阅读范文范本可以让我们了解到不同类型文章的写作特点和要求。以下是小编为大家整理的一些范本,希望能够给大家提供一些参考和指导。
锐角三角函数说课范文(14篇)篇一
《锐角三角函数》是初四下册第二十八章内容,本章包括锐角三角函数的概念,以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。本章在中考中所占的比重虽不大,但属于比较好得分的部分。所以复习好本章的内容对于学生来说也很重要。我从六个方面说明我的教学设计:
二、教学分析;
三、教学目标;
四、教学策略;
五、教学过程:
六、教学反思。
为单位,全员参加,合理分配任务完成展示。重在培养学生各方面的能力,发挥学生的主体作用;最后检测学生本节课的学习情况。各环节的设计重在以学生为主体,突出学生的主体作用,另外培养学习的兴趣和能力,让学生在一种轻松愉快的学习氛围中学习知识。
二、教学分析。
(一)教学内容分析。
本章要复习的知识点有4个。
(二)学情分析。
1、我所教的一所农村学校,学生基础不是很好。所在我在每次课的设计都以基础为主,注重知识的来源和过程。
2、学生书写过程有的写的不细致,逻辑性不强。
3、使用这种教学模式要求精讲,所以学生平时训练时题目都是精选,但题量不大,学生计算的速度有限。
1、知识与技能:
3、情感态度与价值观:
在解决问题的过程中引发同学的学习需求,让学生在学习需求的驱动下主动参与学习的全过程,并让学生体验到学习是需要付出努力和劳动的。
教学重点:锐角三角函数的概念及特殊三角函数教学难点:会用解直角三角形的有关知识解决简单实际问题。
四、教学策略。
(一)、教学方法。
本节课我使用了自学+研讨+展示的教学方法。课堂教学方法非常灵活,最重要的是体现出学生的主体地位,把课堂还给学生,充分调动学生的积极性,加大学生的思考量。给学习一个展示的平台,让学习通过自主学习、合作讨论、展示交流来发现问题、讨论问题、解决问题。发挥学习的团队精神。营造良好宽松的学习氛围。
(二)教学手段。
本节课学生在多煤体教室上课,使用白板进行教学,学。
生可以利用白板展示自己的答案,简单方便。省时得力。效果好。学生兴趣浓厚。
五、教学过程。
1、自主学习。
本环节主要是解决学习目标中的前三个目标的,设计8个问题,其中前三个是概念,后5个是在理解概念的基础上解决问题,问题设计的都比较基础,为了是巩固基础知识。
2、合作学习。
本环节设计了4个问题。主要是解决实际问题,也就是直角三角形的应用。设计的内容比较广泛,为了培养学生运用知识解决实际问题的能力。学生通过讨论合作完成后归纳实际应用的几种图形。
4、展示点评。
学生一共分为四组。小组都完成后,抽签决定展示题目。根据学生展示情况加分,小组长和老师对各组的展示进行评价。表扬优秀小组。
5、反馈检测。
本环节设计了5道题,有填空和选择,重基础和易错题目的考查。学生检测后当堂对答案,记分,公布小组得分。
六教学反思。
题,不太理解的问题通过小组合作来解决,体会在解决问题的过程中与他人合作的重要性。我回忆在课堂教学过程中还有以下不足之处:在时间的分配上还不是最合理的,各环节展示的时间太紧。不是很从容。对于学生的评价也不是很到位,对于学生激励性的语言使用的不够,小组长的组织能力和带头作用还最大发挥。
改进方法。
作为教师,要想真正上好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是学习的组织者和引导者,在课堂上只是一个配角。另外对小组长要多加培训。当一个小老师使用。能够带领全组学生都动起来,不让一个学生掉队。
锐角三角函数说课范文(14篇)篇二
下面小编为大家整理了一些关于高中数学《锐角三角函数》教学反思的范文,供大家参考,希望对大家有帮助!
