教学工作计划是教师在教学过程中制定的一份详细计划,旨在指导教学活动的开展。如果你想了解一些优秀教师是如何编写教学工作计划的,不妨看看下面的范文。
最新人教版七年级数学教案第五章(热门19篇)篇一
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法。
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
最新人教版七年级数学教案第五章(热门19篇)篇二
1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。
2.掌握点到直线的距离的概念,并会度量点到直线的距离。
3.掌握垂线的性质,并会利用所学知识进行简单的推理。
[教学重点与难点]。
1.教学重点:垂线的定义及性质。
2.教学难点:垂线的画法。
[教学过程设计]。
一、复习提问:
1、叙述邻补角及对顶角的定义。
2、对顶角有怎样的.性质。
二.新课:
引言:
前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。
(一)垂线的定义。
当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图,直线ab、cd互相垂直,记作,垂足为o。
请同学举出日常生活中,两条直线互相垂直的实例。
注意:
1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。
2、掌握如下的推理过程:(如上图)。
反之,
(二)垂线的画法。
探究:
1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?
2、经过直线l上一点a画l的垂线,这样的垂线能画出几条?
3、经过直线l外一点b画l的垂线,这样的垂线能画出几条?
画法:
让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。
注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。
(三)垂线的性质。
经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:
性质1过一点有且只有一条直线与已知直线垂直。
练习:教材第7页。
探究:
如图,连接直线l外一点p与直线l上各点o,
a,b,c,……,其中(我们称po为点p到直线。
l的垂线段)。比较线段po、pa、pb、pc……的长短,这些线段中,哪一条最短?
性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(四)点到直线的距离。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
如上图,po的长度叫做点p到直线l的距离。
最新人教版七年级数学教案第五章(热门19篇)篇三
掌握多种数学解题方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
逐步形成“以我为主”的学习模式。
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
最新人教版七年级数学教案第五章(热门19篇)篇四
一、选择题:(本题共24分,每小题3分)。
在下列各题的四个备选答案中,只有一个答案是正确的,请你把正确答案前的字母填写在相应的括号中.
1.若一个数的倒数是7,则这个数是().
a.-7b.7c.d.
2.如果两个等角互余,那么其中一个角的度数为().
a.30°b.45°c.60°d.不确定。
3.如果去年某厂生产的一种产品的产量为100a件,今年比去年增产了20%,那么今年的产量为()件.
a.20ab.80ac.100ad.120a。
4.下列各式中结果为负数的是().
a.b.c.d.
5.如图,已知点c是线段ab的中点,点d是cb的中点,那么下列结论中错误的是().
a.ac=cbb.bc=2cdc.ad=2cdd.
6.下列变形中,根据等式的性质变形正确的是().
a.由,得x=2。
b.由,得x=4。
c.由,得x=3。
d.由,得。
7.如图,这是一个马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路ac、ab、ad中最短的是().
a.acb.abc.add.不确定。
8.如图,有一块表面刷了红漆的立方体,长为4厘米,宽为5厘米,高为3厘米,现在把它切分为边长为1厘米的小正方形,能够切出两面刷了红漆的正方体有()个.
a.48b.36c.24d.12。
二、填空题:(本题共12分,每空3分)。
9.人的大脑约有100000000000个神经元,用科学记数法表示为.
10.在钟表的表盘上四点整时,时针与分针之间的夹角约为度.
11.一个角的补角与这个角的余角的差等于度.
12.瑞士的教师巴尔末从测量光谱的数据,,,…中得到了巴尔末公式,请你按这种规律写出第七个数据,这个数据为.
三、解答题:(本题共30分,每小题5分)。
13.用计算器计算:(结果保留3个有效数字)。
14.化简:
15.解方程。
16.如示意图,工厂a与工厂b想在公路m旁修建一座共用的仓库o,并且要求o到a与o到b的距离之和最短,请你在m上确定仓库应修建的o点位置,同时说明你选择该点的理由.
