教学计划是教师进行教学活动前的一项准备工作,它可以使教学过程更加有序和高效。如果你正在苦恼于教学计划的编写,不妨看一看以下的教学计划范文,或许可以给你一些启示。
说课与教学设计的关系(通用14篇)篇一
本节课的一个突出特点就在于学生的实际动手操作上,具体体现在以下两个环节:一是导入部分:学生从5根小棒中任意拿出3根,摆一摆,可能出现什么情况?结果有的学生摆成了三角形,而有的学生没有摆成三角形,此时,老师接过话题:能否摆成三角形估计与三角形的“边的长度”有关系,它们之间有着怎样的关系呢?今天我们就一起来研究这个问题。这样很自然地就导入了新课,为后面的新课做了铺垫。二是新授部分:学生用手中的小棒按老师的要求来摆三角形,并且做好记录。这个过程必须得每个学生亲自动手,在此基础上观察、发现、比较,从而得出结论。苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,我有意设置这些实际动手操作、共同探讨的活动,既满足了学生的精神需要,又让学生在浓烈的学习兴趣中学到了知识,体验到了成功的快乐。
二、练习设计层层深入。
评价一节数学课,最直接有效的方式就是通过练习得到的反馈。而学生之间参差不齐,为了能兼顾全班学生的整体水平,我在练习设计上主要采用了层层深入的原则,先是基础知识的练习;然后用三角形的知识解决实际问题;最后增加拓展延伸题,让优等生在这个知识点上的学习更进一步。而每一道题都运用了本节课的知识,每一道题目的呈现方式又都不同。这样既能让后进生跟得上,又能让优等生吃得饱,从而让全班同学共同进步。
但是从教学过程中我也反思了自己的不足之处。没有及时捕捉学生的智慧。学生在思考“能围成三角形三条边的关系”时,其中有一个学生说“我发现两条短边的和比另外一条边长时,就能围成三角形。”当时由于我考虑到为后面的“任意”二字做铺垫,并没有对学生的这个答案做过多的评价。其实这是判断三角形三条边的关系时一种最优化的方法。在教学中,我们不能束缚在教材的条条框框中,而忽视了班上少部分同学的灵感和智慧。在课堂中,如果我能及时捕捉这一信息,并因势利导,我相信本节课,不仅能找出三角形三条边的关系,还能找出能否三角形的三条线段的最优化方法,一定会为本节课增色不少。
从练习反馈中发现学生易错点,犯错的原因主要是学生未能认真审题。所以在以后审题教学中重视学抓关键词、培养审题习惯,提高解题效率。
说课与教学设计的关系(通用14篇)篇二
使学生进一步掌握分数加减混合运算的计算方法,并能比较熟练地进行计算,正确解答相应的分数应用题。
教学重点、难点熟练地进行计算分数加减混合运算。
一、基本训练。
1、师生共同回顾分数加减混合运算的计算方法及计算过程中的一些注意点。
2、看谁算得既对又快,并说说运算顺序。
4/13+8/13-7/135/19-3/19+10/19。
2又17/20-1又7/20+3/又7/10-9/10+1/10。
1-(1/2+1/3)1/9+(2-2/9)。
2又5/8+(5-4又5/8)3又1/20-(1/4-1/5)。
二、练习巩固,提高技能。
1、用递等式计算下列各题。
4又1/3-5/12+2又5/82又1/2+1又5/8-1又1/8。
3又1/2+(4又1/3-7/12)7又8/15-(6又8/15+3/11)。
(1)学生独立计算,完成后同桌交流计算过程。
(2)反馈比较,全班交流计算过程。
(3)重点讨论:为什么第2、4题的算法有不同?
(4):在计算中能简便计算的尽量要简便计算。
2、先说说下列各题如何计算比较简便,再计算。
2又7/16+1又6/7+1又9/168-3又6/11-1又5/11。
5又11/12-2又4/9-2又11/126-(3又3/8+1又5/24)。
(1)学生同桌交流以上各题如何计算比较简便,说出各自的看法,然后分别计算。
(2)教师巡视发现典型算法,指名板演。
(3)反馈比较各种算法,引导学生用比较简便的算法进行计算。
3、分数加减混合运算的一般方法,并提出要求:能根据数据特点灵活、合理地进行计算。
三、应用练习,巩固技能。
1、选择相应答案的序号填入各题后面的括号中。
(1)从6又8/9里减去3又1/4,所得差与2又1/6的和是多少?正确的算式是()。
(2)从6又8/9里减去3又1/4与2又1/6的和,差是多少?正确的算式是()。
(3)从6又8/9里减去3又1/4与2又1/6的差,结果是多少?正确的算式是()。
(4)6又8/9加上3又1/4与2又1/6的差,和是多少?正确的算式是()。
c、6又8/9-3又1/4+2又1/6d、6又8/9-(3又1/4-2又1/6)。
(学生先根据题意选择正确的算式,再各组计算一题,算出结果)。
2、应用题练习,根据相应问题列出算式。
农场收割小麦,第一天收了这快地的2/15,第二天收了这快地的3/20,第三天收了前天天的总和。
(1)收了一天后还剩下这快地的几分之几?列式为:
(2)第三天收了这快地的几分之几?列式为:
(3)三天一共收了这快地的几分之几?列式为:
(4)收了三天后还剩下这快地的几分之几?列式为:
(注意引导学生理解所求问题的含义,弄清数量关系)。
四、课堂(师生谈话共同完成)。
1、通过本节课的练习,你对分数加减混合运算有什么新的认识?
2、在解决分数加减混合运算应用题中要特别注意什么?
五、课堂作业。
1、列式计算。
(1)从4又7/9里减去2又3/4,所得的差与3又1/6的和是多少?
(2)从3又9/10里减去1又1/6与4/5的和,得多少?
(3)1又5/12加上3又11/18减3又2/9的差,和是多少?
(4)从8又1/4里减去3又7/8与2又1/2的差,得多少?
