在教学计划中,我们需要明确教学目标、内容、方法和评价方式,以确保教学的有序进行。这些教学计划范文可以帮助教师更好地解决教学中的困惑和问题。
北师大版圆柱的表面积教学设计(模板14篇)篇一
课题圆柱的体积教时一5(5)。
学习。
目标通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。通过圆柱体体积公式的推导,培养学生的分析推理能力。理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。
学习。
重点圆柱体体积的计算。
过程与方法。
教师活动。
一、复习引新。
1.求下面各圆的面积(回答)。
(1)r=1厘米;(2)d=4分米;(3)c=6.28米。
2.想一想:学习计算圆的面积时,是怎样得出圆的面积计算公式的?
3.提问:什么叫体积?常用的体积单位有哪些?
4.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)。
二、探索新知。
1.根据学过的体积概念,说说什么是圆柱的体积。(板书课题)。
2.怎样计算圆柱的体积呢?我们能不能根据圆柱的底面可以像上面说的转化成一个长方形,通过切、拼的方法,把圆柱转化为已学过的立体图形来计算呢,现在我们大家一起来讨论。
3.公式推导。(有条件的可分小组进行)。
根据圆面积剪、拼转化成长方形的思路,我们也可以运用切拼转化的方法把圆柱体变成学过的几何形体来推导出圆柱的体积计算公式。你能想出怎样切、拼转化吗?请同学们仔细观察以下实验,边观察边思考圆柱的体积、底面积、高与拼成的几何形体之间的关系。教师演示圆柱体积公式推导演示教具:把圆柱的底面分成许多相等的扇形(数量一般为16个),然后把圆柱切开,照下图拼起来,(图见教材)就近似于一个长方体。可以想象,分成的扇形越多,拼成的立体图形就越接近于长方体。
(4)讨论并得出结果。
你能根据这个实验得出圆柱的体积计算公式吗?为什么?
(板书:v=sh)。
(5)小结。
圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?
4.教学算一算。
审题。提问:你能独立完成这题吗?
教学“试一试”
小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道c呢?知道r、d、c,都要先求出底面积再求体积。
三、巩固练习:练习册练习。
四、课堂小结新课标第一网。
这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?指出:这节课,我们通过转化,把圆柱体切拼转化成长方体,(在课题下板书:圆柱些长方体)得出了圆柱体的体积计算公式v=sh。
学生活动。
要求说出解题思路。
指出:把一个圆等分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。
(1)请同学指出圆柱体的底面积和高。
(2)回顾圆面积公式的推导。(切拼转化)。
(3)探索求圆柱体积的公式。
让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的长方体。这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是:圆柱的体积=底面积×高(板书:圆柱的体积=底面积×高)用字母表示:
指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)。
板书设计。
圆柱的体积。
圆柱的体积=底面积×高。
用字母表示:v=sh。
教学反思。
课题练习教时一6(6)。
学习。
目标1.进一步理解和掌握圆柱的体积计算公式,并能应用到实际解决问题中。
2.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。
学习。
重点理解和掌握圆柱的体积计算公式。
过程与方法。
教师活动。
一、基本练习。
二、实际应用。
说说哪个体积大?为什么?
上升的2厘米是什么。
三、实践活动。
学生活动。
说解题思路(指名板演后完成。)。
说解题思路。
这道题的注意的地方:单位的统一。
学生仔细读后完成。
分别说说表面积和体积的计算方法。
板书设计。
圆柱的体积。
圆柱的体积=底面积×高。
用字母表示:v=sh教学反思。
北师大版圆柱的表面积教学设计(模板14篇)篇二
课前,教师让学生在家做三件事:
(1)自己动手制作一个圆柱;
(2)写出制作的步骤;
(3)制作过程中有什么发现?
课上对话――。
师:谁来说说你是怎么做圆柱的?(听到老师这个提问,我在想教学从学生经历的实践体验入手,值得肯定)。
生:我准备了三张纸、圆规和剪刀,……(这么自信的表达,一定很多有价值的内容,倾听,延伸,提炼,概括,问题一样得到解决。这课有听头)。
师:你直接说出步骤。(这么无情地打断学生的讲话,有些失望)。
生:我先准备纸,然后就卷成圆筒,再剪两个底面,就做出来了。(这是个应变能力很强的学生,老师要什么,他就能给什么。其间省略太多东西了)。
师:好的。(这里的“好的”起着语言过渡的作用,然而,学生操作经历的概括,是否有助于理解圆柱的侧面和底面之间的关系,教师并没有关注)。
师:侧面的长和底面的周长有什么关系?(看得出教师最急于提的是这个问题,也难怪,这个一个所有教案中都会出现的问题)。
生:相等。
师:是这样吗?请你把它剪下来。(“剪下来”的行为怎么不是学生为了说明问题的主动行为,而是教师为了板书和讲解发出的指令)。
(学生刚拿出剪刀,老师就一把接了过来,把学生精心制作的圆柱剪开,贴在黑板上。有些学生小声说道:“真可惜。”)。
师:同学们,你们看,(这是老师讲解前常说的一句话)这个圆柱的侧面展开是一个长方形,长方形的长等于圆柱底面的周长,长方形的宽等于这个圆柱体的高。(迫不及待地告诉,自我中心意识强)圆柱的表面积你们会算了吗?(一句口头禅式的提问,不用想都会知道学生会怎么回答)。
生齐答:会了。(真的会了?还是应付老师的齐答)。
如此“快节奏,高效率”的教学,看起来过程顺利,但是教师主导的课堂,能否实现教学目标,不得而知。
再读文本――。
拿起教师的教学用书,我们读到了,本节课的教学还应实现这样的教学目标:
2、在如何计算侧面积的推理过程中,锻炼形象思维和抽象思维,培养空间观念;
3、指导并训练学生规划解决问题的步骤,形成解决问题的思路。
对话学生――。
课后,找到那位说制作步骤的学生,和他有了这样的对话:
师:现在愿意跟我们说说圆柱的制作过程吗?