拓展知识。
最新人教版七年级数学教案第五章(热门19篇)篇五
1知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点。
1教学重点:
掌握用整十数除的口算方法。
2教学难点:
理解用整十数除的口算算理。
教学工具。
多媒体设备。
教学过程。
1复习引入。
口算。
20×3=7×50=6×3=。
20×5=4×9=8×60=。
24÷6=8÷2=12÷3=。
42÷6=90÷3=3000÷5=。
2新知探究。
1.教学例1。
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式80÷20。
(3)学生独立探索口算的方法。
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
a.因为20×4=80,所以80÷20=4这是想乘算除。
b.因为8÷2=4,所以80÷20=4这是根据计数单位的组成。
为什么可以不看这个“0”?(80÷20可以想“8个十里面有几个二十?”)。
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误。
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)。
(6)用刚学会的方法再次口算,并与同桌交流你的想法。
40÷2020÷1060÷3090÷30。
(7)探究估算的方法。
出示:83÷20≈80÷19≈。
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于4,所以83除以20约等于4。
19接近于20,80除以20等于4,所以80除以19约等于4。
2.教学例2。
(1)创设情境引出问题。
师:谁会解决这个问题?
150÷50。
(2)小组讨论口算方法。
(3)你是怎么这样快就算出的呢?
a.因为15÷5=3,所以150÷50=3。
b.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30240÷80300÷50540÷90。
3.估算。
(1)探计估算的方法。
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2349÷50≈8为什么不正确?
3巩固提升。
1.独立口算。
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2.算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3.解决问题。
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40=6(包)。
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30=4(个)。
答:看完这本书大约需要4个月。
课后小结。
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书。
口算除法。
有80面彩旗,每班分20面,可以分给几个班?
80÷20=。
文档为doc格式。
最新人教版七年级数学教案第五章(热门19篇)篇六
一。教学目标:
1、认知目标:
1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:
1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:
1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二。教学重难点。
重点:二元一次方程组及其解的概念。
难点:用列表尝试的方法求出方程组的解。
三。教学过程。
(一)创设情景,引入课题。
1、本班共有40人,请问能确定男_几人吗?为什么?
(1)如果设本班男生x人,_人,用方程如何表示?(x+y=40)。
(2)这是什么方程?根据什么?
2、男生比_了2人。设男生x人,_人。方程如何表示?x,y的值是多少?
3、本班男生比_2人且男_40人。设该班男生x人,_人。方程如何表示?
两个方程中的x表示什么?类似的两个方程中的y都表示?
象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]。
(二)探究新知,练习巩固。
1、二元一次方程组的概念。
(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]。
(2)练习:判断下列是不是二元一次方程组:。
x+y=3,x+y=200,。
2x-3=7,3x+4y=3。
y+z=5,x=y+10,。
2y+1=5,4x-y2=2。
学生作出判断并要说明理由。
2、二元一次方程组的解的概念。
(1)由学生给出引例的答案,教师指出这就是此方程组的解。
(2)练习:把下列各组数的题序填入图中适当的位置:
x=1;x=-2;x=;-x=。
y=0;y=2;y=1;y=。
方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。
2x+3y=2。
(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。
(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。
y=0.55x+2a=2y。
(三)合作探索,尝试求解。
现在我们一起来探索如何寻找方程组的解呢?
1、已知两个整数x,y,试找出方程组3x+y=8的解。
2x+3y=10。
学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。
提炼方法:列表尝试法。
一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。
2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。
(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。
由学生独立完成,并分析讲解。
(四)课堂小结,布置作业。
1、这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。
2、你还有什么问题或想法需要和大家交流?
3、作业本。
教学设计说明:
1、本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。
2、“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。
3、本课在设计时对教材也进行了适当改动。例题方面考虑到数_代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。
最新人教版七年级数学教案第五章(热门19篇)篇七
本环节主要是创设情境,在实际问题中引出本节课题.
【设计意图】。
引导学生发现:可以借助游戏创设情境,导入新课.