2、应用题。
通过练习学生进一步掌握了分数加减混合运算的计算方法,但计算的正确率太低,对学生计算能力要加强培养,同时要教育养成学生认真审题,认真验算的好习惯。
说课与教学设计的关系(通用14篇)篇三
《义务教育课程标准实验教科书数学》(人教版)四年级下册第62页。
《三角形边的关系》这节课是人教修订版四年级数学下册第五单元第二课时的内容。在平面图形里,学生已经学习了线段、射线、直线、角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,虽然知道三角形由3条线段围成,但是对于“任意的3条线段不一定都能围成三角形”这一知识却没有任何经验。学生对三角形任意两边之和大于第三边的规律只是停留在生活经验的基础上,只能初步感悟笔直的路比拐一个弯要近。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,还可以在动手操作、体验理解、思考探索、生活应用等方面发展学生的思维,提高解决实际问题的能力,同时也为进一步学习三角形的分类、三角形内角和、三角形的面积、甚至初中的勾股定理、三角函数等内容打下坚实基础。
1.经历用小棒围三角形来探究三角形三边关系的过程,发现、理解三角形任意两边的和大于第三边以及两点之间的所有连线中线段最短,并运用这一发现解决生活中的实际问题。
2.在探索活动过程中,积累猜想、观察、分析、对比、计算、比较、归纳、验证等数学活动经验和方法,培养学生的动手操作能力和策略意识。
3.渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。
探索并发现三角形任意两边的和大于第三边。
较短两根小棒的长度和等于第三根时能不能围成三角形。
学生用小棒(每组5根)、记录单、教学课件。
一、情景导入。
生:围不成三角形。
师:其他同学同意吗?
师:为什么会围不成?(长的太长)。
师:你们觉得怎么样就能围成三角形?
生:缩短最长边。
师:我们试试看。(缩短最长边)最长的钢管变短后还真围成了。
师:看来并不是任意三根钢管都能围成三角形,三角形三条边的长度之间一定是有关系的,那会有什么关系呢?今天我们就一起探索三角形边的关系。
1.围三角形的活动。
师:接下来我们就借助小棒进行研究,每个信封中有4根小棒,上面标有小棒的长度。两人一组,每次任选3根小棒围一围,看能不能围成三角形,把围的结果写到记录单上。好,开始活动。
(学生活动)。
引导认为358厘米能围成的同学:358厘米这组小棒能不能围成?确实是围成了(师拍照)。
引导认为358厘米围不成的同学:358厘米这组小棒能不能围成?说说为什么围不成?3加5正好等于8,和8厘米的小棒就重合了(师拍照),当3厘米和5厘米的小棒拱起来时就更不能和8厘米小棒的端点重合了。可人家还真有人围成了(师操作)你们觉得这围成了没有?是啊,看似围成了,实际上小棒的端点并没有重合,还差一点点。所以这三根小棒围不成。如果让同学们知道了你这种想法,大家一定会很佩服你的。
2.汇报围三角形的情况。
(尽可能让认为358厘米能围成的学生先汇报)。
师:大家看看有哪些数据和你们的结果不一样?
预设一:若学生有不同意见。
预设二:若学生没有不同意见。
师:(生说师打问号做标记)还有不同的吗?打问号的小棒能不能围成三角形?我们怎么办呢?(怎么验证我们的猜测?)。
生:再来围一围。
师:是个好办法,那就听大家的.,我们再围一围。(学生活动)。
师:这是我刚拍到的照片(解决能围成的情况)。
358厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?
生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)。
生:没围成。(说说你的理由?)。
(把照片放大)。
师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)。
你觉得这三根小棒能围成三角形吗?请说出你的理由?(生述)。
师评价:谢谢你,你的表达真清楚。
358厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?
生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)。
生:没围成。(说说你的理由?)。
(把照片放大)。
师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)。
你觉得这三根小棒能围成三角形吗?请说出你的理由?
3.探究围成三角形的条件。
师:同样是三根小棒,为什么有些能围成三角形,有些就围不成?对比这些数据和图形,你们发现了什么?先独立思考,然后将你的想法在小组内交流。
师:谁来和大家分享一下你们的发现?
预设一。
生:我发现三角形任意两边的和大于第三边。
师:你严谨准确的语言和高度概括的能力很值得我们学习。能举例子说说吗?
生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3。
(学生说,师板书)。
师评价:说的真好!你真是一位善于表达的孩子。
师:谁能将这个三角形三条边长度之间的这种关系,用自己的话说一说?
生:三角形每两边的和大于第三边。
生:三角形哪两边的和都大于第三边。
师:同学们理解的都非常到位,同桌口算一下458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。
师:这个三角形的三条边是不是也有这样的关系?(是)。
预设二。
生:只要随便两边的和大于第三边就能围成三角形。
师:听了他的发言,你想说什么?
生:可3,5,8厘米,5+8大于3,但也围不成呀?
师评价:正是由于这位孩子用心倾听、深入思考才有了与众不同的发现,感谢你为我们带来了新的思考。
师:5+8大于3,3+8也大于5,为什么围不成呀?
生:可是3+5等于8,所以就围不成。
生:三角形每两边的和大于第三边。
师:明白他的意思吗?谁能用你的话说一说。
生:三角形哪两边的和都大于第三边。
师:什么叫哪两边的和都大于第三边?(生述)。
师:理解的非常到位,每两边也就是任意两边。
师:谁能举例子说说这句话的意思?
生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3。
师评价:说的真好!仅仅用3个式子就很清楚的让我们理解了任意两边的和大于第三边。
师:同桌口算一下458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。
师:这个三角形的三条边是不是也有这样的关系?(是)。
三、应用所学,解决问题。
四、课堂小结。
这节课上我们由刚上课时发现问题,提出问题到课堂上的分析问题,再到刚才的解决问题,尤其是在做航模底座的问题中,经历了做不成-能做成-更美观-实用性的系列研究过程,不仅学到了数学知识,还学到了数学的思想和方法,积累了数学活动的经验,这就是学习数学的价值所在。
说课与教学设计的关系(通用14篇)篇四
教学目标:
1、结合具体的情境和直观操作活动,让学生探索并发现三角形任意两边和大于第三边。
2、感受动手实验是探索数学规律的途径和方法。
3、培养学生初步的应用数学知识解决实际问题的能力。
教学重点:在观察、操作、比较、分析中发现三角形边的关系。
教学关键:借助实际操作和生活经验,引导学生感受三角形三条边的长度关系。
教具准备:多媒体课件。
教学过程:
二、探索新知。
猜一猜,任意给你3根小棒,你能围成三角形吗?(能或不能)。
实践是检验真理的唯一标准,咱们来动手操作,验证一下。
研究一:任取3根小棒围三角形,看能不能围成。
师:“任取3根”是什么意思?
对了,同学们自己随便取3根小棒试着围一围,多围几次。你发现了什么?
