反思能够促使教师不断地调整自己的教学方法,适应学生的学习风格和需求,提高教学效果。以下是一些教学反思的分享和心得,欢迎大家一起学习和交流。
比的基本性质教学设计与反思(优质14篇)篇一
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析。
在以前的学习中,学生学习了分数基本性质.商不变的性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标。
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点。
重点:学生掌握比的基本性质,并正确地化简比。
教学过程。
一、情景激趣,提出问题。
1、出示例3的表格。
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知。
2、讨论二:可以写出多少个比值是4/5的比呢?
三、尝试运用,解决问题。
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结。
师:通过这节课的学习,你有什么收获?
比的基本性质是学生在已经掌握了商不变的性质和分数基本性质的基础上来学习的,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、比与除法的关系,推导出比的基本性质,所以这节课我充分调动的思维。
一)、我先组织学生复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、比与除法的关系就自然而然的猜想出比的基本性质——比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。这叫做比的基本性质。在举例验证的过程中我引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力。
当讲完了比的基本性质后出了三道较有代表性的化简比的练习,让学生在做练习的过程中归纳和整理出化简比的方法。化简比的教学我采用尝试法,由学生尝试化简,遇到问题小组共同探讨,找到化简方法,通过板演,方法还真不少,除了常规方法,还可以求比值,有人干脆把后项直接化成1.。不管采用那一种方法,只需符合规律,都给予充分的肯定,尊重了学生的情感、态度价值观,使学生从中体会到成功的喜悦,提高自己的学习兴趣。
三)、不足之处:
1.在练习中引导学生比较求比值和化简比的区别,是本节课的难点,在小组讨论总结的基础上,做了课件展示。展示时速度有点快,应放慢一些,更好地突出难点的解决策略。通过对比,加深学生对两种不同要求,在结果表达上的不同,解题过程,解题方法上的区别。
2.由于时间关系学生的讨论时间不够充分。
比的基本性质教学设计与反思(优质14篇)篇二
使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。
教学重点和难点。
教学过程。
一、师:在前面的学习中我们学习了比的意义,谁来说出什么是比?
师:比与我们学过的那些知识有联系?有什么联系?
师:看来大家对前面学过的知识掌握得比较好。
(导入新课)。
师:大家想一想这个猜想有没有研究的价值?
师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。
师:是吗?同学们想不想听一听这位同学的高见?
师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?
师:大家同意吗?
师:能举例说明吗?比如180:120化成最简整数比是什么?
师:怎么化简的?根据是什么?
教师根据学生的讲述板书:
180÷120=(180÷60):(120÷60)=3:2。
2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40。
(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。
师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?
师:看来大家对这部分知识掌握的的确非常好了。
四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?
五、人教版小学数学六年级上册第47--48页练习.十一第1、3。
板书设计。
比的前项与后项同时乘或除以同一个数(0除外),比值不变。
180÷120=(180÷60):(120÷60)=3:2→最简整数比。
同时除以这两个数的最大公因数。
比的基本性质教学设计与反思(优质14篇)篇三
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学难点:根据乘法等式写出正确的比例。
教学准备:多媒体课件。
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程。
一、旧知铺垫导入。
2、比和比例有什么区别?