(二)探究新知。
1、利用丹凤地图的实际情境探索点的平移与坐标变化的规律.
2、如图,已知a(c2,c3),根据下列条件,在相应的坐标系中分别画出平移后的点,写出它们的坐标,并观察平移前后点的坐标变化.
(1)将点a向右平移5个单位长度,得到点a1;
(2)将点a向左平移2个单位长度,得到点a2;
(3)将点a向上平移6个单位长度,得到点a3;
(4)将点a向下平移4个单位长度,得到点a4;
教学过程中注重让学生明确:将哪个点沿着什么方向,平移几个单位后,得到的是哪个点.
3、在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变。
点的上下平移点的横坐标不变,纵坐标变化。
4、点的平移的应用.(见课件)。
5、比一比看谁反应快。
(1)点a(c4,2)先向右平移3个单位长度后得到点b,求点b的坐标.
(2)点a(c4,2)先向左平移2个单位长度后得到点b,求点b的坐标.
(3)点a(c4,2)先向下平移4个单位长度后得到点b,求点b的坐标.
(4)点a(c4,2)先向上平移3个单位长度后得到点b,求点b的坐标.
6、逆向思维:由点的变化探索点的方向和距离。
(1)如果a,b的坐标分别为a(-4,5),b(-4,2),将点a向___平移___个单位长度得到点b;将点b向___平移___个单位长度得到点a。
(2)如果p、q的坐标分别为p(-3,-5),q(2,-5),将点p向___平移___个单位长度得到点q;将点q向___平移___个单位长度得到点p。
(3)点a′(6,3)是由点a(-2,3)经过__________________得到的.点b(4,3)向______________得到b′(4,5)。
7、应用平移解决简单问题在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。
最新人教版七年级数学教案第五章(热门19篇)篇八
在知识与方法上类似于数系的第一次扩张。
也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的`方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
1、注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2、鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3、注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4、淡化二次根式的概念。
最新人教版七年级数学教案第五章(热门19篇)篇九
1、让学生生自主探索小数的加、减法的计算方法,理解计算的算理并能正确地进行加、减法。
2、使学生体会小数加减运算在生活、学习中的广泛应用,体会数学的工具性作用。
3、激发学生学习小数加减法的兴趣,涌动长大后也要为国争光的豪情,提高学习的主动性和自觉性。
教学重难点。
教学重点:用竖式计算小数加减法。
教学难点:理解小数点对齐的算理。
教学工具。
多媒体课件。
教学过程。
(一)情景引入。
师:同学们,你们还记得吗?整数的加减法是怎样计算的?让我们用一道习题回顾一下。
(呈现多媒体,学生自主完成习题并总结计算算理)。
师:同学们你们可真棒,那么今天我们学习小数的加减法(引出课题并板书)。
(二)例题讲解。
(1)小丽买了下面两本书,一共花了多少钱?
(2)《数学家的故事》比《童话选》贵多少钱?
生:好的。
(展示小丽遇到的问题(1),并让学生列出算式)。
师:根据咱们总结的整数加减法的算理,想一想这个式子怎么计算呢?
(让学生大胆的去尝试,小组讨论,并列出竖式)。
师:你们发现小数加减法计算时需要注意什么?
生1:注意数位对齐。
生2:注意小数点要对齐。
生3:……。
老师小结:小数点要对齐,得数的小数点也要对齐。
师:小丽啊还有一个问题让我们看一看(展示问题(2))。
(让学生自主解决,并再回忆需要注意什么?)。
完成后学生给予总结,完成小数加减法的时候需要注意什么?
(三)习题巩固。
课本72页做一做。
课后小结。
学生谈一谈本节课你学到了什么?
给出总结:计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
课后习题。
一、计算。
1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
二、竖式计算。
20.87-3.65=3.25+1.73=。
18.77+3.14=23.5-2.8=。
三、解决问题。
1、小红买文具,买钢笔用去6.7元,买文具盒用去9.8元,一共用去多少钱?