汇报。
师总结:看来并不是随随便便的3根小棒就可以围成三角形,这里一定隐藏着什么秘密。我们继续来探究。
研究二:什么情况下3根小棒不能围成三角形。
(1)从你的小棒中找出不能围成三角形的3根小棒,并摆出来。
(2)想一想,这3根小棒为什么围不成三角形呢?再小组内交流一下。
板书:围不成:较短2边的和小于第3边。
师:看来,较短的两根小棒长度的和小于第三根小棒时的确围不成三角形,除了这种情况,还有什么情况下3根小棒不能围成三角形呢?(自己摆)。
生演示汇报。(较短两根小棒加起来的长度和第三根一样长的时候也不能围成三角形)。
师:那么,在什么情况下,三根小棒能围成三角形。我们继续来研究(同桌之间摆一摆,并讨论)出示研究三:在什么情况下,三根小棒能围成三角形。
师:根据我们刚才的研究,我们知道较短两边的和小于第三边,较短两边的和=第三边,这两种情况都围不成三角形,那么你们猜测一下,在什么情况下,三根小棒能围成三角形。
板书:围成:三角形较短两边的和大于第三边。
师:我们这个结论是否正确呢?我们来验证一下。找出能围成三角形的三根小棒围一围,比一比。
汇报:同意吗?看来我们的猜测是正确的。
这就是我们今天所要学习的三角形边的关系。板书:三角形边的关系。齐读。
同意这种说法吗?
师:三角形任意两边的和大于第三边,任意这个词很重要,接下来我们就用这个知识来做有关练习。
三、拓展练习。
说课与教学设计的关系(通用14篇)篇五
(1)使学生进一步掌握分数连加、连减的计算方法。
(2)通过练习,使学生能根据特点正确、合理地选择方法进行计算。
(3)通过思考题探究,培养学生探究数学的兴趣,提高探究能力。
教学重点、难点根据特点正确、合理地选择方法进行计算。
教学过程。
一、基本训练。
1、口算。(下面这些题目你能很快说出结果吗?为什么?)。
1-1/8-52又3/14+4+1又11/144-1/3-1/6。
4又7/10+2+1/105-1/5-3/52又1/5+4/9+1又7/8。
(1)学生谈谈看法后即计算。
(2)反馈时请举例说明“怎样算比较简便”。
2、揭示课题:带分数加减练习。
二、组织练习,提高技能。
1、先说说下列各题该如何计算,并独立完成。
3又11/18+7/10+2又1/610-4又6/7-2/5。
(1)学生独立完成,教师巡视指名板演。
(2)反馈计算思路,设问:为什么题目中不要用简便方法计算,而你对第4题则用了简便方法计算。
2、引导讨论:计算带分数加减法,要观察数据特点,能运用运算定律进行简便计算的,则尽量用简便方法计算。
3、专项练习:下列各题怎样简便就怎样算。
(1)学生独立完成。
(2)同桌交换互批,并说说思路。
(3)全班交流。
三、应用练习,巩固技能。
1、谈话导入应用性练习。
2、选择正确的算式,并计算出结果。
(1)4又2/3与1又5/9的和,再加上2又5/6得多少?
a、4又2/3+(1又5/9+2又5/6)b、4又2/3+1又5/9+2又5/6。
c、4又2/3+2又5/6+1又5/9。
(2)6减去3又5/6的差,再减去1又1/8,得多少?
(3)两个数的和是9又17/20,其中一个数是2又2/3,另一个数比它多多少?
a、9又17/20-2又2/3b、9又17/20-(2又2/3+2又2/3)。
c、9又17/20-2又2/3-2又2/3。
(对第3题可扩展,设问:还有其他列式方法吗?如9又17/20-2又2/3×2)。
3、应用题练习。(要求选择两题完成,喜欢做哪两题就做哪两题)。
四、课堂。
1、学生带分数加减法的一些知识、方法、注意点等。
2、全班交流。
五、探究思考题。
1、教师提出要求:先算算看你能发现什么?
2、学生独立完成后,反馈交流。
3、引导学生,再举一些例子。
4、强调学习数学的态度及学法指导,并提出课后要求:你去找找看,在一些数学计算中,你能发现一些规律吗?把发现的规律拿出来,我们在数学活动课中全班学生进行交流。
说课与教学设计的关系(通用14篇)篇六
人教版义务教育课程实验教科书数学四年级下册p82页。
教学目标。
1.让学生通过动手实践、自主探索、合作交流发现三角形任意两边之和大于第三边。
2.能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。
3.通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。
教具、学具准备。
多媒体课件,不同长度不同颜色的小棒若干根,实验表格。
教学过程。
一、创设情境,导入新课。
师出示课件)同学们看,图上这些地方你们都熟悉吗?
(我们的学校、鼓楼商场还有学校后门的建设银行。)。
师:老师从学校大门口到建行去取钱,有几条路可走?猜一猜我会走哪条路呢?为什么?
师:老师在银行取了钱后,现在要去鼓楼商场购物,又有几条路可走?我会走哪条路?
师:老师现在要回学校,我又有几条路可走?我又会选择哪条路呢?
师:同学们你们为什么认为在三角形的线路中走其中一条边的线路比走另外两条边组成的线路近呢?把你的想法在小组里交流一下。
(学生困惑,沉默不语。)。
师:今天我们就用数学的方法来研究一下,看看在三角形中,三边的关系是怎样的`?
二、设疑激趣,动手探究。
(学生会出现能围成和不能围成两种情况。)。
师:有两种意见,到底谁的猜测是正确的呢?让我们动手操作后再谈自己的发现。
师:我请一位同学上来任意拿出不同颜色的三根小棒,看看能不能围成三角形?
(学生上台演示,其他同学看。)。
师:这位同学围成三角形了吗?(根据学生的情况将数据填在表格中)你们想不想试试?
