大数据技术的应用,已成为政府有力的助手,改变了政府运行方式,提升了政府服务效能,促进了政府与公民之间的联系和交流。
政府需要面对许多复杂的问题,大数据技术的应用能够为政府决策提供实时、准确的信息和数据支持。政府可以以大数据技术为依托,通过数据挖掘、分析和模拟等手段,对社会、经济、环境等方面进行深入探索,进而提炼出有效的决策方案。同时,大数据技术的应用可以帮助政府调整政策,优化民生服务,提升政府的形象和信誉。
政府管理需要处理大量的数据信息,信息数量庞大且多样化。大数据技术的应用,可以帮助政府建立数据中心,通过数据采集、分类、存储、共享和加工等方式,实现对数据的精细管理。通过数据的精细管理,政府能够更高效地运营和管理政府服务,优化公共资源配置,提升效能。
在政府服务中大数据有着广泛而深远的应用。比如,在社会保障领域,政府可以利用大数据技术实现对各类社会保障信息的分析,以便更好地管控和优化社会保障服务。在城市管理中,大数据可为政府提供精准的交通流量、环境质量、城市治理问题等信息,以便制定更加有效的城市管理政策。大数据技术的应用,将会推动政府服务的质量与效率,更好地满足公民日益增长的各种需求。
第五段:大数据技术应用面临的挑战。
大数据技术的应用,还面临着安全、隐私等方面的挑战。政府在使用大数据技术时必须保证数据的安全和保密,防止数据泄露、滥用、篡改等问题的发生。同时,政府还需考虑合规性和道德等方面的问题,确保数据的合法性与道德性。只有在解决好这些问题,政府才能充分发挥大数据技术的应用潜力,更好地服务公民。
总结:
大数据技术的应用,对政府服务、政策制定、资源配置等方面都有非常重要的意义。同时,使用大数据技术,也存在多重挑战,政府应该注重解决这些挑战,才能更好地利用大数据服务于公民。在数字时代,随着大数据技术的不断发展和应用,政府将会以更加高效的方式运行和管理,为公民带来更加精准、便捷的服务。
优质大数据课设的心得体会范文(12篇)篇六
随着信息技术的快速发展,大数据已经成为了当代社会最为炙手可热的话题之一。作为信息时代的产物,大数据给我们的生活带来了巨大的改变。最近,我读了一本名为《大数据》的书,在阅读过程中,让我对大数据有了更深的认识。下面我将与大家分享一下我的体会。
首先,大数据让我们的生活更加便利。现如今,大数据技术得到了广泛的应用,人们可以通过各种技术手段轻松地获取所需的信息。无论是购物、出行还是旅游,我们都能够通过大数据获取到最新的产品信息、路线规划以及景点推荐,从而为我们的生活提供了诸多便利。比如,每当我需要购买产品时,只需在电子商务平台上输入关键词,便可获得大量的搜索结果,同时还能通过查看其他用户的评价来进行筛选,这使得我们能够更加轻松地做出购买决策。
其次,大数据为商业发展提供了新的机遇。随着大数据技术的不断改进,越来越多的企业开始使用大数据分析手段来处理海量的数据,从而找到市场的空白点,为企业创造更多商机。例如,通过对大数据的分析,电商平台能够通过用户的购买行为了解用户的兴趣爱好,并根据这些数据进行精确的产品定位和个性化推荐,从而提高销售额。大数据的出现,使得商业发展更加精准和高效,企业可以更加了解消费者的需求,提供更好的产品和服务。
再次,大数据为决策提供了科学依据。无论是政府还是企事业单位,在制订政策和规划发展战略时,都需要基于大量的数据进行决策。大数据的出现让决策者可以更加客观地了解社会经济现状,分析各种数据之间的关系以及相关因素对决策结果的影响,从而做出更加明智的决策。比如,在交通规划方面,利用大数据可以实时监测交通拥堵情况,分析交通流量以及不同道路之间的关系,从而优化交通路线,提高交通效率。大数据的运用,为决策者提供了更准确的信息,帮助他们做出科学合理的决策。
最后,大数据也带来了一系列的挑战和问题。首先,数据安全问题成为了一个亟待解决的难题。大数据的存储和传输需要庞大的计算资源,但与此同时,也给数据安全带来了巨大的挑战。随着黑客技术的不断发展,数据泄露和隐私侵犯的风险也在逐渐增加。其次,大数据的过滤和分析需要高度专业的技术和人才。大量的数据对于普通人来说是一种负担和困扰,如果没有足够的专业人才来进行数据的处理和分析,那将影响到大数据的应用和发展。