板书。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
最新人教版七年级数学教案第五章(热门19篇)篇十
2.会用上的点表示有理数,会利用比较有理数的大小;。
3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议。
一、重点、难点分析。
本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.
二、知识结构。
有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下表:
定义。
三要素。
应用。
数形结合。
规定了原点、正方向、单位长度的直线叫。
原点。
正方向。
单位长度。
帮助理解有理数的概念,每个有理数都可用上的点表示,但上的点并非都是有理数。
比较有理数大小,上右边的数总比左边的数要大。
在理解并掌握概念的基础之上,要会画出,能将已知数在上表示出来,能说出上已知点所表示的数,要知道所有的有理数都可以用上的点表示,会利用比较有理数的大小。
三、教法建议。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、的相关知识点。
1.的概念。
(1)规定了原点、正方向和单位长度的直线叫做.
这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.
(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.
以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.
2.的画法。
(1)画直线(一般画成水平的)、定原点,标出原点“o”.
(2)取原点向右方向为正方向,并标出箭头.
(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3.用比较有理数的大小。
(1)在上表示的两数,右边的数总比左边的数大。
(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。
五、定义的理解。
1.规定了原点、正方向和单位长度的直线叫做,如图1所示.
2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).
a点表示-4;b点表示-1.5;。
o点表示0;c点表示3.5;。
d点表示6.
从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:
正数都大于0,负数都小于0,正数大于一切负数.
因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用,表示是正数;反之,知道是正数也可以表示为。
同理,,表示是负数;反之是负数也可以表示为。
3.正常见几种错误。
1)没有方向。
2)没有原点。
3)单位长度不统一。
最新人教版七年级数学教案第五章(热门19篇)篇十一
平行公理及推论
(二)难点
平行线概念的理解
(三)解决办法
通过引导学生尝试发现新知、练习巩固的方法来解决
投影仪、三角板、自制胶片
1通过投影片和适当问题创设情境,引入新课
2通过教师引导,学生积极思维,进行反馈练习,完成新授
3学生自己完成本课小结
(-)明确目标
(二)整体感知
(三)教学过程
创设情境,引出课题
学生齐声答:不是
师:因此,平面内的两条直线除了相交以外,还有不相交的情形,这就是我们本节所要研究的内容(板书课题)
[板书]24平行线及平行公理
探究新知,讲授新课
师:在我们生活的周围,平面内不相交的情形还有许多,你能举例说明吗?
学生:窗户相对的棱,桌面的对边,书的对边……
师:我们把它们向两方无限延伸,得到的直线总也不会相交我们把这样的直线叫做平行线
[板书]在同一平面内,不相交的两条直线叫做平行线
教师出示投影片(课本第74页图2?17)
师:请同学们观察,长方体的棱与无论怎样延长,它们会不会相交?
学生:不会相交
师:那么它们是平行线吗?
学生:不是
师:也就是说平行线的定义必须有怎样的'前提条件?
学生:在同一平面内
师:谁能说为什么要有这个前提条件?
学生:因为空间里,不相交的直线不一定平行
教师在黑板上给出课本第73页图2
学生:两种相交和平行
由此师生共同小结:在同一平面内,两条直线的位置关系只有相交、平行两种
尝试反馈,巩固练习(出示投影)
1判断正误
(1)两条不相交的直线叫做平行线()
(2)有且只有一个公共点的两直线是相交直线()
(3)在同一平面内,不相交的两条直线一定平行()
(4)一个平面内的两条直线,必把这个平面分为四部分()
2下列说法中正确的是()
a在同一平面内,两条直线的位置关系有相交、垂直、平行三种
b在同一平面内,不垂直的两直线必平行
c在同一平面内,不平行的两直线必垂直
d在同一平面内,不相交的两直线一定不垂直
学生活动:学生回答,并简要说明理由
师:我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面清同学在练习本上完成下面题目(投影显示)
已知直线和外一点,过点画直线
师:请根据语句,自己画出已知图形
学生活动:学生在练习本上画出图形
师:下面请你们按要求画出直线
注意:(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺三角板,不能徒手画
尝试反馈,巩固练习(出示投影)
1画线段,画任意射线,在上取、、三点,使,连结,用三角板画,,分别交于、,量出、、的长(精确到)
2读下列语句,并画图形
(1)点是直线外的一点,直线经过点,且与直线平行
(2)直线、是相交直线,点是直线、外的一点,直线经过点与直线平行与直线相交于
(3)过点画,交的延长线于
学生活动:学生思考并回答,能画,而且只能画一条
师:我们把这个结论叫平行公理,教师板书
【板书】平行公理:经过直线外一点,有且只有一条直线与这条直线平行
学生:思考后,立即回答,能画无数条
师:请同学们在练习本上完成
(出示投影)
已知直线,分别画直线、,使,
学生活动:学生在练习本上完成
师:请同学们观察,直线、能不能相交?