师:请拿出老师为你们准备的小棒,要求用三种颜色的小棒围三角形。看看哪些长度的小棒能围成三角形,哪些长度的小棒不能围成三角形。
说课与教学设计的关系(通用14篇)篇七
教学时间:
教学内容:93页1-4题,练习二十1-5题。
教学目标:
知识:通过复习进一步理解100以内笔算加减法的.法则。
能力:提高正确率和熟练程度,一般要达到每4分钟4题。
教学重难点:正确准确地进行100以内的加减法计算。
突破方法:讲解法、练习法。
教具:小黑板、投影机、
教学过程。
一、前提测评。
2、教师读题。
3、做练习二十的第2题。
二、笔算。
1、做书上95页第2题和第3题。
2、做书上93页第1题]。
3、做练习二十的5题。
三、复习文字叙述题。
1、做练习二十3题。
2、做练习二十4题。
四、复习连加连减混合运算:
书上95页的第4题。
五、作业。
板书设计:
教后经验与失误分析:
说课与教学设计的关系(通用14篇)篇八
教学内容。
《义务教育课程标准实验教科书数学》(人教版)四年级下册第62页。
教材和学情分析。
《三角形边的关系》这节课是人教修订版四年级数学下册第五单元第二课时的内容。在平面图形里,学生已经学习了线段、射线、直线、角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,虽然知道三角形由3条线段围成,但是对于“任意的3条线段不一定都能围成三角形”这一知识却没有任何经验。学生对三角形任意两边之和大于第三边的规律只是停留在生活经验的基础上,只能初步感悟笔直的路比拐一个弯要近。所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,还可以在动手操作、体验理解、思考探索、生活应用等方面发展学生的思维,提高解决实际问题的能力,同时也为进一步学习三角形的分类、三角形内角和、三角形的面积、甚至初中的勾股定理、三角函数等内容打下坚实基础。
教学目标。
1.经历用小棒围三角形来探究三角形三边关系的过程,发现、理解三角形任意两边的和大于第三边以及两点之间的所有连线中线段最短,并运用这一发现解决生活中的实际问题。
2.在探索活动过程中,积累猜想、观察、分析、对比、计算、比较、归纳、验证等数学活动经验和方法,培养学生的动手操作能力和策略意识。
3.渗透建模思想,体验数据分析、数形结合方法在探究过程中的作用。
教学重点。
探索并发现三角形任意两边的和大于第三边。
教学难点。
较短两根小棒的长度和等于第三根时能不能围成三角形。
教学准备学生用小棒(每组5根)、记录单、教学课件。
教学过程。
一、情景导入。
生:围不成三角形。
师:其他同学同意吗?
师:为什么会围不成?(长的太长)。
师:你们觉得怎么样就能围成三角形?
生:缩短最长边。
师:我们试试看。(缩短最长边)最长的钢管变短后还真围成了。
师:看来并不是任意三根钢管都能围成三角形,三角形三条边的长度之间一定是有关系的,那会有什么关系呢?今天我们就一起探索三角形边的关系。
1.围三角形的活动。
师:接下来我们就借助小棒进行研究,每个信封中有4根小棒,上面标有小棒的长度。两人一组,每次任选3根小棒围一围,看能不能围成三角形,把围的结果写到记录单上。好,开始活动。
(学生活动)。
引导认为358厘米能围成的同学:358厘米这组小棒能不能围成?确实是围成了(师拍照)。
引导认为358厘米围不成的同学:358厘米这组小棒能不能围成?说说为什么围不成?3加5正好等于8,和8厘米的小棒就重合了(师拍照),当3厘米和5厘米的小棒拱起来时就更不能和8厘米小棒的端点重合了。可人家还真有人围成了(师操作)你们觉得这围成了没有?是啊,看似围成了,实际上小棒的端点并没有重合,还差一点点。所以这三根小棒围不成。如果让同学们知道了你这种想法,大家一定会很佩服你的。
2.汇报围三角形的情况。
(尽可能让认为358厘米能围成的学生先汇报)。
师:大家看看有哪些数据和你们的结果不一样?
预设一:若学生有不同意见。
预设二:若学生没有不同意见。
师:(生说师打问号做标记)还有不同的吗?打问号的小棒能不能围成三角形?我们怎么办呢?(怎么验证我们的猜测?)。
生:再来围一围。
师:是个好办法,那就听大家的,我们再围一围。(学生活动)。
师:这是我刚拍到的照片(解决能围成的情况)。
358厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?
生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)。
生:没围成。(说说你的理由?)。
(把照片放大)。
师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)。
你觉得这三根小棒能围成三角形吗?请说出你的理由?(生述)。
师评价:谢谢你,你的表达真清楚。
358厘米这组小棒,我拍到两组同学的照片,他们围成了吗?这组呢?
生:围成了。师:都认为围成了?(若生都认为围成了,教师放大照片问:再看看,围成了没有?)。
生:没围成。(说说你的理由?)。
(把照片放大)。
师:如果再调整下去又会怎样呢?我们看看这个动画(出示课件)。
你觉得这三根小棒能围成三角形吗?请说出你的理由?
3.探究围成三角形的条件。
师:同样是三根小棒,为什么有些能围成三角形,有些就围不成?对比这些数据和图形,你们发现了什么?先独立思考,然后将你的想法在小组内交流。
师:谁来和大家分享一下你们的发现?
预设一。
生:较短两根小棒的和大于第三根就能围成三角形;较短两根小棒的和小于或等于第三根就围不成。
师评价:说的真好!真是一名善于思考和总结的孩子。能举例子说说吗?
生:345厘米,3+4〉5,所以能围成三角形。348厘米,3+4〈8,所以围不成;358厘米,3+5=8,也围不成。
(生说出时师板书)。
(生说不出时师引导:3加4大于5,3加5呢?)。
师:同桌口算一下边长458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。
师:这个三角形的三条边是不是也有这样的关系?(是)。
若学生说不出:师:这是哪两边的和大于第三边呢?
这两边的和3加4大于5,3加5大于4,4加5大于3。
生:三角形每两边的和大于第三边。
师:明白他的意思吗?谁能用你的话说一说。
生:三角形哪两边的和都大于第三边。
师:什么叫哪两边的和都大于第三边?(生述)。
师:理解的非常到位,每两边也就是任意两边。
总
师:谁来汇报一下你是如何验证的?
生:*+*〉**+*〉**+*〉*。
师:刚才我发现有一位同学的方法比较特别,(出示照片)(若出现这种情况:说说你为什么只计算较短两边的和大于第三边?)(若没出现这种情况:谁知道为什么只计算较短两边的和大于第三边?)。
师:(生若说不出)最长边比另外两边都长,最长边无论加哪条边都比另一条边要长,所以就没有必要算了,只算较短两边的和大于第三边就可以了。
师评价:多么有创意的想法,有深度的思考,分析的太透彻了。这是判断能否围成三角形的最快方法。
师:有没有谁画的三角形,三边关系不符合这个结论的?有没有呢?
师:看来所有三角形任意两边的和都大于第三边。
预设二。
生:我发现三角形任意两边的和大于第三边。
师:你严谨准确的语言和高度概括的能力很值得我们学习。能举例子说说吗?
生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3。
(学生说,师板书)。
师评价:说的真好!你真是一位善于表达的孩子。
师:谁能将这个三角形三条边长度之间的这种关系,用自己的话说一说?
生:三角形每两边的和大于第三边。
生:三角形哪两边的和都大于第三边。
师:同学们理解的都非常到位,同桌口算一下458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。
师:这个三角形的三条边是不是也有这样的关系?(是)。
预设三。
生:只要随便两边的和大于第三边就能围成三角形。
师:听了他的发言,你想说什么?
生:可3,5,8厘米,5+8大于3,但也围不成呀?