设计意图:注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究。
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)。
先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。
设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习。
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)。
3、根据比例的基本性质,在()里填上适当的数。(投影出示)。
六、全课总结:这节课你有什么收获。
设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15。
比的基本性质教学设计与反思(优质14篇)篇四
比的基本性质是在学生学习比的意义,比与分数、除法之间关系,除法的意义和商不变的性质,分数的意义和分数基本性质的基础上进行教学。
教材联系学生已有的商不变性质和分数的基本性质,通过对板书的“变式”,启发学生找发现比中存在的数学规律,然后概括出比的基本性质,并应用这一性质把比化成最简单的整数比。
学情分析。
学生已经认识比的意义,比、除法、分数之间的关系,并结合已经掌握的商不变性质和分数的基本性质进行学习。而比的基本性质和商不变性质及分数的基本性质是相通的。学生在学习分数的基本性质时,已经掌握了其形成的推理过程,学生具备了一定的类比学习技能。他们完全可以根据比与分数、除法的关系,推导出比的基本性质。
教学目标。
1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。(主要以商不变性质为主要切入口)。
2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。
3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。
教学重点和难点。
教学难点:掌握化简比的方法。找准整数比前后项的最大公约数、分数比转化成整数比。
比的基本性质教学设计与反思(优质14篇)篇五
1.理解比例的基本性质,认识比例的各部分名称。2.能用比例的基本性质正确判断两个比能否组成比例。学习重点理解比例的基本性质。
学习难点会根据比例的基本性质判断两个比能否组成比例。教具学具:ppt课件教学环节。
一、复习(课件出示以下问题,指名学生回答)。
1、什么叫做比例?
2、什么样的两个比才能组成比例?
3、判断下面的比,哪两个比能组成比例?把组成的比例写出来。3:918:303:61.8:0.92:49:27学生独立完成后全班交流订正。
判断两个比能不能组成比例,除了看比值是否相等,还有没有其它的方法?这节课我们就一起来研究研究。
二、自主探索,体验新知。(课件出示自学要求)。
1、自学要求:1)自学书第41页的内容,把重要的地方画上线,不懂的问题用铅笔标在书上。2)提示:可以结合以下问题进行自学:
(1)什么叫比例的项?比例中有几个项?分别叫什么?(2)你能把比例改写成分数形式吗?改写成分数后你还能找到比例的外项和内项吗?试试看.(3)比例的基本性质是什么?你能用字母表示这个性质吗?根据比例的基本性质如何判断两个比能不能组成一个比例.(4)小组中议一议并集体交流。
2、组织学生交流自学成果。1)试一试。
应用比例的基本性质,判断下面的两个比能否组成比例。如果能组成比例,把组成的比例写出来,并指出比例的内项和外项。
3:6和8:50.2:2.5和4:502)课件出示三组比例,让学生填空。
三、巩固练习。
课件出示练习题,学生练习。
四、课堂总结说一说本节课的收获。
比的基本性质教学设计与反思(优质14篇)篇六
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
一、探究新知。
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?————小研究(后附)。
(1)4人小组交流(2)全班交流。
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比———完成练习题(后附)。
1、小组交流。
2、全班交流。
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习。
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习。
3:8=(3+6):(8+)。
(让学生分小组讨论方法)。
三、课堂总结。
这节课有哪些收获?师生共同总结。
比的基本性质教学设计与反思(优质14篇)篇七
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学过程 :
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
出示例1:把下面各比化成最简单的整数比。
(1) 。
问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)。
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业 。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1) 写出行驶的路程和时间的比,并化成最简单的整数比。
(2) 求出这个比的比值,再说出这个比值的含义是什么?