角三角函数是定义在直角三角形中的研究边角之间的关系。而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。
(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。
采用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。
(1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。
(2)要学会换位思考,站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。
(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。锐角三角函数在解决现实问题中有着重要的作用,因此,学好本节中关于锐角的三种三角函数,正切,正弦,余弦的定义是关键。
通过这一阶段的课堂教学,在合作探究中培养学生的问题意识,同学们的表现有了明显的转变,课堂上有问题能及时提出来,有的同学一堂课能提出好几个问题,其他同学对提出的问题争先恐后地辩解,争得面红耳赤。
本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状有关系吗?进一步深入地去认识三角函数;当得出正切的概念后,学生们就提出:能不能把公式变形成积的形式,去求边,这个问题已经把本课的内容拓展了,说明学生的问题意识已经增强了,能够合理地提出问题。至此,每个学生在课堂的表现明显改变,表现得积极、主动、问题意识强。
在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。
在这节课的教学中存在许多缺陷,促使我进一步研究和探索。我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。
总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识。
本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。
还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。
锐角三角函数说课范文(14篇)篇三
教学反思:
锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:
(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断得失,不断进步。只有这样,才能真正提高课堂教学效率。
锐角三角函数说课范文(14篇)篇四
课程教材研究所左怀玲本章“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。本章重点是锐角三角函数的概念和直角三角形的解法。锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sina、cosa、tana表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
本章内容与已学“相似三角形”“勾股定理”等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
本章教学时间约需12课时,具体分配如下(仅供参考):
数学活动。
小结约2课时。
本章知识的展开顺序。
本章内容分为两节,第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。
在第28.1节“锐角三角函数”中,教科书先研究了正弦函数,然后在正弦函数的基础上给出余弦函数和正切函数的概念。对于正弦函数,教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,就是在直角三角形中,已知一个锐角和这个锐角的对边求斜边的问题,由于这个锐角是一个特殊的角,因此可以利用“在直角三角形中,角所对的边是斜边的一半”这个结论来解决这个问题,接下去教科书又提出问题,如果角所对的边的长度发生改变,那么斜边的长变为多少?解决这个的问题仍然需要利用上述结论,这样就能够使学生体会到“无论直角三角形的大小如何,角所对的边与斜边的比总是一个常数”,这里体现了函数的对应的思想,即的角对应数值。接下去,教科书又设置一个“思考”栏目,让学生进一步探讨在直角三角形中,的锐角所对的边与斜边的比有什么特点,利用勾股定理就可以发现这个比值也是一个常数,这样就使学生认识到“无论直角三角形的大小如何,角所对的边与斜边的比总是一个常数”,通过探讨上面这两个特殊的直角三角形,能够使学生感受到在直角三角形中,如果一个锐角的度数分别是和,那么它们所对的边与斜边的比分别都是常数,这里体现了函数的思想,这也为引出正弦函数的概念作好铺垫。