总而言之,大数据给我们的生活和社会带来了诸多的变化和好处,但也面临着一些挑战和问题。我认为,我们应该在充分利用大数据的优势的同时,加强数据安全的保护和专业人才的培养。只有这样,我们才能更好地应对大数据时代的挑战和机遇,并为我们的生活和社会发展创造更加美好的未来。
优质大数据课设的心得体会范文(12篇)篇七
随着信息技术的不断发展,金融行业也逐渐开始关注大数据的应用。金融大数据,指的是以金融行业为对象的庞大数据集合,对于金融市场的分析和决策起到了重要的作用。在过去的几年里,我有幸参与了一家金融科技公司的金融大数据项目,在这个过程中,我积累了一些心得体会。本文将从数据收集、数据分析、数据应用、隐私保护以及行业发展的角度,谈谈我对金融大数据的一些思考。
首先,数据收集是金融大数据应用的基础。金融行业的数据主要来自于传统的交易数据、市场数据以及用户数据。例如,交易数据可以包括股票、外汇、债券等各种交易的价格、成交量和交易时间等信息。市场数据则可以包括市场指数、利率和汇率等信息。而用户数据则涵盖了客户的个人信息、消费行为以及风险承受能力等。对于金融大数据项目来说,要做好数据收集工作,就必须建立完善的数据采集系统,保证数据的准确性和完整性。
其次,数据分析是金融大数据应用的核心。金融大数据项目的目的是通过对大量的数据进行分析,发现规律和趋势,为金融市场的决策提供更准确的依据。在进行数据分析时,常用的方法有统计分析、机器学习和深度学习等。通过这些方法,可以挖掘出隐藏在数据中的关联关系,发现市场的规律和异常情况。同时,数据分析也需要结合专业知识和经验,才能找到有意义的结果,避免过度拟合和误导性分析。
数据应用是金融大数据发挥价值的关键。在金融大数据项目中,数据应用主要分为两个方面。一方面,数据可以用于辅助金融市场的决策。通过对市场的预测和风险评估,可以帮助投资者做出更明智的决策,减少损失。另一方面,数据还可以用于开发金融科技产品和服务。通过对大量的用户数据进行分析,可以发现用户的需求和行为特征,开发出更符合用户需求的金融产品和服务。这样既可以提高用户满意度,也可以增加公司的竞争力。
隐私保护是金融大数据项目需要面对的重要问题。金融大数据项目处理的数据通常是用户的敏感信息,包括个人隐私和金融交易记录等。因此,在进行数据采集和分析时,必须要遵守相应的法律和规定,保护用户的隐私权益。同时,也需要建立安全的数据存储和传输系统,防止数据被泄露和滥用。只有做好隐私保护工作,才能获得用户的信任,推动金融大数据的应用和发展。
最后,金融大数据的应用和发展离不开金融行业的支持和合作。金融行业是金融大数据的主要应用场景,只有得到金融机构的支持和合作,才能够更好地将数据应用于金融市场。而金融机构也可以通过引入金融大数据技术,提高自身的竞争力和服务水平。因此,需要建立起金融机构、科技公司和监管部门之间的密切合作关系,共同推动金融大数据的应用和创新。
总之,金融大数据是金融行业向数字化、智能化发展的重要趋势。通过对金融大数据的收集、分析以及应用,可以为金融市场的决策提供更准确和有效的依据。然而,在金融大数据的应用和发展过程中,也需要注意隐私保护和行业合作等问题。只有充分发掘和应用金融大数据的潜力,才能推动金融行业的创新与发展。
优质大数据课设的心得体会范文(12篇)篇八
描述小组在完成平台安装时候遇到的问题以及如何解决这些问题的,要求截图加文字描述。
问题一:在决定选择网站绑定时,当时未找到网站绑定的地方。解决办法:之后小组讨论后,最终找到网站绑定的地方,点击后解决了这个问题。
问题二:当时未找到tcp/ip属性这一栏。
解决办法:当时未找到tcp/ip属性这一栏,通过老师的帮助和指导,顺利的点击找到了该属性途径,启用了这一属性,完成了这一步的安装步骤。
问题三:在数据库这一栏中,当时未找到“foodmartsaledw”这个文件。
问题四:在此处的sqlserver的导入和导出向导,这个过程非常的长。
解决办法:在此处的sqlserver的导入和导出向导,这个过程非常的长,当时一直延迟到了下课的时间,小组成员经讨论,怀疑是否是电脑不兼容或其他问题,后来经问老师,老师说此处的加载这样长的时间是正常的,直到下课后,我们将电脑一直开着到寝室直到软件安装完为止。