师评价:正是由于这位孩子用心倾听、深入思考才有了与众不同的发现,感谢你为我们带来了新的思考。
师:5+8大于3,3+8也大于5,为什么围不成呀?
生:可是3+5等于8,所以就围不成。
生:三角形每两边的和大于第三边。
师:明白他的意思吗?谁能用你的话说一说。
生:三角形哪两边的和都大于第三边。
师:什么叫哪两边的和都大于第三边?(生述)。
师:理解的非常到位,每两边也就是任意两边。
师:谁能举例子说说这句话的意思?
生:比如3、4、5厘米的小棒,3+4>5,3+5>4;4+5>3。
师评价:说的真好!仅仅用3个式子就很清楚的让我们理解了任意两边的和大于第三边。
师:同桌口算一下458厘米的三角形是不是也有这样的关系?(生算)(教师发现一旦口算正确的学生就第一时间让写到黑板上)。
师:这个三角形的三条边是不是也有这样的关系?(是)。
四、应用所学,解决问题。
***身高1.5米,腿长0.8米,有人说他一步能走2米。你同意他的说法吗?
预设一。
预设二。
生:一步不可能走2米。因为0.8+0.8小于2,所以一步不可能走2米。
师:你们觉得他一步(最多)能走多长?
生:1.6米。
师:我们掌声请出***给大家走个1.6米。
师:我想这是***十多年来第一次迈出这样的步子,***不可能就这样走吧?
生:不可能。
生:三角形任意两边的和都大于第三边,0.8+0.8应大于一步的长度,所以一步的长度要小于1.6米。
生:走路时两腿与地面形成一个近似的三角形,0.8+0.8小于2就围不成三角形,所以不可能走2米,即使劈叉也不可能走2米。
师:什么是劈叉?谁能示范一下?(生劈叉)。
师:我想这是***十多年来第一次迈出这样的步子,***不可能就这样走吧?
生:不可能。
师:正如这位同学所说,走路时两腿的长度与两脚间的距离构成一个近似的三角形,三角形任意两边的和都大于第三边,0.8+0.8应大于一步的长度,所以一步的长度要小于1.6米。
师小结:真聪明,真会学以致用。看到同学们学的这么认真,而且能用所学的知识解决实际问题,明明也想请大家帮帮忙。
2.还记得明明做三角形航模底座的事吗?
生:把10厘米的钢管据成7厘米。
师:谁知道他为什么要这样想?
生:3+5>7,就能围成三角形了。
师:孩子,你是这样想的吗?(是)。
师:是不是只能锯成7厘米?还可锯成?
生:6厘米、5厘米、4厘米、3厘米、2厘米、1厘米。
(学生对2分米和1分米两种情况进行质疑并发现锯成2分米和1分米不行)。
师:最长可锯成几分米?最短呢?可以有几种情况?
师评价:集体的力量真大,把这个问题的方方面面都想到了。
师小结:说的真好,做成等腰三角形的底座确实好看多了。
(3)我们还能不能帮明明做出更加美观的边长整厘米的三角形底座?
(出示等边三角形底座图)怎么做?
生:剪成3个1厘米……师:为什么要这样剪?(三边相等更美观)。
师:还有别的方法吗?
生:2厘米,3厘米,4厘米,5厘米(师:4厘米怎么剪?5厘米怎么剪?)。
(4)按这几种想法做出的三角形底座就更漂亮了,如果你是明明,会给自己的航模选哪种底座?请说说理由。
五、课堂小结。
这节课上我们由刚上课时发现问题,提出问题到课堂上的分析问题,再到刚才的解决问题,尤其是在做航模底座的问题中,经历了做不成-能做成-更美观-实用性的系列研究过程,不仅学到了数学知识,还学到了数学的思想和方法,积累了数学活动的经验,这就是学习数学的价值所在。
说课与教学设计的关系(通用14篇)篇九
《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于“空间与图形”的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在平面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。
几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历“数学化”、“做数学”等过程,强调在教师的引导作用下,由“获得知识结论快乐”转变为“探究发现知识快乐”,并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:
(一)教学目标。
1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。
2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。
3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。
(二)说教学重难点。
探究发现“三角形任意两条边的和大于第三边”是教学重点,而理解“任意两边”是本节课的教学难点。
接下来说说这节课的教法与学法。
有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验“做数学”的过程。
以下是我的而教学流程。
第一环节:矛盾冲突。
兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是15厘米,13厘米10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)。
在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处“魔术”的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。
第二环节:初建模型。
新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。
给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)。
(1)从这5根小棒中任意选取3根围一个三角形;
(2)同桌2人合作,共同摆小棒。
(3)摆完后共同观察,并把结果记录在表格中。
(4)音乐响起开始,音乐停止时活动结束。
看哪一组完成最多最好。
这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。
反馈(1)335(2)337。
(3)338(4)357。
(5)358(6)378。
(7)578(ppt出示表格)。
观察:三根小棒在什么情况下能围城三角形呢?
最后引导归纳:三角形两条边的和大于第三条边(师板书)。
随着教学活动的逐步展开,教师围绕“核心知识”精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。
第三个环节,完善模型。
完善性质:三角形任意两边的和大于第三边。
第四环节:验证模型。
验证:让学生画出任意三角形,量出三条边的长短再算一算,三边之间的关系。
引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。
第五环节:应用模型。
判断下面的小棒能否围成三角形。
(1)2厘米3厘米8厘米。
(2)4厘米7厘米8厘米()。
(3)6厘米5厘米8厘米()。
(4)5厘米14厘米9厘米()。
(5)5厘米9厘米13厘米()。
第六环节:优化模型、并体会极限思想。
——优化。
有的学生很快做出判断,他们有什么诀窍?
——极限思想。
让学生重点观察(4)中的数据。
提问:5厘米和9厘米能与多长的小棒围成三角形?
学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)。
这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。
第七个环节、走进生活。
老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释。
走小路近(让学生说明理由)。
(ppt显示草坪)。
还走这条路吗?
这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)。
第八个环节:课后延伸。
播放《将军饮马》的故事(课件呈现图)。
板书设计力求做到重点突出,一目了然。
纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。
说课与教学设计的关系(通用14篇)篇十
一、教学目标:
根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:
(1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
二、教材的重点难点。
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
三、教学重点和难点。
解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。
(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,
3.直线l与圆o相离=dr。
(上述结论中的符号“=”读作“等价于”)。
式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。
四、教学程序。
[提问]通过观察、演示,你知道直线和圆有几种位置关系?