有了上面这样的感受,会使学生自然地想到,在直角三角形中,一个锐角取其他一定的度数时,它的对边与斜边的比是否也是常数的问题。这样教科书就进入对一般情况的讨论。对于这个问题,教科书设置了一个“探究”栏目,让学生探究对于两个大小不等的直角三角形,如果有一个锐角对应相等,那么这两个相等的锐角所对的直角边与斜边的比是否相等,利用相似三角形对应边成比例这个结论就可以得到“在直角三角形中,当锐角的度数一定时,不管三角形的大小如何,这个角的对边与斜边的比是一个固定值”,由此引出正弦函数的概念,这样引出正弦函数的概念,能够使学生充分感受到函数的思想,即在直角三角形中,一个锐角的每一个确定的值,sina都有唯一确定的值与它对应。在引出正弦函数的概念之后,教科书在一个“探究”栏目中,类比着正弦的概念,从边与边的比的角度提出一个开放性问题:在直角三角形中,当一个锐角确定时,这个角的对边与斜边的比就随之确定,此时,其他边之间的比是否也确定了呢?提出这个问题的目的是要引出对余弦函数和正切函数的讨论。由于教科书比较详细地讨论了正弦函数的概念,因此对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比着正弦函数自己完成。在余弦函数和正切函数的概念给出之后,教科书在边注中分析了锐角三角函数的角与数值之间的对应关系,突出了函数的思想。一些特殊角的三角函数值是经常用到的,教科书借助于学生熟悉的两种三角尺研究了、角的正弦、余弦和正切值,并以例题的形式介绍了已知锐角三角函数值求锐角的问题,当然这时所要求出的角都是、和的特殊角。教科书把求特殊角的三角函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排在一起,目的是体现锐角三角函数中角与函数值之间的对应关系。本节最后,教科书介绍了如何使用计算器求非特殊角的三角函数值以及如何根据三角函数值求对应的角等内容。由于不同的计算器操作步骤有所不同,教科书只就常见的情况进行介绍。
第28.2节“解直角三角形”是在第一节“锐角三角函数”的基础上研究解直角三角形的方法及其在实际中的应用。本节开始,教科书设计了一个实际背景,其中包括两个实际问题,这两个实际问题抽象成数学问题分别是已知直角三角形的一个锐角和斜边,求这个角的对边和已知直角三角形的一条直角边和斜边,求这两个边的夹角的问题,解决这两个问题需要用到第28.1节学习的有关正弦函数和余弦函数的内容。这两个问题实际上属于求解直角三角形的问题,设计这个实际问题的目的是要引出解直角三角形的内容。因此,教科书借助于这个实际问题背景,设计了一个“探究”栏目,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,最后教科书归纳给出求解直角三角形常用的反映三边关系的勾股定理,反映锐角之间关系的互余关系,以及反映边角之间关系的锐角三角函数关系。这样,教科书就结合实际问题背景,探讨了解直角三角形的内容。接下去,教科书又结合四个实际问题介绍了解直角三角形的理论在实际中的应用。第一个实际问题是章前引言中提到的确定比萨斜塔倾斜程度的问题,这个问题实际上是已知直角三角形的斜边和一个锐角的对边,求这个锐角的问题,这要用到正弦函数;第二个问题是确定神舟5号变轨后,所能看到地面的最长距离,这个问题实际上是已知直角三角形的斜边和一个锐角的邻边,求这个锐角的问题,这要用到余弦函数;第三个问题是确定楼房高度的问题,这个问题抽象成数学问题是已知直角三角形的一个锐角和它的邻边,求这个角的对边,这要用到正切函数;第四个实际问题是在航海中确定轮船距离灯塔的距离,解决这个问题需要反复利用正弦函数。这样教科书就通过四个实际问题体现了正弦、余弦和正切这几个锐角三角函数在解决实际问题中的作用。本节最后,教科书采用将测量大坝的高度与测量山的高度相对比的方式,直观形象地介绍了“化整为零,积零为整”“化曲为直,以直代曲”的微积分的基本思想。
对于本章内容,教学中应达到以下几方面要求:
4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,通过解直角三角的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受。
本章主要包括锐角三角函数和解直角三角形两大块内容,这两大块内容是紧密联系的。锐角三角函数是解直角三角形的基础,解直角三角形的理论又为解决一些实际问题提供了强硬有力的工具,解直角三角形为锐角三角函数提供了与实际紧密联系的沃土。因此本章编写时,加强了锐角三角函数与解直角三角形两大块内容与实际的联系。例如,在章前引言中利用确定山坡上所铺设的水管的长度问题引出正弦函数;结合使用梯子攀登墙面问题引出解直角三角形的概念和方法等。再有,教科书利用背景丰富有趣的四个实际问题,从不同的角度展示了解直角三角形在实际中的广泛应用。教科书这样将锐角三角函数和解直角三角形的内容与实际问题紧密联系,形成“你中有我,我中有你”的格局,一方面可以让学生体会锐角三角函数和解直角三角形的理论来源于实际,是实际的需要,另一方面也让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到数学问题的答案,再将数学问题的答案回到实际问题的这种实践----理论----实践的认识过程,这个认识过程符合人的认知规律,有利于调动学生学习数学的积极性,丰富有趣的实际问题也能够激发学生的学习兴趣。