问题五:问题二:.不知道维度等概念,不知道怎么设置表间关系的数据源。关系方向不对。
解决办法:百度维度概念,设置好维度表和事实表之间的关系,关系有时候是反的——点击反向,最后成功得到设置好表间关系后的数据源视图。(如图所示)。
这个大图当时完全不知道怎么做,后来问的老师,老师边讲边帮我们操作完成的。
问题六:由于发生以下连接问题,无法将项目部署到“localhost”服务器:无法建立连接。请确保该服务器正在运行。若要验证或更新目标服务器的名称,请在解决方案资源管理器中右键单击相应的项目、选择“项目属性”、单击“部署”选项卡,然后输入服务器的名称。”因为我在配置数据源的时候就无法识别“localhost”,所以我就打开数据库属性页面:图1-图2图一:
图二:
解决办法:解决办法:图2步骤1:从图1到图2后,将目标下的“服务器”成自己的sqlserver服务器名称行sqlservermanagementstudio可以)步骤2:点确定后,选择“处理”,就可以成功部署了。
问题七:无法登陆界面如图:
解决方法:尝试了其他用户登陆,就好了。
(1)在几周的学习中,通过老师课堂上耐心细致的讲解,耐心的指导我们如何一步一步的安装软件,以及老师那些简单清晰明了的课件,是我了解了sql的基础知识,学会了如何创建数据库,以及一些基本的数据应用。陌生到熟悉的过程,从中经历了也体会到了很多感受,面临不同的知识组织,我们也遇到不同困难。
理大数据的规模。大数据进修学习内容模板:
linux安装,文件系统,系统性能分析hadoop学习原理。
大数据飞速发展时代,做一个合格的大数据开发工程师,只有不断完善自己,不断提高自己技术水平,这是一门神奇的课程。
2、在学习sql的过程中,让我们明白了原来自己的电脑可以成为一个数据库,也可以做很多意想不到的事。以及在学习的过程中让我的动手能力增强了,也让我更加懂得了原来电脑的世界是如此的博大精深,如此的神秘。通过这次的学习锻炼了我们的动手能力,上网查阅的能力。改善了我只会用电脑上网的尴尬处境,是电脑的用处更大。让我们的小组更加的团结,每个人对自己的分工更加的明确,也锻炼了我们的团结协作,互帮互助的能力。
3、如果再有机会进行平台搭建,会比这一次的安装更加顺手。而在导入数据库和报表等方面也可以避免再犯相同的错误,在安装lls时可以做的更好。相信报表分析也会做的更加简单明了有条理。
总结。
大数据时代是信息化社会发展必然趋势在大学的最后一学期里学习了这门课程是我们受益匪浅。让我们知道了大数据大量的存在于现代社会生活中随着新兴技术的发展与互联网底层技术的革新数据正在呈指数级增长所有数据的产生形式都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。
大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代的发展才能在以后的工作生活中中获得更多的知识和经验。
三、
结语。
优质大数据课设的心得体会范文(12篇)篇九
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
优质大数据课设的心得体会范文(12篇)篇十
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20__年美国的h1n1的爆发地与传播方向以及可能的潜在患者的事情。google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时google的预测与政府数据的相关性高达97%,这也就意味着google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了ibm追求高精确性的电脑翻译计划的失败与google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
优质大数据课设的心得体会范文(12篇)篇十一