比的基本性质教学设计与反思(优质14篇)篇八
比的基本性质是在学生掌握了商不变的性质、分数基本性质和比与分数、除法的关系的基础上进行学习的。根据商不变的性质,分数的基本性质可以推导出比的基本性质,所以一上课,我在复习了分数的基本性质和商不变的性质后,及时提出问题——比是不是也有什么性质呢?如果有的话,你认为它是怎么样呢?当有的学生根据分数与比的关系、分数与除法的关系后就自然而然的猜想出比的基本性质——比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。随后我又问:这一性质存在吗?然后充分调动学生的思维,让学生猜想——验证,验证的过程其实就是学生经历这一知识的形成过程。在验证的过程中引导学生在小组合作交流中分析、整理、推导验证的具体的语言的表达能力,在他们一一举例验证后用数学语言进行概括和总结出比的基本性质——比的前项和后项同时乘或除以一个相同的数(零除外),比值不变。这叫做比的基本性质。总结出性质后,出了一些判断和填空对性质进行了巩固。
接下来,在应用比的基本性质化简比时,为培养学生对知识的概括能力。出了三道较有代表性的化简比的练习,36:72(整数比)2:0.5(小数比),1/3:2/5(分数比),在做的.过程中归纳和整理出化简比的方法。
1、化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简。
2、是小数先转化为整数比,再最简比。
3、是分数可以用求比值的方法化简。但结果必须是一个比。大部分的学生掌握了以上的三种解法。
但本节课的练习量太少,没有体现练习的层次性,也没足够的时间去分析求比值与化简比的区别。以后注意课堂的容量,向大密度高质量看齐。
比的基本性质教学设计与反思(优质14篇)篇九
课堂上,通过让学生观察思考、启发引导、提问设疑、探讨比较、讨论总结、观察概括等方法探讨“比的基本性质”这一规律,然后让学生总结出完整的规律,同时采用讲练结合、对比总结、概括归纳的方法,掌握知识、应用知识、深化知识,形成清晰的知识体系,培养学生的创新能力和探索精神。
课上还有许多不足之处,例如“1/9”其实就是比的另一种形式,比的化简的第二种方法应该留到下节课再讲。今后,我需更加努力,虚心向前辈们请教学习。
比的基本性质教学设计与反思(优质14篇)篇十
教学比的基本性质是在学生学习“商不变的性质”和“分数的基本性质”的基础上进行的。我先是让学生求出6:8和12:16这两个比的比值,然后让学生发现这当中的规律,学生很快说出了比的基本性质;接下来我让学生通过比和分数、除法的关系,再利用商不变、分数的基本性质证明出比的基本性质。这一过程还算顺畅,但在接下来的讲解化简最简单的整数比时,却出现了问题:当前、后项都是整数的时候,我只讲解了前、后项同时除以最大公因数的方法,在此,应该出示其余的方法,让学生在其中找到最优法。
比的基本性质教学设计与反思(优质14篇)篇十一
1、用迁移类推规律主动探索新知。本课中,我抓住了新旧知识的生长点,先是给学生复习了商不变的性质和分数的基本性质,然后引导学生联系比与除法、分数的关系,这样设计复习题,有助于学生通过寻求比与除法、分数的关系建构比的基本性质这一概念,符合学生认识事物的规律和迁移规律,铺就了由已学知识向将学知识迁移过渡的桥梁,学习的最近发展区有了实质的根基与准备。猜想引入让学习兴趣盎然,激起了探索的欲望,培养了思维联想、迁移的习惯与能力,让新知在过渡自然地融入。
2、小组合作成功有效。在整个过程中每个小组都能互相帮助,积极探讨,紧扣商不变与分数的基本性质分小组讨论比的基本性质,放飞思维,自主地依据已有知识经验,在合作、猜想、验证、交流中展开合理的想象与多角度思考,在有理有据表达、多种形式的对比中生成、完善了性质。大家学习热情很高,汇报展示紧扣主题,培养了孩子们的集体荣誉感,使学生从中体会到成功的喜悦,提高自己的学习兴趣,进而培养了学生的创新意识。
3、充分体现学生的自主学习主线。无论是猜想验证比的基本性质,还是进行比的应用,化简比的方法的总结,无处不体现了学生是学习的主人,无时不渗透着学生主动探索的过程,都留下了学生成功的脚印。
由于整节课只有35分钟,时间较短,另外学生的合作探索时间较长,汇报展示用时也较长,所以有前松后紧的感觉,时间分配不合理。刚刚进行完三种比的化简就下课了,没有进行练习,给学生完成家庭作业带来一定困难。这一缺陷下次一定注意。
比的基本性质教学设计与反思(优质14篇)篇十二