学生活动:观察,回答:不相交,也就是说
师:为什么呢?同桌可以讨论
学生活动:学生积极讨论,各抒己见
学生活动:教师让学生积极发表意见,然后给出正确的引导
师:我们观察图形,如果直线与相交,设交点为,那么会产生什么问题呢?请同学们讨论
学生活动:学生在教师的启发引导下思考、讨论,得出结论
[板书]如果两条直线都和第三条直线平行,那么这两条直线也互相平行
学生活动:学生思考,回答:不对,给出反例图形,
例如:如图1所示,射线与就不相交,也不平行
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在的直线平行
尝试反馈,巩固练习(投影)
最新人教版七年级数学教案第五章(热门19篇)篇十二
重点:邻补角与对顶角的概念。对顶角性质与应用。
难点:理解对顶角相等的性质的探索。
教学设计。
一、创设情境激发好奇观察剪刀剪布的过程,引入两条相交直线所成的角。
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题。
二、认识邻补角和对顶角,探索对顶角性质。
1、学生画直线ab、cd相交于点o,并说出图中4个角,两两相配。
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用。
几何语言准确表达;。
有公共的顶点o,而且的两边分别是两边的反向延长线。
2、学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?
(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)。
3学生根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系。
教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?
4、概括形成邻补角、对顶角概念和对顶角的性质。
三、初步应用。
练习。
下列说法对不对。
(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角。
(2)邻补角是互补的两个角,互补的两个角是邻补角。
(3)对顶角相等,相等的两个角是对顶角。
学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象。
四。巩固运用例题:如图,直线a,b相交,,求的度数。
巩固练习。
教科书5页练习已知,如图,,求:的度数。
小结。
邻补角、对顶角。
作业课本p9—1,2p10—7,8。
最新人教版七年级数学教案第五章(热门19篇)篇十三
1、《在山的那边》,作者王家新。
2、《走一步,再走一步》作者莫顿?亨特,美国作家。
3、《紫藤萝瀑布》选自《铁箫人语》,作者宗璞。
4、《童趣》节选自《浮生六记?闲情记趣》,作者沈复,字三白,清代文学家。
5、流沙河,原名余勋坦,四川金堂人,现代诗人。
6、玛丽?居里,波兰人,后加入法国国籍,的物理学家、化学家。1903年,她与居里、贝可勒尔共获诺贝尔物理奖,1911年获诺贝尔化学奖。
7、孔子(前551-前479),名丘,字仲尼,春秋鲁国(山东曲阜)人。我国古代伟大的思想家、教育家。《论语》是记录孔子和他的x行的一部书,共20篇,是儒家经典著作之一。
8、《春》选自《朱自清全集》,作者朱自清,原名自华,字佩弦。散文家、诗人、学者、民主战士。有诗文集《踪迹》,散文集《背影》《欧游杂记》。
9、《济南的冬天》,选自《老舍文集》,作者老舍,原名舒庆春,字舍予,作家。
10、《夏感》作者梁衡。
11、《秋天》作者何其芳,现代诗人、评论家。
12、《观沧海》选自《乐府诗集》,曹操,字孟德,东汉末年政治家、军事家、诗人。他的诗以慷慨悲壮见称。
13、《次北固山下》选自《全唐诗》,作者王湾,唐代诗人。
14、《钱塘湖春行》选自《白氏长庆集》,作者白居易,字乐天,晚年又叫香山居士,唐代大诗人。
15、《天净沙秋思》选自《全元散曲》,作者马致远,元朝戏曲作家。
16、法布尔,法国昆虫学家,著有《昆虫记》这部昆虫学巨著。
17、蒲松龄,字留仙,世称'聊斋先生',号柳泉居士,清代文学家。《聊斋志异》是一部文言短篇小说集。
18、《风筝》作者鲁迅,原名周树人,字豫才,浙江绍兴人。我国伟大的文学家、思想家、革命家。著作有小说集《呐喊》、《彷徨》;散文集《朝花夕拾》;散文诗集《野草》;杂文集《坟》、《华盖集》、《二心集》等。