本章编写时一方面继续保持原有的通过设置“观察”“思考”“讨论”“探究”“归纳”等栏目来扩大学生探索交流的空间,发展学生的思维能力,同时结合本章内容的特点,又考虑到学生的年龄特征(学习本章内容的学生已经是九年级),对于本章的一些结论,教科书采用了先设置一些探究性活动栏目,然后直接给出结论的做法,而将数学结论的探索过程完全留给学生,不像前两个年级那样,将这些探究过程通过填空或留白等方式展示探索过程来引导学生进行探究。例如,教科书在详细研究了正弦函数,给出正弦函数的概念之后,设置了一个“探究”栏目,并提出问题“在直角三角形中,当一个锐角确定时,它的对边与斜边的比就随之确定,那么,此时其他边之间的比是否也确定了呢?为什么?”,接下去,教科书直接给出了余弦函数和正切函数的概念,而将“邻边与斜边的比、对边与邻边的比也分别是确定的”这个结论的探究过程完全留给学生自己完成。再如,对于、这几个特殊角的三角函数值,教科书也是首先设置一个“思考”栏目,在栏目中提出问题“两块三角尺中有几个不同的锐角,分别求出这几个锐角的正弦值、余弦值和正切值”,然后教科书用一个表格直接给出了这几个特殊角的三角函数值,而将这些角的三角函数值的求解过程留给学生完成。这样的一种编写方式就为学生提供了更加广阔的探索空间,开阔思路,发展学生的思维能力,有效改变学生的学习方式.
本章的一个教学目标是使学生理解锐角三角函数的概念,这个概念与学生以前所学的一次函数、反比例函数和二次函数有所不同,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,学生初次接触这种对应关系,理解起来有一定的困难,而这种对应关系对学生深刻地理解函数的概念又有很大帮助,因此,教科书针对这种情况,加强了对锐角三角函数所反映的角度与数值之间的对应关系的刻画。例如,对于正弦函数,教科书首先研究了在直角三角形中,和的锐角所对的边与斜边的比分别是常数和,然后就一般情况进行研究,并得出结论:当一个锐角的度数一定时,这个角的对边与斜边的比也是一个常数,这样就突出了锐角与比值的对应关系,即对于每一个锐角,都有一个比值与之对应,从而给出正弦函数的定义。同样,教科书在阐述余弦函数和正切函数时也突出了锐角与“邻边与斜边的比值”之间的对应关系以及锐角与“对边和邻边的比值”之间的对应关系,并在边注进一步强调了这种函数关系:对于锐角a的每一个确定的值,sina有唯一确定的值与它对应,所以sina是a的函数。同样地,cosa,tana也是a的函数。这样,就可以让学生对变量的性质以及变量之间的对应关系有更深刻的认识,加深对函数概念的理解。
微积分的思想在数学中占有重要的地位,其基本思想是“化整为零,积零为整”“化曲为直,以直代曲”,这个基本思想是很朴素的,是可以在初等数学中反映的。教科书在本章最后,结合解直角三角形的内容,采用与测量大坝的高度和测量山的高度相对比的方式,直观形象地介绍了在确定山的高度时,如何将山坡“化整为零”,如何将山坡的长度“化曲为直、以直代曲”,又如何将每一部分的高度“积零为整”,这样编写的目的是要体现微积分的基本思想,让学生通过直观形象的例子对微积分的基本思想有一个初步的认识。综上所述,本章编写时注意突出数学内容的本质,强调数学思想方法,这有助于提高学生的数学素养。
第27章“相似”为本章研究锐角三角函数打下基础,因为利用“相似三角形的对应边成比例”可以解释锐角三角函数定义的合理性。例如,教科书在研究正弦函数的概念时,利用了“在直角三角形中,所对的边等于斜边的一半”,得出了“在一个直角三角形中,如果一个锐角等于,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于”。事实上,在直角三角形中,如果一个角等于,那么这样的直角三角形都相似,因此,不管这样的三角形的大小如何,它们的对应边成比例,这也就是说,对于,虽然教科书是从两个特殊的直角三角形(的对边分别是70和50)归纳得到的,但这个结论是可以从三角形相似的角度来解释的。同样,对于有类似的情况。当然,教科书利用相似三角形的有关结论解释了在一般情形中正弦定义的合理性。因此,锐角三角函数的内容与相似三角形是密切联系的,教学中要注意加强两者之间的联系。