数学来源于生活,生活中中处处都有数学。在教学中我重视从学生的生活实践和已有的知识中学学习数学和理解数学,重视数学知识与学生生活实际的紧密联系,让学生体会到:身边有数学、数学无处不在。本节课的教学用学生喜听的故事引入,来代替书本的内容。当学生一听到猴子分桃子的故事,当然兴趣盎然,纷纷发表自己的看法,列出每只猴子可得到桃子的只数,增强了他们学习数学的主动性和积极性,真正发挥了学生的主体作用。层层深入,环环紧扣,循序渐进地进行知识的自然过渡,使认识逐步由感性向理性深化。同时对学生进行做人要公平的人生哲理教育。
练习题的设计应强调数学教学中培养学生学习数学的能力。在教学中我能抓住学生的心理特点,设计一些学生容易进入陷阱的题目,在这些小陷阱中,让学生愉快地掌握知识,突破重点和难点。例如:当学生得出“比的基本性质”这一规律时,我马上出示例题,基本性质理解了,学生就会完成了。再如:我增加的两道例题,把学生在化简过程中将会出现的错误全部呈现了出来,学生第一印象的掌握,有助于今后的练习。
将本文的word文档下载到电脑,方便收藏和打印。
比的基本性质教学设计与反思(优质14篇)篇十三
在教学比的基本性质这节课时,首先,进行了复习,复习了上节课所学知识,什么是比?比个部分的名称,以及求比值和比、分数、除法之间的联系,又复习了分数的基本性质,及作用(通分、约分),商不变的性质及作用(小数除法的计算或简算)。
过渡:比、分数、除法之间是有联系的,那么比会有什么样的'性质呢?学生猜测。
其次,探究比的基本性质。通过求比值6:8,12:16,得出两个比的比值相等,即两个比相等,6:8=12:16,观察前项、后项的变化,6:8=(6×2):(8×2)=12:16,发现规律:比的前后项同时乘上一个相同的数(0除外),比值不变。观察12:16=6:8,前后项的变化,12:16=(12÷2):(16÷2)=6:8,发现规律:比的前项、后项同时除以一个相同的数(0除外),比值不变。把两条规律合在一起,就叫做比的基本性质。
接着,教学化简比。先介绍什么叫最简单的整数比,然后化简整数比、分数比、小数比。
最后,进行了全课总结。
回顾本节课,探究比的基本性质及化简比讲的较细致,学生掌握的也不错,会背比的基本性质,及灵活应用比的基本性质,化简整数比、小数比。同时本节课根据比、分数、除法的联系,渗透了比的基本性质、分数的基本性质、商不变的性质之间的联系。另外让学生明白知识是为了应用,明确学习的目的,不尽人意之处是由于时间关系,小数比的化简没有教学。
比的基本性质教学设计与反思(优质14篇)篇十四
教学内容:课本第57页的内容及例1,完成“做一做”题和练习十四的第5~9题。
教学目的:使学生理解比的基本性质,掌握化简比的方法。
教学过程:
一、复习。
1.除法中的商不变规律是什么?
3.比与除法有什么关系?
4.比与分数有什么关系?
二、新授。
我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。
问:
引导学生得出:比的前项和后项同时乘以或者同时除以相同的数(零除外),比值不变。这就是比的基本性质。
问:(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)。
2.教学化简比。
利用比的基本性质,我们可以把比化成最简单的整数比。
出示例1:把下面各比化成最简单的整数比。
(1)。
问:(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)。
(2)。
导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)。
化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。
(3)。
问:(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)。
或
3.小结:
问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?
三、巩固练习。
1.完成“做一做”的题目。
让学生说一说化简的方法。
2.练习十四第5、7、8题。
3.练习十四第9题。
提示:化简与求比值的得数有什么不同?(化简的结果是一个比。求比值的结果是商,是一个数)。
四、作业。
1.练习十四第6、10题。
2.一列火车15小时行驶1200千米。
(1)写出行驶的路程和时间的比,并化成最简单的整数比。
(2)求出这个比的比值,再说出这个比值的含义是什么?