19、《羚羊木雕》作者张之路。
20、《散步》作者莫怀戚。
21、《金色花》作者泰戈尔,印度文学家。著作有诗集《新月集》、《飞鸟集》,长篇小说《沙子》、《沉船》等。1913年获得诺贝尔文学奖。
22、《荷叶》作者冰心,原名谢婉莹,福建长乐人,诗人、作家,代表作有《繁星》、《春水》、《寄小读者》等。
23、安徒生,丹麦童话作家,主要作品有《卖火柴的小女孩》、《海的女儿》、《丑小鸭》等。
语文学习方法。
1、运用想象和联想。想象和联想伴随着语文学习的始终,听说读写都离不开想象和联想。比如:再看课文《春》的过程中可以联想到以前学过的描写春的古诗词,再现课文的内容和情景。在阅读过程中,有意识的把语言文字的内容与自己的生活经历和感悟结合起来。这样的锻炼会大大提高学生的阅读能力、和理解能力。如果把它运用到写作中,会有效地提高学生的写作水平。
2、积极主动的参与课堂活动。在课堂上老师对课文的理解是老师的理解,融入了老师的知识积累和生活经验,而同学们也许会有自己的理解,是站在一个未成年人的角度来理解课文,也许学生的理解会更好,所以学生要敢于在课堂上发表自己的见解。这些课堂活动可以激发学生的思维,锻炼他们都种能力。所以,同学们应该多思考,多提问,多研讨,使课堂活动丰富多样,精彩纷呈。
3、养成自控式的良好学习习惯。语文学习尤其要养成良好的学习习惯:字要规规矩矩的写,课文要仔仔细细的读,练习要踏踏实实的做,作文要认认真真的完成;要用心听讲、作业书写规范、独立完成作业、主动制定学习计划、多读、多背、多思考、经常练笔、看报等。这些都会帮助我们在不知不觉中提高语文水平。
语文学习方法有哪些。
1.把握课堂。
上课一定要认真听,因为你的语文老师会在课上讲什么重点,易错点,写作技巧等等,这些很重要。可以准备一个积累本,平时不认识的字,不熟悉的成语,文学常识都可以写上去。不懂一定要问老师,千万不要害羞,但如果你真的觉得不好意思,可以问你身边的学霸同学。
2.阅读理解学习方法。
阅读理解,这主要培养学生的阅读速度和思维记忆能力,所以在生活中你要大量读书,读好书,一些网络上的言情之类的小说就算了吧,那个看看电视剧就好了,读完一本书可以做读书笔记,读后感等等,也可以磨练你的作文,这是第一点,多读书。第二点,其实阅读理解的题都是有套路的,要不你就多做题自己总结,要不你就在网上搜,请教老师,都可以,但不要完全按照套路,不要那么死板。
3.作文写作技巧。
作文,你可以买一本中考作文,把里面的好词好句抄在本子上背下来,学习人家的写作结构,还有就是尽量一周写几篇作文,找老师或者其他人修改,锻炼写作能力,不要怕不知道写什么,你就在生活中细细观察,就比如你的家人都是怎样刷牙的,只要你细心观察,总会有可写的,你也可以记录一天中都干了什么,尽量写成一个小标题,然后你自己再扩充,为你以后写作文准备素材。
最新人教版七年级数学教案第五章(热门19篇)篇十四
2.初步培养学生观察、分析及概括的能力;。
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议。
一、教学重点、难点。
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析。
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构。
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议。
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例。
公式。
五、教具学具准备。
投影仪,自制胶片。
六、师生互动活动设计。
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
最新人教版七年级数学教案第五章(热门19篇)篇十五
1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
正确分析实际问题中的不等关系,列出不等式组。
建立不等式组解实际问题的数学模型。
出示教科书第145页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
1、教科书146页“归纳”(略).