全等三角形的有关理论对理解本章内容有积极的作用。例如,在研究解直角三角形时,教科书通过探索得到结论:事实上,在直角三角形的六个元素中,除直角外,如果在知道两个元素(其中至少有一个是边),这个三角形就确定下来了,这样就可以由已知的两个元素求出其余的三个元素,这个结论的获得实际上利用了直角三角形全等的有关理论,因为对于两个直角三角形,如果已知两个元素对应相等,并且其中有一个元素是边,那么这两个直角三角形全等,也就是已知一个直角三角形的除直角外的两个元素,其中至少有一个是边,这个三角形就确定下来,因此就可以利用这两个元素求出其余的元素。因此,利用三角形全等的理论,有利于理解解直角三角形的相关内容。教学中要注意加强知识间的相互联系,使学生的学习形成正迁移。
另外,本章所研究的锐角三角函数反映了锐角与数值之间的函数关系,这虽然与一次函数、反比例函数以及二次函数所反映的数值与数值之间的对应关系有所不同,但它们都反映了变量之间的对应关系,本质上是一致的,因此教学时,要注意让学生体会这些不同函数之间的共同特征,更好地理解函数的概念。
锐角三角函数说课范文(14篇)篇五
本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。
1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。
2、能够进行含有30°、45°、60°角的三角函数值的计算。
3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。
重点:进行含有30°、45°、60°角的三角函数值的计算。
难点:记住30°、45°、60°角的三角函数值。
教师准备。
预先准备教材、教参以及多媒体课件。
学生准备。
教材、同步练习册、作业本、草稿纸、作图工具等。
教学流程设计。
教师指导学生活动。
1.新章节开场白.1.进入学习状态.
2.进行教学.2.配合学习.
3.总结和指导学生练习.3记录相关内容,完成练习.
教学过程设计。
1、从学生原有的认知结构提出问题。
2、师生共同研究形成概念。
3、随堂练习。
4、小结。
5、作业。
板书设计。
3、例题。
本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。
锐角三角函数说课范文(14篇)篇六
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据。
a、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:
1)已知一个角的一个三角函数值能求这个角的其他三角函数值;
2)证明简单的三角恒等式。
b、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
c、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点。
重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
例2、设计意图:
(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;还可以利用商数关系解决。
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。
由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的'情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
锐角三角函数说课范文(14篇)篇七
一、弄清对邻斜。
锐角三角函数是定义在直角三角形中的研究边角之间的关系。而锐角三角函数值实质上就是边与边之间的'一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。不管角怎样变,斜边是固定的,直角边或是某一锐角的对边或是某一锐角的邻边。不要死记硬背a,b,c的比值。记清对邻斜两者之比。
应用公式变形解决实际问题。
锐角三角函数说课范文(14篇)篇八
在前一段我讲了30度、45度、60度特殊角的三角函数值,它是北师大版九年级数学下册的一节课,在前一节刚讲过正弦、余弦、正切三角函数的定义和求法。现把我对本节课的做法和想法与大家交流一下,希望能得到同行和专家的指点,以期取得更大的进步。
1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理。进一步体会三角函数的意义;能够进行30°、45°、60°角的三角函数值的计算;能够根据30°、45°、60°的三角函数值说明相应的锐角的大小。
2、发展学生观察、分析、发现的能力;培养学生把实际问题转化为数学问题的能力。
3、积极参与数学活动,对数学产生好奇心。培养学生独立思考问题的习惯。
在引入时我采用创设情境法,“为了测量一棵大树的高度,准备了如下测量工具:(1)含30、60度角的直角三角尺(2)皮尺。请你设计一个方案,来测量一棵大树的高度。这样会增强学生的学习欲望,使学生对本节内容更感兴趣。
1、让学生自主研习,独立探究。
(1)观察一副三角尺,其中有几个锐角?他们分别等于多少度?