[讨论]一轮红日从海平面升起的照片。
[新授]给出相交、相切、相离的定义。
[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。
说课与教学设计的关系(通用14篇)篇十一
找等量关系是列方程解决问题的关键,教材设计了两个教学情景,使学生理解什么是等量关系及如何表示等量关系。
学生从实际出发,学习用不同的方法找等量关系。从而培养学生抽象概括的能力和分析问题的能力。
1、可以通过姚明与妹妹的身高学会解方程,进一步理解方程的意义。
2、会学会用方程解决简单的实际问题。
学会解答简单的方程。
学会用画线段图来分析、理解和解决含有两未知的数学问。
发现法、尝试法。
自主探究法。
小黑板、课件。
情景导入。
1、课件出示《曹冲秤象》的故事情景图教师讲述《曹冲秤象》的故事。
同学们今天我们一起来通过姚明的身高,算一算这姊妹两个的身高。板书课题:等量关系。
二、探究新知。
(一)、交流自学情况。
活动一:姊妹两跟姚明身高的关系找出等量关系。
看书回答下列问题:
1、我比妹妹高20厘米。这句话中隐含了什么?
2、姚明的身高是我的2倍,这句话中隐藏了什么?
活动二:画线段图列方程。
1、你会根据他们的对话画出线段图吗?
2、根据线段图列方程并解答。
3、你可以根据其他的条件找出别的等量关系吗?试试看。
(二)、小组展示成果,适时导学(展示部分)。
1.、小组内交流自学的收获和疑问。
2、展示汇报学习情况。其他小组补充完善,评价病可以提出疑问,由展示组优先解惑,有问题其他组补充,最后由组长做总结发言。组内交流、解疑、个别汇报、老师点拨。
四、点拨升华。
五、课堂总结。
通过本节课的学习你有什么收获或不明白的地方?先小组内说一说,最后班上交流。
六、达标检测。
1、我能行。
(1).果园里有桃树a棵,平均每棵桃树收桃子360千克,果园共收桃子( )千克。
(2).打字员小王每分钟打字90个,一份稿件她打了m分钟还剩c个字没打。这份稿件一共有( )个字。
(3).苹果和香蕉的单价分别是每千克4.5元和6元,买x千克苹果和y千克香蕉共需要( )元。
(4).五个连续的整数,其中最小的数是n,这五个连续的整数的和是( )。
2、完成练一练第2题,并交流。
先独立做,最后组内交流。
七、拓展提高。
甲乙两人共写了200个大字,其中甲写的是乙的4倍,求甲乙两人各写了多少个大字?先独立做,最后组内交流。
说课与教学设计的关系(通用14篇)篇十二
1.四边形、平行四边形的认识。
2.周长的概念,长方形、正方形的周长计算。
3.长度的估计。
1.使学生认识四边形的特征,初步认识平行四边形,会用不同的方式表示平行四边形。
2.使学生了解周长的概念,会计算长方形、正方形的周长。
3.通过对长度和周长的估计,培养学生的长度观念。
1.从日常生活中引入几何概念,使学生在熟悉的情境中学习几何知识。
利用校园的情境认识四边形和平行四边形。利用学生熟悉的事物(树叶、教科书、小国旗、钟面)来认识和计算周长。
2.利用活动巩固对几何概念的认识。
教材中设计了各种形式的活动:涂色、分类、拉一拉平行四边形、在钉子板上围平行四边形、在方格纸上画平行四边形、用长方形纸剪平行四边形、用七巧板拼图、实际测量一个物体的周长,等等。这也是由几何知识的直观操作性决定的。
3.周长的概念更强调从一般性的角度引入,体现知识的形成过程。
从任意图形(包括不规则图形)入手,使学生体会到周长是一个一般概念,避免学生产生只有长方形、正方形、圆等规则图形才能求周长的`思维定势。此外,通过对一般图形周长求法的探索,使学生经历长、正方形周长求法的知识形成过程。
提供了一个校园的场景,图中有很多几何图形,其中包括很多四边形,如学校大门的推拉门上有平行四边形,人行道上有长方形、正方形、平行四边形、菱形,篮球场是一个长方形、篮板是一个长方形,篮板上有一个长方形的框、羽毛球场地上有很多长方形、足球门上有长方形、梯形,远处教学楼的楼梯上有平行四边形、窗户是长方形的。教学时,要让学生充分进行观察。有些名词,如平行四边形、梯形、菱形虽然没学过,但如果学生有这方面的知识,教师要给予肯定。通过观察主题图,可以看到生活中有各种四边形。
让学生把自己认为是四边形的图形涂上颜色,从而让学生通过讨论,找出四边形的特征:有四条直的边和四个角。由于学生已经有了认识长、正方形的基础,可以利用长、正方形的边和角的特征归纳四边形的特征。这也是合情推理(归纳)的一种体现。
可能有的学生一开始认为第三行第二个图形也是四边形,认识了四边形的这两个特征以后,就能正确地判断了。
通过本例,学生对小学阶段出现的各种特殊四边形乃至一般四边形都有一个感性的认识,在以后的学习中将逐一认识。
(1)例1的目的是把四边形从其他图形中区别出来,例2是在四边形内部进行分类。
(2)教材上给出了三种分类结果:
a.长方形、正方形是一类,其他是一类。
b.长方形、正方形、平行四边形、菱形是一类,梯形是一类。
c.长方形是一类,正方形和菱形是一类,平行四边形是一类,梯形是一类。
(3)鼓励学生发现更多的分法,但是一定要注意让学生说出分的理由来。
(4)通过本例,可以进一步感性地认识和区别各种四边形的特征。
第1题,让学生发现生活中的四边形,可以体会生活中处处有数学。
第2题,让学生通过在钉子板上围不同的四边形,可以进一步体会平行四边形两组对边分别平行、矩形四个角是直角等特征。
(1)在前面认识四边形时,学生已经见过平行四边形,这儿是单独对它进行初步的认识。
(2)通过校园里楼梯上和伸缩门上的平行四边形使学生直观认识平行四边形的特征,并引导学生通过思考小精灵提出的问题“为什么这样的门能伸缩?”去发现平行四边形易变形的特点(变形后仍是平行四边形)。
(3)下面的“做一做”实际上就是对例1问题的回答。通过实验使学生发现,三角形具有稳定性,而平行四边形具有可变性,如果把平行四边形的对角线固定,转化成两个三角形,就稳定了。在教学平行四边形的这一特性时,可以借助于生活中当椅子发生前后左右晃动时,只要在凳子腿上斜着钉一根木条就固定的例子,让学生思考为什么要这样做。