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。
最新人教版七年级数学教案第五章(热门19篇)篇十六
知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.
1.关于数轴,下列说法最准确的是(d)。
a.一条直线。
b.有原点、正方向的一条直线。
c.有单位长度的一条直线。
d.规定了原点、正方向、单位长度的直线。
最新人教版七年级数学教案第五章(热门19篇)篇十七
教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
非常高兴,能有机会和同学们共同学习
昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)
我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。
同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。
希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!
我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)
以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。
刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)
对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。
前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)
同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。
(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)
(3) 一个数同0相加,其和有什么规律呢?(易得出结论)
同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。
同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)
(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)
同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)
看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。
通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!
同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。
最新人教版七年级数学教案第五章(热门19篇)篇十八
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析。
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.
基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析。
(一)教学目标。
1.理解不等式的概念。
2.理解不等式的解与解集的意义,理解它们的区别与联系。
3.了解解不等式的概念。
4.用数轴来表示简单不等式的解集。
(二)目标解析。
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析。
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析。
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计。
(一)动画演示情景激趣。
设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知。
小组讨论,合作交流,然后小组反馈交流结果.
最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)。
最新人教版七年级数学教案第五章(热门19篇)篇十九
1、生物圈中的绿色植物类群有:藻类植物、苔藓植物、蕨类植物、种子植物,其中前三种植物生长到一定的时期会产生一种叫做孢子的生殖细胞。因为通过孢子进行繁殖,所以又称为孢子植物(没有种子植物)。
2、藻类植物大多数生活在水中(如淡水:水绵,衣藻海水:紫菜、海带)。
(1)形态结构:没有根、茎、叶的分化。
