经历了一次困境,我意识到困难并不可怕,关键是如何勇敢面对和解决。下面是一些精选的心得体会样本,希望对你的写作有所帮助。
二次函数心得体会(优质13篇)篇一
学习二次函数是高中数学中重要的一部分,在考试中也经常会出现。备考二次函数时,除了掌握基本的概念、性质和应用外,还需要有科学的复习方法和策略。在备考的过程中,我总结了一些心得体会,现在和大家分享一下。
第二段:理清基本概念。
学习任何一门学科,理清基本概念是很重要的。对于二次函数来说,必须掌握基本概念,如二次函数的定义、图像、特征、性质等。在复习中,可以先通过例题来理解和掌握这些概念,再通过练习题来提高运用的能力。同时,在整个学习过程中,也要注重对不同概念的联系和区别进行理解和掌握,以便更加深入地理解二次函数。
第三段:熟练掌握变形公式。
在学习二次函数时,不可避免地需要掌握各种变形公式。这些公式可以帮助我们在解题中灵活运用,提高效率。比如平移、伸缩、反演等公式,要熟练掌握它们的求法和应用场景。同时,还要注意不同变形公式之间的关联,这对于把复杂的应用题简化和解题起到了很大的帮助作用。
第四段:强化应用场景。
二次函数在生活和工作中都有广泛的应用场景,比如建模、优化等。因此,在复习时,还要注重在各种场景中进行强化练习。这样可以帮助我们更好地理解二次函数在实践中的应用,提高应用题的解题能力。同时,也可以从不同场景中找到不同的解题思路,使自己的思维更加灵活多变。
第五段:总结。
备考二次函数不是一朝一夕的事情,需要有计划、有方法地去复习和提高。在整个复习的过程中,应注重基本概念的理解、变形公式的熟练掌握、应用场景的强化练习。只有通过不断的努力和实际的练习,才能真正掌握这个知识点,并在考试中得到更好的成绩。同时,在复习的过程中,也要注意适当的休息和调整,保持好心态和积极的状态。
二次函数心得体会(优质13篇)篇二
近日,我在数学课上进行了二次函数的复习,通过这一过程,我深深体会到了二次函数的重要性和应用价值。以下是我对此的心得体会。
在复习过程中,我首先意识到了二次函数在现实中的广泛应用。二次函数可以描述物理学、经济学、生物学等各个领域的现象。例如,在物理学中,抛物线的轨迹就可以由二次函数来描述。另外,数学模型也常常采用二次函数来分析和预测实际问题的发展趋势。因此,了解和掌握二次函数的知识对我们理解和处理各种实际问题具有重要意义。
其次,我对二次函数的图像和性质有了更深入的认识。通过画图和求解方程,我发现二次函数的图像是一个抛物线。这个抛物线在坐标轴上的交点称为零点,也就是方程的解。而顶点则是抛物线的最高点(对于开口向上的抛物线)或最低点(对于开口向下的抛物线)。了解这些性质有助于我们更方便地分析和解决问题,比如在最值求解或方程解析方面。
进一步地,我也深入研究了二次函数的预测和建模。通过给定一些历史数据,我们可以使用二次函数来预测未来的趋势和结果。例如,在经济学中,我们可以利用二次函数来预测某个市场的发展趋势,帮助企业做出更准确的决策。此外,二次函数还可以用于优化问题的建模,比如求解最值问题。通过对二次函数进行求导,我们可以得到函数的最值点,从而可以找到问题的最优解。
最后,我认识到二次函数对于我们的数学思维能力和解决问题的能力的培养具有重要意义。在学习二次函数的过程中,我们需要通过观察和分析,运用数学知识来解决问题。这种思维方式的培养,不仅可以帮助我们更好地理解和掌握二次函数,还可以提升我们的数学思维能力,培养良好的逻辑思维和问题解决能力。这对于我们未来的学习和工作都十分重要。
通过本次二次函数的复习,我对二次函数的重要性和应用价值有了更深入的理解。在实际生活中,我们不仅要关注数学知识的学习和应用,更要培养好的数学思维能力和解决问题的能力。只有这样,我们才能更好地应对未来的挑战,发现数学背后的美妙和智慧。
二次函数心得体会(优质13篇)篇三