(1)前面已经直观认识平行四边形,在这儿也不对平行四边形下定义,只要求学生在钉子板上围出来,然后让学生观察围出的平行四边形,说一说它的边有什么特征,使学生明确平行四边形的对边相等。
(2)画平行四边形比围平行四边形稍难,要让学生结合围平行四边形的过程来想应该怎样画。首先确定一个顶点,再任意画出一条边,然后任意画出相邻的边,这样就确定了三个顶点,最后一个顶点就不能任意画了,要使两组对边分别平行相等。
(3)用一张长方形纸剪一个平行四边形的方法很多,教材上只提供了两种,教学时要鼓励学生创造出更多的剪法来,而且要保证剪出来的是严格意义上的平行四边形,不能仅凭感觉剪出来像平行四边形就可以了。
第3题,改平行四边形的方法很多,体现开放性。
第4题,让学生通过测量、比较探讨长方形、正方形、平行四边形的边、角的特征。但只是初步的描述,以后还要学习更数学化的表述。
(1)给出一组实物和一组几何图形,实物有不规则的,有规则的。但这些实物和几何图形有一个共同点:都是封闭图形。
(2)用描述性的的语言来定义周长。
(3)让学生用自己的方法测量不同物体和图形的周长,有的是拿绳子把物体围一圈,再量绳子的长度,有的是分别测量物体的各条边的长度,再相加。体现了知识的形成过程,为求长、正方形的周长做准备。
体现了周长计算方法的多样性。但在这儿没有总结出(长+宽)times;2的公式,学生只要理解了周长的涵义并会计算就可以了。
可以看作实践活动的一种形式,开放性很大,选取的物品表面可以是规则的,也可以不规则,采取的方法也是开放的,可以直接测量,也可以先量再计算。
编排方式同例2。
解决的方式多样,可以看作一个新的2times;1的长方形,也可以先算出两个小正方形的周长,再减去重合的两条边的长。
第3、4题都是实际操作的题目,体现开放性。其中第3题还可以让学生感受一下周长的实际应用,如做衣服时要知道胸围和腰围。
对长度的估计不是一节课上就能完成的任务,需要在日常生活中经常估计,逐步培养起正确的长度观念。
凭感觉画出8厘米的线段,完全依靠平时积累的长度的表象。画完后再用尺量一量,帮助学生重新建立正确的长度表象,培养估计的能力。
涉及到对铅笔盒长、宽的估计,周长的估算,对彩纸长度的估计。估计完了以后,可以让学生实际测量、计算一下,建立正确的长度观念,修正自己的估计策略。
第2题,可以先让学生估计哪条路线近些,哪条路线远些,再运用数学知识精确地判断一下(两点之间直线段最短)。有两条路线是同样长的,要让学生说一说为什么。
第3题,让学生运用生活经验估计一下,可以直接估计,也可以先估计出一个人的臂展,再估算出5个同学拉成一圈的周长。第2小题也是同样。
第3题,在解决实际问题时,要根据实际情况调整计算策略。当长方形的一面靠墙以后,首先要从图上判断是哪一面靠墙,再计算。计算时,可以直接把其他三边长度相加,也可以用计算出来的周长减去该边长度。
第4题,由于学生还没学习24divide;2,所以在这儿还不能要求学生用周长的逆运算来解决。可以让学生通过尝试的方法来解决,如可以先确定一条边的长,如1厘米,再看另外一边,通过数格子的方法来解决。学生通过探究围出一个长方形后,可以启发学生有规律地围出其他图形(一边增加1厘米,另一边减少1厘米)。
第5题,也是一个实践活动的题目。
1.选取生活中学生熟悉的素材来帮助学生学习几何知识。
可以根据实际情况,创造性地使用教材,要注重学生已有的生活经验和知识基础,把课堂拓展到生活空间中去,并引导他们观察生活,从现实世界中发现空间与图形的素材。例如,可以看看教室里有哪些四边形。
2.开展形式多样的实践活动,引导学生自主探索,合作交流。
几何知识的学习要借助于直观的观察、操作等手段,如平行四边形,要通过观察、画一画、围一围、剪一剪的方式来帮助学生认识。
对于一般图形的周长的探索,有助于学生体验知识的形成过程。
长度观念的建立,首先是脑中要有某个长度的表象,而这个表象的建立要借助大量的观察和测量等过程来逐步建立。
3.把握好教学要求。
在这儿只是让学生直观认识平行四边形,至于平行四边形的特征,以后还要进一步学习。长、正方形周长的计算也只是会计算即可,不要求用公式来表示。
说课与教学设计的关系(通用14篇)篇十三
《小数加减法》一课是在学生学习了整数加减法、小数的意义和性质的基础上学习的,学生具有相当的基础知识和知识迁移的能力。为了让学生充分利用原有的知识,教学设计中,我从学生的生活经验和已有知识出发,把握好教学的起点,课前复习整数加减法、小数的意义和性质的有关知识,接着大胆放手让学生利用知识的迁移规律,自主尝试、合作讨论探索小数加减法的计算方法这一新知。
在处理“小数加减法列竖式要把小数点对齐”这一教学重点时,引导学生把小数加减法与整数加减法的算式进行对比,组织学生进行小组讨论,相互启发,相互学习,自主认识到整数加减只要把末位对齐,相同数位就对齐,而小数加减法要把相同数位对齐就必须要把小数点对齐。在练习设计中设计了“火眼金睛辨对错”,列举了学生在计算过程中可能出现的错误。让学生在判断、改错、对比的过程中,进一步突出“小数点要对齐”这一教学重点。
本节课的编题环节为学生学习小数加减法搭建了自主发展的空间。为了让“编题”活动更好好地激发学生的自主思考,在经“编题”活动前先明确要求——小数位数不同的小数加减法算式。这对每一个学生而言,会是不同程度的一次挑战,这样的自主空间能激发学生的探究欲望。
说课与教学设计的关系(通用14篇)篇十四
学生:想!
师:下面请同学们分小组开始活动。
(学生分小组活动)。
师:每个小组利用桌上的六根木条共搭建了几个三角形?
学生:我们搭建了一个三角形。
师:剩下的三根木条能搭建成一个三角形吗?
学生:不能。
师:你们知道剩下的三根木条为什么不能搭建成一个三角形吗?你发现了什么?