大数据时代已经悄然到来,如何应对大数据时代带来的挑战与机遇,是我们当代大学生特别是我们计算机类专业的大学生的一个必须面对的严峻课题。大数据时代是我们的一个黄金时代,对我们的意义可以说就像是另一个“80年代”。在讲座中秦永彬博士由一个电视剧《大太监》中情节来深入浅出的简单介绍了“大数据”的基本概念,并由“塔吉特”与“犯罪预测”两个案例让我们深切的体会到了“大数据”的对现今这样一个信息时代的不可替代的巨大作用。
在前几年本世纪初的时候,世界都称本世纪为“信息世纪”。确实在计算机技术与互联网技术的飞速发展过后,我们面临了一个每天都可以“信息爆炸”的时代。打开电视,打开电脑,甚至是在街上打开手机、pda、平板电脑等等,你都可以接收到来自互联网从世界各地上传的各类信息:数据、视频、图片、音频……这样各类大量的数据累积之后达到了引起量变的临界值,数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。大数据意味着包括交易和交互数据集在内的所有数据集,其规模或复杂程度超出了常用技术按照合理的成本和时限捕捉、管理及处理这些数据集的能力。遂有了“大数据”技术的应运而生。
现在,当数据的积累量足够大的时候到来时,量变引起了质变。“大数据”通过对海量数据有针对性的分析,赋予了互联网“智商”,这使得互联网的作用,从简单的数据交流和信息传递,上升到基于海量数据的分析,一句话“他开始思考了”。简言之,大数据就是将碎片化的海量数据在一定的时间内完成筛选、分析,并整理成为有用的资讯,帮助用户完成决策。借助大数据企业的决策者可以迅速感知市场需求变化,从而促使他们作出对企业更有利的决策,使得这些企业拥有更强的创新力和竞争力。这是继云计算、物联网之后it产业又一次颠覆性的技术变革,对国家治理模式、对企业的决策、组织和业务流程、对个人生活方式都将产生巨大的影响。后工业社会时代,随着新兴技术的发展与互联网底层技术的革新,数据正在呈指数级增长,所有数据的产生形式,都是数字化。如何收集、管理和分析海量数据对于企业从事的一切商业活动都显得尤为重要。大数据时代是信息化社会发展必然趋势,我们只有紧紧跟随时代发展的潮流,在技术上、制度上、价值观念上做出迅速调整并牢牢跟进,才能在接下来新一轮的竞争中摆脱受制于人的弱势境地,才能把握发展的方向。
首先,“大数据”究竟是什么?它有什么用?这是当下每个人初接触“大数据”都会有的疑问,而这些疑问在秦博士的讲座中我们都了解到了。“大数据”的“大”不仅是单单纯纯指数量上的“大”,而是在诸多方面上阐释了“大”的含义,是体现在数据信息是海量信息,且在动态变化和不断增长之上。同时“大数据”在:速度(velocity)、多样性(variety)、价值密度(value)、体量(volume)这四方面(4v)都有体现。其实“大数据”归根结底还是数据,其是一种泛化的数据描述形式,有别于以往对于数据信息的表达,大数据更多地倾向于表达网络用户信息、新闻信息、银行数据信息、社交媒体上的数据信息、购物网站上的用户数据信息、规模超过tb级的数据信息等。
一、学习总结。
采用某些技术,从技术中获得洞察力,也就是bi或者分析,通过分析和优化实现。
对企业未来运营的预测。
在如此快速的到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。当我们掌握大量数据,需要考虑有多少数字化的数据,又有哪些可以通过大数据的分析处理而带来有价值的用途?在大数据时代制胜的良药也许是创新的点子,也许可以利用外部的数据,通过多维化、多层面的分析给我们日后创业带来价值。借力,顺势,合作共赢。
百度百科中是这么解释的:大数据(bigdata),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。我最开始了解大数据是从《大数据时代》了解到的。
大数据在几年特别火爆,不知道是不是以前没关注的原因,从各种渠道了解了大数据以后,就决定开始学习了。
二、开始学习之旅。
在科多大数据学习这段时间,觉得时间过的很快,讲课的老师,是国家大数据标准制定专家组成员,也是一家企业的大数据架构师,老师上课忒耐心,上课方式也很好,经常给我们讲一些项目中的感受和经验,果然面对面上课效果好!