第二十六章《二次函数》是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
下面是我通过本单元的的教学后的的几点反思:“二次函数概念”教学反思。
关于“二次函数概念”教后做如下反思:我的成功之处是:教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。通过学习求一些简单的实际问题中二次函数的解析式和它的定义域;大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义。绝大多数学生理解了二次函数的概念;掌握了二次函数的一般表达式以及二次项和二次项的系数、一次项和一次项的系数及常数项。
关于“二次函数的图象和性质”教后做如下反思:我的成功之处是:在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。
通过引导学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导学生要明确取点注意的事项,比如代表性、易操作性。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生观察图像自主探讨当a0时函数y=ax2的性质。当a。
y=a(x-h)。
2、y=a(x-h)2+c的图像,绝大多数学生很快掌握了图形平移的规律,理解了平移后图像的性质。达到了学习目标中的要求。
不足之处表现在:
1、课堂上讲的太多。让学生自主观察总结的机会少,学生还是被动的接受。
2、学生作图能力差。简单的列表、描点、连线。学生做起来就比较困难。作图中单位长度不准确,描点不正确,连线时不会用光滑的曲线,而是画出很难看的图形。
3、合作学习的有效性不够。对于老师提出的问题,各组汇报讨论结果的效果不明显。说明自主、探究、合作的学习方式没有落到实处,没能培养学生的创新能力。
4、少数学生二次函数图像平移变换能力差。不会进行二次函数图像的平移变换。
关于“求二次函数解析式”教后做如下反思:我的成功之处是:教学中,我设计从求一次函数的解析式入手,引出求二次函数一般解析式的方法。学生把已知点代入二次函数的一般解析式,很快就得出了三元一次方程组,学生很快就理解了求二次函数一般解析式的方法。接着我改变条件,给出抛物线的顶点坐标和经过抛物线的一个点,引导学生设顶点式的二次函数解析式,学生在老师的点拨下,将已知点代入,很快球出了顶点式的二次函数解析式。接下来,我又引导学生观察抛物线与x轴的交点,启发学生设交点式解析式,学生很快就学会了用交点式求二次函数解析式的方法。在整个教学中,教学内容、教学环节、教学方法的设计都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,调动学生学习的积极性和主动性,所以教学非常流畅,效果不错,目标的达成度较高。
不足之处表现在:
1、学生对新学知识理解了,但一部分学生不会解三元一次方程组。
2、少数学生对求顶点式和交点式的二次函数解析式有困难。
3、由于对学生估计不足,引导学生探究三种不同形式的函数解析式的方法用时较多,导致教学时间紧张。
关于“二次函数应用题”教后做如下反思:我的成功之处是:一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。然后出示问题,对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导学生建立平面直角坐标系,分析解决问题的方法。学生从直角坐标系中发现了抛物线上的点,我进一步引导学生找抛物线的顶点坐标,在老师的引导下,学生设出了二次函数的解析式,并将找到的已知点代入,求出了二次函数的解析式。接着我引导学生就同一问题建立不同的直角坐标系,再去找抛物线上的已知点,这是学生找到了已知点,就能判断用哪种解析式,试着求出函数的解析式。接下来,再出示例题,引导学生分析解答。学生从上面的解题过程中得到了启示,学到了解题方法。教学中,我从学生的实际出发,帮助学生解决学习中的困难,启发和引导学生观察二次函数图像,对图像进行分析,得出解决问题的方案。所以教学方法的设计较完美,并且教学重点、难点把握的较准确,同时调动大多数学生学习的积极性和主动性,所以较好的达到教学目标。