(2)sin30度等于多少呢?你是怎样得到的?cos30度呢,tan30度呢?
2、让学生合作学习、生生互动。
(1)请同学们完成下表:30°、45°、60°角的三角函数值(表格略)。
(3)同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况。
3、精讲细评,师生合作(先由学生独立完成)。
(1)计算:sin30°+cos45°;sin260°+cos260°—tan45°。
(2)钟表上的钟摆长度为25cm,当钟摆向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差。(结果精确到0。1cm)。
分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力。
4、延伸迁移,形成技能。
(1)计算:sin60°—tan45°;cos60°+tan60°;
(2)某商场有一自动扶梯,其倾斜角为30°。高为7m,扶梯的长度是多少?
讲课后我让学生自主小结本节收获,并给他们提出困惑的时间和机会。
在本节课中我感觉学生整体来说收获不小,有百分之八十的学生都会进行计算,只是对这些三角函数值的记忆还有欠缺,课下还需时间加以巩固。课堂中学生积极性也很高,能体会到数学在生活中的应用广泛,学习数学对解决实际生活问题的帮助,体会到学习数学的重要性。
锐角三角函数说课范文(14篇)篇九
角三角函数是定义在直角三角形中的研究边角之间的关系,反思八:锐角三角函数教学反思。而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。
本节课重难点就是对比值的理解,可以从以下几方面着手研究:
(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。
采用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性,教学反思《反思八:锐角三角函数教学反思》。
在以后教学中,还要多注意以下两点:
(1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。
(2)要学会换位思考,站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。
(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
锐角三角函数说课范文(14篇)篇十
思维总是从问题开始的,有问题,学着才主动。学生在不断解决问题,发现问题中学习,知识得到了掌握,能力得到了训练,情感得到了体验。我来谈谈上完本节课之后的感想,做一小结和反思,以便更好地服务于课堂教学。
有利条件:学生已经学过相似形、直角三角形及函数等有关知识,具备一定的分析判断及推理能力,通过教师引导能够完成学习任务。不利因素及对策:初三学生两极分化明显,不同学生的认知水平、思维能力不同,而数学抽象性较强,多数学生对数形结合类型题的适应能力较差。另外,学生虽然学过函数知识,但是锐角三角函数是初次接触,学生不易理解。所以,在教学中关键是抓住三角函数定义的理解,由浅入深,逐步解决问题。
本节课不仅要使学生了解三角函数的概念,而且要理解三角函数制值只与角的大小有关,即当某一锐角取固定值时,这角的三角函数值不仅存在,而且唯一。教学大纲明确指出,培养学生的分析问题、解决问题的能力是数学教学的一项重要任务。因此,根据教学目的的要求,在教学过程中让学生逐步学会观察、探索、猜想、发现新知识,培养学生解决问题的能力。
根据学生已有的知识结构,我把两节课的内容合并成一节,原因是学生探究出正弦的概念的同时,轻而易举地能得出余弦、正切的概念,这样更有助于学生对知识的联贯性学习。在教学过程中采用了多媒体教学。
并且,在自己的努力下,课堂教学中有些环节上有了很大的进步,特别是把两节的内容合并成一节按时间完成了教学任务。还有很多不足之处,譬如:从自身的角度看,和学生的交流做的不够、讲与练时间控制的不太好,特别在督促学生动笔书写方面;从学生的角度看,学生灵活运用概念的能力较差,及计算能力也有待加强。总之,本节内容的教学还是比较成功的,当然也有不足之处,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平。
锐角三角函数说课范文(14篇)篇十一
角三角函数是定义在直角三角形中的研究边角之间的关系。而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。
本节课重难点就是对比值的理解,可以从以下几方面着手研究:
(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。
采用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的'有效性。
在以后教学中,还要多注意以下两点:
(1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。
(2)要学会换位思考,站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。
(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
看过九年级数学的还看了:
3.初中三年级的数学教案。
4.初三数学教师工作计划。
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信,我们会及时处理和回复,谢谢.