如果有问题,老师会一直讲到你懂,这点必须赞。上课时间有限,我在休息时间也利用他们的仿真实操系统不断的练习,刚开始确实有些迷糊,觉得很难学,到后来慢慢就入门了,学习起来就容易多了,坚持练习,最重要的就是坚持。
优质大数据课设的心得体会范文(12篇)篇十二
近年来,随着科技的迅速发展和互联网的普及,大数据已经逐渐成为企业决策和市场营销的利器。在这个信息爆炸的时代,大数据的应用给企业带来了巨大的商机和竞争优势。然而,如何正确运用和分析大数据成为了当前企业面临的难题。在我从事市场营销工作的过程中,我慢慢积累了一些关于大数据营销的心得体会。
第二段:数据收集与分析。
在大数据时代,数据的收集和分析是非常重要的环节。对于企业来说,了解消费者的购买行为和偏好是制定营销策略的基础。通过互联网和移动设备等信息渠道的广泛应用,企业可以获得大量的数据资源。在数据收集方面,企业需要通过合法的途径获得用户的授权,并且保护用户的隐私安全。对于数据分析,企业需要依靠先进的数据分析工具和技术,将庞大的数据量转化为有意义的商业价值,并深度挖掘数据背后的关联关系和消费者行为特点。
第三段:个性化营销。
大数据时代的一个重要特点是个性化营销的实施。通过大数据分析,企业可以准确了解消费者的需求和兴趣,从而为其提供更加个性化的产品和服务。个性化营销不仅可以提高消费者的购买满意度,还可以增加企业的用户粘性和忠诚度。例如,在电商平台,通过分析用户的浏览和购买记录,企业可以为用户推荐感兴趣的商品,提高用户的购买转化率。个性化营销的实施需要企业具备良好的数据分析能力和精准的营销策略。
第四段:精准投放与实时监控。
大数据营销的另一个重要优势是精准投放和实时监控。通过大数据分析,企业可以更加精确地确定目标受众和投放渠道,避免资源的浪费和效果的缺失。同时,企业可以依靠实时数据监控市场反馈,及时调整营销策略和方案,提高市场反应的速度和精度。例如,在线广告投放中,企业可以根据用户的兴趣和行为特点进行定向广告投放,提高广告的点击和转化率。精准投放和实时监控可以帮助企业更好地运用有限的资源,取得更好的市场效果。
第五段:隐私保护与道德问题。
大数据营销的广泛应用也伴随着隐私保护和道德问题的关注。企业在收集和利用大数据的同时,需要遵守相关法律法规和行业准则,保护用户的隐私权益。同时,企业也需要审慎操作和使用大数据,避免滥用和泄露用户的个人信息。在大数据营销实施的过程中,企业需要时刻关注道德和社会责任,坚持合法、透明和公平的原则,维护消费者利益和行业形象。
结尾段。
总之,大数据营销是当下企业必须面对的挑战和机遇。对于市场营销人员来说,正确运用和分析大数据是提升竞争力和效率的重要手段。我深刻体会到,在大数据时代,通过科学合理地利用大数据,企业可以更加深入地了解消费者需求,提供更好的产品和服务,从而取得竞争优势。然而,在推动大数据营销的同时,也需要关注隐私保护和道德责任,切实维护消费者的权益。只有在科技与道德的双轮驱动下,大数据营销才能为企业带来长久的商业价值和社会效益。