不足之处表现在:
1、少数学生对于建立平面直角坐标系有困难。不会根据抛物线正确建立坐标系。
2、少数学生不会分析题意,不能正确列式求出二次函数的解析式。
3、学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。
4、少数学生不会将二次函数的一般式配方转化为顶点式;不会利用顶点式求函数的最大值或最小值。
总之,本单元的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。
二次函数心得体会(优质13篇)篇四
二次函数是中学数学中的重要内容,也是高考数学中的必考内容之一。作为学生,我们在备考过程中应该如何有效地掌握和应用二次函数呢?在这篇文章中,我将分享一些我在备考二次函数过程中的心得体会。
第二段:理解二次函数的定义及性质。
在二次函数备考中,首先需要掌握的是二次函数的定义和基本性质。二次函数的标准形式为$f(x)=ax^2+bx+c$,其中$a\neq0$。二次函数的图像是一个抛物线,其开口方向由$a$的正负号决定。在掌握了二次函数的定义之后,我们需要学习二次函数的性质,包括函数的单调性、极值、对称轴、零点和图像的方程等。
第三段:掌握二次函数的变形和运用。
掌握二次函数的变形是备考成功的关键之一。在二次函数的变形中,常见的有平移、伸缩、翻转等变化,它们都会影响到函数的图像和性质。因此,我们需要掌握这些变形的规律和方法,以便于在实践中准确地运用。
第四段:熟练掌握二次函数的解析式。
掌握二次函数的解析式也是备考二次函数的重点之一。在练习中,我们需要熟练地运用解析式,解决各种与二次函数相关的问题,如求函数的零点、极值、对称轴等,这些问题在高考中也是常见的考点。
第五段:多做例题,加深理解。
在备考过程中,多做例题是加深理解的重要方法。通过做例题,我们可以运用所学知识,增强对二次函数的理解和掌握。在做题过程中,我们还要注意归纳总结,找出问题的规律和解题方法,加深对二次函数的认识。
结语:
通过以上几点,我们可以有效地备考二次函数,掌握并巩固相关知识点。我们需要注重理论学习,掌握二次函数的定义和基本性质,熟练掌握二次函数的解析式,并且通过练习加深对二次函数的理解和掌握。相信在备考过程中,只要我们持之以恒地学习和练习,就一定能够取得良好的成绩。
二次函数心得体会(优质13篇)篇五
在高中数学教学中,二次函数是一个十分重要的内容,因为它在生活中有着广泛的应用。其中一项常见的应用就是在测量中。通过实验数据,我们可以得到一个二次函数的模型,从而对实验数据进行预测和分析。在我学习二次函数的过程中,也有幸进行了一些测量实验,并对二次函数的应用有了更深刻的体会。
第二段:实验过程。
实验过程中,我选择了抛物线的测量,通过测量物体的高度、时间和落地点坐标,我们可以得到一个二次函数的模型,从而计算出物体的初始速度、最大高度等一系列数据。在测量过程中,我们需要非常仔细地进行实验,例如保证实验地点平整、避免风的影响等。同时还需要使用专业的测量设备,例如光电门、计时器等。
第三段:实验数据。
通过实验得到的数据,我们可以将其代入二次函数的模型中,从而得出真实的情况。通过这些数据,我们可以进行更多的分析,例如绘制出物体的抛物线轨迹图、比较不同物体的抛物线图形、计算出物理量等。这些数据不仅可以用于学术研究,也可以应用到实际生活中,例如建造各种结构或者选购适当的工具等。