(2)营养方式:藻类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子进行繁殖。
3、藻类植物在生物圈中作用:
(1)生物圈中氧气的重要来源。
(2)水生生物的食物来源。(如鱼类饵料)。
(3)供食用。(如海带紫菜)。
(4)药用。
4、苔藓植物大多数生活在陆地上的潮湿环境(葫芦藓、地钱、树干苔藓)。
(1)形态结构:一般都很矮小,通常具有类似茎和叶的分化,但是茎中没有导管,叶中也没有叶脉,根非常简单,称为假根(只起固定植物体作用)。
(2)营养方式:苔藓植物细胞里都含有叶绿素,能进行光合作用。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。苔藓植物是监测空气污染程度的指示植物。
5、蕨类植物多数生活在阴湿的环境中(如里白、贯众、满江红)。
(1)形态结构:有根、茎、叶的分化,在这些器官中有专门运输物质的通道——输导组织。
(2)营养方式:蕨类植物细胞里都含有叶绿素能进行光合作用,营养方式为自养。
(3)繁殖方式:用孢子(生殖细胞)进行繁殖。
蕨类植物与人类的关系及其在生物圈中的作用:
(1)可供食用,如蕨菜。
(2)可供药用,如卷柏、贯众等。
(3)作为绿肥和饲料,如满江红。
(4)煤的来源。
6、种子植物的分类:根据子叶数目分为:
(1)双子叶植物:胚里具有两片子叶的植物(叶脉网状),营养都储存在子叶中。如蚕豆、大豆、花生。
(2)单子叶植物:胚里具有一片子叶的植物(叶脉弧形),营养大部分储存在胚乳中。如水稻、小麦、高粱。
7、种子的结构:
(1)种皮:保护作用。
(2)胚(包含胚芽、胚轴、胚根、子叶)是新植物的幼体,将来能发育成一个植物体。
(3)只有单子叶植物有胚乳。子叶、胚乳中储藏的营养物质是胚发育成幼苗时养料的来源。
8、种子和孢子的比较:种子中含有丰富的营养物质,具有适应环境的结构特点,如果环境过于干燥或寒冷,它可以处于休眠状态。孢子只是一个细胞,只有散落在温暖潮湿的环境中才能萌发。
10、被子植物成为地球上分布最广泛的植物原因:被子植物一般都具有非常发达的输导组织,从而保证了体内水分和营养物质高效率地运输;它们一般都能开花和结果,所结的果实能够保护里面的种子,不少果实还能帮助种子传播。
生物实验题解题技巧。
深刻领会生物教材实验的设计思想。做好探究性实验大题,就要认真分析教材涉及的实验,理解每一个实验的原理与目的要求,弄清材料用具的选择方法与原则。
掌握生物实验方法和实验步骤,深入分析实验条件、过程、现象或结果的科学性、正确性、严谨性和可变性,能够描述教材中经典实验的原理、目的、方法步骤、现象与结果预测及结论,为实验设计提供科学的实验依据,搭建基本框架。
生物的学习方法和技巧。
掌握基本知识要点。
与学习其它理科一样,生物学的知识也要在理解的基础上进行记忆,但是初中阶段的生物学还有着与其它学科不一样的特点:面对生物学,同学们要思考的对象是陌生的细胞、组织、各种有机物、无机物以及他们之间奇特的逻辑关系。
因此只有在记住了这些名词、术语之后才有可能理解生物学的逻辑规律,既所谓“先记忆,后理解”。在记住了基本的名词、术语和概念之后,把主要精力放在学习生物学规律上。这时要着重理解生物体各种结构、群体之间的联系(因为生物个体或群体都是内部相互联系,相互统一的整体),也就是注意知识体系中纵向和横向两个方面的线索。
用生物学的基本观点统领生物学的学习。
树立正确的生物学观点,可以更迅速更准确地学习生物学知识。所以在生物学学习中,要注意树立以下生物学观点:
1.生命物质性观点生物体由物质组成,一切生命活动都有其物质基础。
2.结构与功能相统一的观点包括两层意思:一是有一定的结构就必然有与之相对应功能的存在;二是任何功能都需要一定的结构来完成。
3.生物的整体性观点系统论有一个重要的思想,就是整体大于各部分之和,这一思想完全适合生物领域。不论是细胞水平、组织水平、器官水平,还是个体水平,甚至包括种群水平和群落水平,都体现出整体性的特点。
4.生命活动对立统一的观点生物的诸多生命活动之间,都有一定的关系,有的甚至具有对立统一的关系,例如,植物的光合作用和呼吸作用就是对立统一的一对生命活动。
5.生物进化的观点生物界有一个产生和发展的过程,所谓产生就是生命的起源,所谓发展就是生物的进化。生物的进化遵循从简单到复杂,从水生到陆生、从低等到高等的规律。
6.生态学观点基本内容是生物与环境之间是相互影响、相互作用的,也是相互依赖、相互制约的。生物与环境是一个不可分割的统一整体。
系统化和具体化的方法。
系统化就是把各种有关知识纳入一定顺序或体系的思维方法。系统化不单纯是知识的分门别类,而且是把知识加以系统整理,使其构成一个比较完整的体系。在生物学学习过程中,经常采用编写提纲、列出表解、绘制图表等方式,把学过的知识加以系统地整理。
具体化是把理论知识用于具体、个别场合的思维方法。在生物学学习中,适用具体化的方式有两种:一是用所学知识应用于生活和生产实践,分析和解释一些生命现象;二是用一些生活中的具体事例来说明生物学理论知识。