锐角三角函数说课范文(14篇)篇十二
角三角函数是定义在直角三角形中的研究边角之间的关系,而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。
本节课重难点就是对比值的理解,可以从以下几方面着手研究:
(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。
采用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。
在以后教学中,还要多注意以下两点:
(1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。
(2)要学会换位思考,站在学生的'角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。
(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
锐角三角函数说课范文(14篇)篇十三
思维总是从问题开始的,有问题,学着才主动。学生在不断解决问题,发现问题中学习,知识得到了掌握,能力得到了训练,情感得到了体验。我来谈谈上完本节课之后的感想,做一小结和反思,以便更好地服务于课堂教学。
一、在教学时对学生状况进行了正确的分析,这是成功的开始。
有利条件:学生已经学过相似形、直角三角形及函数等有关知识,具备一定的分析判断及推理能力,通过教师引导能够完成学习任务。不利因素及对策:初三学生两极分化明显,不同学生的认知水平、思维能力不同,而数学抽象性较强,多数学生对数形结合类型题的适应能力较差。另外,学生虽然学过函数知识,但是锐角三角函数是初次接触,学生不易理解。所以,在教学中关键是抓住三角函数定义的理解,由浅入深,逐步解决问题。
二、教学过程注重学生基础知识的掌握及能力的培养。
本节课不仅要使学生了解三角函数的概念,而且要理解三角函数制值只与角的大小有关,即当某一锐角取固定值时,这角的三角函数值不仅存在,而且唯一。教学大纲明确指出,培养学生的分析问题、解决问题的能力是数学教学的一项重要任务。因此,根据教学目的的要求,在教学过程中让学生逐步学会观察、探索、猜想、发现新知识,培养学生解决问题的能力。
三、为了充实课堂容量,加强教学效果,采取了多种教学方式。
根据学生已有的知识结构,我把两节课的内容合并成一节,原因是学生探究出正弦的概念的同时,轻而易举地能得出余弦、正切的概念,这样更有助于学生对知识的联贯性学习。在教学过程中采用了多媒体教学。
四、教学过程中的不足在课堂教学过程中,将教师的指导教学和学生的`自主学习有效地结合起来,圆满完成了本节内容的教学任务。
并且,在自己的努力下,课堂教学中有些环节上有了很大的进步,特别是把两节的内容合并成一节按时间完成了教学任务。还有很多不足之处,譬如:从自身的角度看,和学生的交流做的不够、讲与练时间控制的不太好,特别在督促学生动笔书写方面;从学生的角度看,学生灵活运用概念的能力较差,及计算能力也有待加强。总之,本节内容的教学还是比较成功的,当然也有不足之处,在今后的教学工作中,需不断总结、反思。作为数学教师,一方面要激发学生学习数学的兴趣,让学生感觉到每解决一个数学问题,就有一种成就感;另一方面,更重要的是教师本人要不断提高自己的专业水平。在总结、反思中不断提升自己的教学水平。
将本文的word文档下载到电脑,方便收藏和打印。
锐角三角函数说课范文(14篇)篇十四
锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系,。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:
(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的.气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现,教学反思《》。我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。