二次函数在生活中有着广泛的应用。例如在物理学中,我们经常使用二次函数来计算物体的运动情况;在经济学中,我们可以利用二次函数来研究产品销量与销售价格的关系等。二次函数也常常被应用到工程设计中,因为它可以很好地表示众多物理量的关系。这些应用都需要我们深入理解二次函数,从而得出更为准确和实用的数据。
第五段:结论。
二次函数测量实验不仅需要我们对数学知识的掌握,还需要我们有耐心和细心地分析实验数据。通过实验,我们可以更深刻地理解二次函数,掌握其应用技巧,并将其运用到更多领域中。在今后学习过程中,我们应该对二次函数的知识保持持续关注和深入学习,从而更好地理解它的神奇之处。
二次函数心得体会(优质13篇)篇六
11月18日,我在九年三班上了《2.1二次函数所描述的关系》这节课,结合一些听课老师的建议,现。
总结。
1.对二次函数的学习,本节课通过丰富的现实背景和学生感兴趣的问题出发,以多媒体演示图片的形式使学生感受二次函数的意义,感受数学的广泛联系和应用价值。对二次函数的学习,通过学生的探究性活动,通过学生之间的合作与交流,通过分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。
2.在新知巩固环节,我精心设计了具有代表性和易错题型的问题,巩固应用了本节的新知,课堂达到了较好的教学效果。
3.在合作讨论的环节中,银行利率问题中文字叙述不够严密,两年后的利息一句产生分歧,应该改成第二年的利息。
4.在课堂时间的安排上不算太合理,有一道能力提升的问题没讲。总之,通过本节课,让我真正意识到:对于每节课的教学不能仅仅凭经验设计。在每节课的课前,一定要进行精心的预设。在课堂中,同时要结合课堂的实际效果和学生的情况注意灵活处理课堂生成。课堂上在进行分组教学时,提前预设好教学时间,在每节课上,既要放的开,同时又要注意在适当的时机收回,以保证每节教学基本任务完成。
二次函数心得体会(优质13篇)篇七
幂函数,是指形如y=x^a的函数,其中a是一个实数。在学习数学的时候,我们经常会遇到这个函数。幂函数有很多特性,它们让我们可以更好地理解数学知识的本质。以下是我对幂函数的一些心得体会。
第一段:认识幂函数。
幂函数就是形如y=x^a的函数。其中,a可以是任意实数。当a是整数时,幂函数的图像通常很容易理解。例如,当a=2时,幂函数的图像就是一个开口朝上的抛物线;当a=3时,幂函数的图像就是一个类似于椭球的形状。而当a是非整数时,幂函数的图像就更加复杂。在此基础上,我们可以通过对幂函数的展开,了解其在各种数学应用中的重要性。
第二段:幂函数的性质。
第三段:幂函数的应用。
幂函数不仅在数学理论中有着重要的应用,而且在实际生活中,也是十分常见的。例如,在物理学中,功率的计算就是基于幂函数的;在经济学中,一些重要的指数如GDP、CPI等都是幂函数的形式。幂函数还是微积分中常见的函数,我们在学习微积分中的一些重要的概念时,也会遇到很多幂函数的计算。
第四段:幂函数的局限性。
虽然幂函数具备许多好的性质,但也存在一些局限性。比如,当a是负数时,幂函数就不再是函数,因为出现了无法计算的实数幂。此外,当x<0时,幂函数的值也无法确定,所以在实际应用时,我们也需要注意这些局限性。
第五段:结语。
幂函数是我们学习数学时不可避免的一部分。通过对其进行深入的学习和理解,我们可以更好地应用数学知识,解决实际问题。同时,对幂函数的认识也能让我们更加深入地理解数学本质的一些特性和规律。因此,希望大家在学习过程中,能够认真对待幂函数这个重要的概念,从而更好地掌握数学知识。
二次函数心得体会(优质13篇)篇八
分组复习旧知。
探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?