学生1:我发现剩下的三根木条怎么连也连不到一起。
学生2:我们也是这样的。
学生1:我们将较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来还没有另外一根木条长。
学生2:我们把较短的两根木条连接在一起与最长的一根木条相比较,发现较短的两根木条和起来不是没有另外一根木条长,而是同另外一根一样长。
学生3:我们发现的结论与学生(1)相同,我们是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。
学生4:我们发现的结论与学生(2)相同,我们也是通过用直尺分别度量这三根木条的长度,再计算、比较后发现的。
(学生活动后汇报)。
学生1:我发现较短的两条边加起来比最长的一条边长,同刚才的结论正好相反。
学生2:我发现我这个三角形的任意两边加起来的和都比第三边长。
学生3:我的发现同学生(2)一样,也是这个三角形的任意两边加起来的和都比第三边长。
学生4:“任意两边”是什么意思?我不太懂。
学生5:“任意两边”就是指三角形三边中的每两条边加起来的`长度都比剩下来的第三条边的长度长。
学生4:原来是这样的。
(学生都有同感)。
学生6:也就是说,任意一个三角形,它的三条边都存在这样一个特征:三角形的任意两边之和都大于第三边。
学生7:我想应该是这样的吧。因为我们的三角形不一样,但我们得到的结论都是一样的。
学生8:我看到书上也有同样的结论。
(学生都翻书看)。
[反思]:苏霍姆林斯基曾说:“在人的心理深处都有一种根深蒂固的需要,这就是希望自己是一个开拓者、研究者和探索者。而在儿童的精神世界中,这种需要特别强烈。”教学中,教师有意设置这些动手操作,共同探讨的活动,既满足了学生的这种需要,由让学生在高昂的学习兴趣中学到了知识,体验到了成功。
[片断二]:及时练习,形成能力。
学生:能!
师:请同学们翻书到第86页,自己独立做第4题。
(学生做完后汇报展示,并说明判断的方法)。
学生1:(1)、(2)、(4)这三组中的线段能拼成一个三角形,(3)中的线段不能拼成一个三角形,我是把每组中的三条线段两两相加,再与剩下的第三条线段相比较,其中(1)、(2)、(4)这三组中的线段每两条线段之和都大于第三条线段,所以它们能拼成一个三角形,而(3)中2+2〈6,所以这组中的三条线段不能拼成一个三角形。
学生2:我的结论同学生(1)一样,但我的判断方法与他不同,我是先找出较短的两条边,比较它们的和与剩下的第三条边的大小,如果和大一些,则能拼成三角形,如果和小一些,则不能拼成三角形。
学生3:学生(2)的方法只是一种巧合,他没有判断任意两边之和大于第三边,所以这种方法不行。
(学生对学生(2)的方法产生了争论,学生讨论一会儿后)。
学生4:学生(2)的方法是对的,因为较短的两条边之和如果大于第三条边,则说明任意一条较短的边与最长的一边之和肯定大于第三条边,这也就更进一步说明这个三角形的任意两边之和大于第三边。
学生5:看来在判断某三条边能否拼成一个三角形时,用学生(2)的方法既快又对。
[反思]:课堂练习的目的是为了让学生及时掌握知识,形成能力。教学中老师充分注意到了这一点,即让学生用所学内容来说明为什么这一环节。同时我们也欣喜地发现,通过练习,学生还在原来所学内容的基础上,对原知识又有发展,找到了最佳的判断方法。学生的能力不可限量啊!
[片断三]:结合实际,学会运用。
学生:他会走中间这条路。
师:你们是怎样判断的?
学生1:因为中间这条路是直的,其它的路是弯的,所以中间这条路最短。
学生2:如果小明走通过邮局到学校这条路上学,小明家、邮局、学校则构成一个三角形,由三角形的三边关系可以知道,小明家到邮局,邮局到学校这两条边之和一定大于第三边,即中间这条路,所以中间这条路最短。
学生:线段最短。
[反思]:教材是学习的载体,教学中教师应充分发挥教材的育人作用,挖掘教材的教育功能,而不要把教材撇开一边。从上面可以看出,这副图既能让学生领悟知识与实际的结合,又能从中学到另外的知识,可谓一举多得。
[片断四]:拓展延伸,丰富充实。
师:通过上面的学习,老师欣喜地发现同学们不仅能自主、能动地学习新知,而且能将所学的知识用于解决实际问题之中。下面老师这儿有几道题不知怎样解答,谁能帮一帮老师?(电脑出示题目)。
学生1:长度分别是3cm、5cm的两条线段中任意一条线段能与a、b组成一个三角形,因为3+2.53.5,2.5+3.55。
学生2:长度分别是1cm、6cm、9cm的三条线段中任意一条线段不能与a、b组成一个三角形,因为1+2.5=3.5;2.5+3.5=6;2.5+3.59。
学生1:我用长度为2cm、6cm、6cm三条线段能拼成一个三角形,这个三角形有两条边的长度相等。
学生2:我用长度为6cm、6cm、6cm三条线段能拼成一个三角形,这个三角形三条边的长度都相等。
学生3:我用长度为2cm、2cm、6cm三条线段不能拼成一个三角形,因为2+26,所以他们不能拼成三角形。
师:刚才学生1、学生2所说的三角形是两种较特殊的三角形,这些三角形我们将在下次课中学习研究。
题目三:用15根等长的火柴棒摆成的三角形中,最长边最多可以由几根火柴棒组成?
学生1:我想最多可以由9根火柴棒组成。
学生2:我觉得最多可以由8根火柴棒组成。
师:同学们敢于大胆猜想,勇于发表自己的意见,这很好。不过同学们如果能通过实践,讲究事实依据,用理由来说服人那就更好了!
(学生分小组讨论、拼摆)。
学生1:我们通过实践知道,最长边最多可以由7根火柴棒组成。
学生2:我们通过讨论知道,最长边最多可以由7根火柴棒组成。此时另外两条较短的两条边的和为8,大于最长边7,根据三角形三边的关系可知,此时能拼成三角形,且最长边由7根火柴棒组成,为最多。
师:同学们今天表现非常棒,不仅能猜想,而且能通过实践,利用所学知识解决实际问题,老师为你们骄傲,我相信,只要同学们一如既往,灿烂的明天一定会与你拥抱。
[反思]:数学教师的课堂教学应该是敢于放手,尽可能多地给学生创造展示自己的思维空间和时间,如此定会别有洞天。
[点评与拓展]:良好的教育一定要致力于学生用自己的眼睛去观察,用自己的心灵去感悟,用自己的头脑去判别,用自己的语言去表达,要能使一个人成为真正的人,成为他自己,成为一个不可替代的大写的“人”。本节课,授课教师在教学中充分体现了这一观点。先是设计了“拼三角形”这一环节,让学生在动手操作中用自己的眼睛去观察,接着设计汇报展示这一环节,让学生用自己的语言去表达,在听别的同学汇报时,让学生用自己的头脑去判别,用自己的心灵去感悟。在后面的教学中,该教师继续抓住这一教育思想对学生施教,让学生在学习中感受到了生命的存在与价值,体验到了自己主动建构知识的快乐,取得了满意的教育效果。