可引导学生从几个方面进行讨论:
(1)如何画图。
(2)顶点、图象与坐标轴的交点。
(3)所形成的三角形以及四边形的面积。
(4)对称轴。
从上面的问题导入今天的课题二次函数中的图象与性质。
二次函数心得体会(优质13篇)篇九
作为现代编程领域中最为重要的概念之一,函数是每一位程序员必须掌握的基本技能。函数可以帮助我们实现代码的复用,并最大化代码的可维护性和可读性,提高代码的效率。在我研究函数的实践和编程经验中,我发现函数不仅仅是一个工具,而是一种思考方式,一种编写高质量代码的宏观策略。接下来,我将分享在学习和使用函数的过程中所体会到的经验和心得。
第二段:函数与代码复用。
函数的主要优势之一是代码的复用。通过将相似或重复的代码封装在函数中,我们可以将其多次调用,而不必重写相同的代码。这不仅减少了代码量,减轻了维护代码的负担,还使代码的可读性更好,因为调用一组相关功能的函数总比分散在不同位置的代码更易于理解。
第三段:函数与代码可维护性。
另一个函数的优势是提高代码可维护性。通过将相似功能的代码封装在函数中,我们可以建立代码的分层表示,使代码更具有结构性。如果将许多类似的代码放在同一文件中,那么将来需要添加或修改其中的一部分代码将会非常困难。而函数可以将相关代码组合在一起,使代码的逻辑更加清晰,因此更容易维护。
第四段:函数与代码测试。
函数还是测试代码的重要工具。通过测试函数的输出和输入,我们可以确保其正确性,并保证代码的质量。函数可以切割代码,以便调试,而不用担心整个代码库的问题。如果一个函数经过良好的测试,则可以自信地将其重用在许多其他代码中。
第五段:结论。
总之,函数是用于构建任何高质量代码的关键概念。函数使代码更具有结构性,更容易维护和测试,并使代码更易于阅读,比分散的代码更具可读性。作为程序员,我们应该时刻牢记编写高质量、易于理解的代码是我们的目标之一,函数是我们达成这个目标的重要工具。不断深入学习和使用函数,对于变得更好的程序员和编写高质量代码都能够产生重要的影响。
二次函数心得体会(优质13篇)篇十
If函数是Excel中非常常用的函数之一,它可根据特定条件的成立与否,来执行不同的计算或返回不同的数值。在我使用Excel的过程中,我深刻体会到了If函数的强大与灵活。下面我将就这一主题展开讨论,并分享我的心得体会。
首先,If函数的基本语法十分简单。它由三个主要部分组成:条件、返回值1和返回值2。当条件成立时,返回值1将被输出;而当条件不成立时,则返回值2被输出。通过这种方式,我们可以根据需要进行灵活的数据处理与分析。例如,我曾经使用If函数来分类统计某一列数据中的信息,当数据满足特定条件时,我将其归类为一类,否则归类为另一类。这使得我能够更加清晰地了解数据的分布情况,为后续的决策提供依据。
其次,If函数的嵌套应用为Excel的数据处理提供了更大的空间。在复杂的数据分析中,我们经常需要根据多重条件进行判断与计算。这时,嵌套的If函数就能发挥出它的优势。通过将一个If函数作为另一个If函数的返回值,我们可以实现多重条件的逻辑判断。例如,我曾经在一份销售数据中,使用嵌套的If函数来计算不同商品的销售额和利润率。当销售额达到一定阈值时,利润率按照一种比例计算;而当销售额低于阈值时,利润率按照另一种比例计算。这样,我能够更加细致地了解各商品的经营状况,并针对性地采取措施。
在使用If函数的过程中,需要注意到条件的设置。准确的条件判断是保证函数正确运行的关键。一般来说,条件可以是一个逻辑表达式,也可以是一个单元格引用。如果条件是逻辑表达式,通常会使用比较运算符(如大于、小于、等于)来进行判断。而如果条件是单元格引用,那么我们需要保证该单元格中的数据能够满足我们事先设定的条件。在实际应用中,我曾遇到过一次由于未及时更新条件单元格而导致函数输出错误的情况。但通过对条件的检查与修正,我及时解决了这个问题,并从中得到了经验教训。
此外,If函数的应用还可以扩展到其他与条件判断相关的函数中。例如,SumIf函数可以根据条件对特定列或区域的数值进行求和。CountIf函数则可用于统计满足特定条件的单元格个数。这些函数与If函数的结合使用,可以进一步简化数据分析的过程。通过将If函数作为条件,我们可以根据复杂的判定规则进行数据的筛选与计算,从而更好地满足我们的需求。
总结起来,If函数作为Excel中非常实用的函数之一,在我的实际应用中发挥了重要的作用。它的简单语法和强大功能使得我们能够根据条件进行灵活的数据处理与分析,极大地提高了工作效率。但在使用过程中,我们需要注意正确设置条件,以确保函数能够正常运行。此外,If函数还可以与其他与条件判断相关的函数相结合,进一步优化数据分析的过程。通过深入理解并灵活运用If函数,我们能够更好地发挥Excel在数据处理与分析方面的威力。
二次函数心得体会(优质13篇)篇十一
函数是计算机编程中非常重要的一个知识点,尤其在现代软件领域中,函数更是无处不在。作为一名程序员,我们需要深入理解函数的概念,能够灵活运用函数来编写高效的代码。在大量的实践中,我对函数有了一些心得体会。
一、函数的概念。
函数是计算机编程的基本概念之一,它是一组语句的集合,通常用于完成一项特定的任务。函数可以接受输入,处理数据,执行操作,最终返回输出。利用函数可以将大型程序拆分成多个小型问题,有助于代码的可读性和维护性。另外,函数还可以重复使用,避免重复编写相同的代码。在实际的编程中,理解函数的概念是十分关键的。
二、函数的组成。
函数通常包含函数名、输入参数、输出参数和函数体。函数名是由程序员自行定义,用于调用函数的标识符。输入参数是函数需要接受的外部数据,可以是零个或多个参数。输出参数是函数最终返回的结果,用于外部调用使用。函数体包含了完成功能的代码,通常使用花括号括起来。一个完整的函数由这四部分构成,程序员需要根据实际需求进行合理的构建。理解函数的组成有助于我们更好地进行函数的使用与编写。
三、函数的语法。
函数有自己的语法规则,我们在编写函数时需要遵循这些规则。函数的语法通常包括函数名称、参数列表、指令块和返回值。其中,函数名称用于唯一标识一个函数,参数列表用于定义函数需要使用的输入参数,指令块包含了完成功能的代码,返回值用于将函数的结果返回给调用者。熟练掌握函数的语法规则可以帮助我们更好地完成编程工作。
四、函数的应用。
函数在编程中有着非常广泛的应用,它可以用于各种场景中。常见的应用包括:简化程序结构、提高代码重用性、增加代码可读性、提升程序性能等。利用函数,我们可以将程序拆分成多个小型问题,每个问题由一个函数来解决,减少代码冗余,防止出现大量重复代码。此外,对于特定的场景和需求,函数还可以实现一些高级功能,如递归、闭包等。
五、总结。
函数是计算机编程中非常重要的一个概念,掌握函数的核心概念和实际应用,对于编写高效的程序非常有帮助。在编程学习的过程中,结合实际案例对函数的使用和理解加深,有利于我们更好地掌握函数的各方面应用和技巧,提高自身的技能水平和编程能力。希望我的这些心得体会可以对大家有所帮助。
二次函数心得体会(优质13篇)篇十二
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。
本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。
2.说目标。
二次函数心得体会(优质13篇)篇十三
本节内容是人民教育出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。
本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。
2.说目标。
【知识与能力】:
会用描点法画出函数y=ax2的图象。
知道抛物线的有关概念。
会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。
【过程与方法】:
1、通过二次函数的教学进一步体会研究函数的一般方法,加深对于数形结合思想的认识。
2.综合运用所学知识、方法去解决数学问题,培养学生提出、分析、解决、归纳问题的数学能力,改善学生的数学思维品质。
【情感与态度目标】:
在数学教学中渗透美的教育,让学生感受二次函数图像的对2。
称之美,激发学生的学习兴趣。认识到数学源于生活,用于生活的辩证观点。
3.说教学方法。
教法选择与教学手段:基于本节课的特点是学习新知及其综合运用,应着重采用复习与总结的教学方法与手段,先从一次函数、反比例函数的图像复习入手,通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质进行有针对性的、系统性的教学。教学的模式为学生思考,讨论,教师分析,演示、师生共同总结归纳。
利用白板的动态画板功能,画出不同的二次函数图像,进行分析比较和归纳。
学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。
最后,我来具体谈一谈本节课的教学过程。
4.说教学过程。
(一)为对二次函数图像及其性质的相关知识进行重构做准备。通过回忆复习一次函数和反比例函数图像及其性质等相关知识引入新课。利用描点法画出二次函数的图象,总结规律,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。说出a为何值时y随x增大而增大(增大而减小),引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。
(二)通过对二次函数图像及其性质的学习,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。
(三)反思概括,方法总结。
总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。
(四)作业。
课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。
各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!
文档为doc格式。