生:老师根本没有让我把话讲完,其实为了今天的发言,我昨晚就准备了。制作圆柱其实并不容易,特别是制作规定底面和高的圆柱。我和同学们,基本都是先用一张长方形的纸做出圆柱的侧面,然后再用这个圆筒画出两个圆,作为圆柱的底面。这样制作看起来任务是完成了,但算圆柱的侧面积和底面积都不太方便。如果要是让我再制作一个,我会先量出长方形的长和宽,如果用宽作为高,这个长就要用两次,一次是用来求侧面积,一次用来算底面积,因为我发现长方形的长就是圆柱底面的周长。
师:你的发现,全班学生都会发现吗?
生:我相信我们班上有不少同学并没有很好的理解。
师:那怎么办?
生:老师不是在黑板上讲了吗?没理解的就背公式呗。
生:老师,我们在课前还讨论过这样的问题,就是为什么全班学生做出的圆柱都是瘦瘦高高的,身材都那么好。其实很多人做圆柱时,都是用长方形的长作高,宽的长度才是底面的周长,我并不赞成老师说:圆柱体侧面展开是一个长方形,长相当于底面周长,宽相当于圆柱的高。应该说:圆柱体侧面展开是一个长方形,长方形的长和宽中的一条边相当于底面周长,另一条边相当于圆柱的高。
北师大版圆柱的表面积教学设计(模板14篇)篇三
1、理解圆柱侧面积和圆柱表面积的含义。
3、根据圆柱的表面积与侧面积的关系学会运用所学的知识解决简单的实际问题。
运用所学的知识解决简单的实际问题。
多媒体课件。
一、创设情景。
2、大屏幕出示问题,学生口头回答:
(1)一个圆形花池,直径是5米,周长是多少?面积是多少?
板书:长方形的面积=长×宽。
二、探究新知。
(2)理解“圆柱的侧面积”的含义。用手指出实物圆住的侧面积。
2、小结。
4、教学例4。
(1)大屏幕出示例4的'题目。
思考:这道题已知什么?求什么?要求圆柱的表面积,应该先求什么?后求什么?(2)学生试着解答。
(3)全班交流:为什么只求了一个底面面积呢?(4)小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
5、巩固练习:完成第14页的“做一做”。
三、课堂小结。
四、作业。
完成练习二的5——7题。
五、思维训练。
1、压路机前轮滚动一周能压多少路面,实际就是求圆柱的()。
2、在一个圆柱形的蓄水池里抹水泥,求抹水泥部分的面积,实际就是求()与()的()。
北师大版圆柱的表面积教学设计(模板14篇)篇四
(1)计算圆柱体的表面积:教材14页做一做(强调作业格式要求:分三步,首先分别求出侧面积和底面积,最后求表面积)。
(2)底面直径6分米,高2分米。
(3)底面周长12.56米,高3米。
三.课堂作业:练习二第6题。
家庭作业:练习二第14题求表面积部分。
第二课教学反思。
无论是已知圆柱底面半径和高,或是已知底面直径、周长和高求表面积都必须经过七步计算(注:平方也算为一步)。这么烦琐的计算,对于学生而言是有一定难度的,且在列式中,还必须正确选用圆的`周长和面积计算公式,因此解答圆柱体的表面积其实是对学生综合应用所学面积公式的一大考验。
为适当降低教学难度,我在学生初次接触圆柱体表面积一课时,将教学目标仅定位于能够掌握公式,并能正确求出圆柱体的表面积,而不涉及灵活解决实际问题的练习(即不教学例4),整节课重在夯实基础。从列式情况来看,教学效果不错,可一到计算,问题还是频频凸显。即使我建议学生们制作了1——100的派表,可练习六第1题需要用到192派,第2题需要用到6.25派,这些结果从派表中都无法查找到结果,必须计算。三位数乘三位数学生平时练习较少,所以极易计算出错。在此,只有适当加大计算指导力度及练习密度,提升作业正确率。
补充资料:
这里,向同学们介绍另一种计算圆柱体表面积的方法。
我们把两个底面分别剪成8个相等的扇形(剪成的扇形越多越精确),取其中一个扇形再平均分成两个小扇形。把这些扇形贴紧长方形的长拼成一个近似的长方形,与原来侧面展开的长方形拼成一个大长方形。(因为我的绘图能力有限,所以图略。)。
这个大长方形的面积就是圆柱体的表面积,它的长是圆柱体的底面周长,它的宽是圆柱的高与底面半径的和。这样就可以得到另一种计算圆柱体表面积的公式,即:
小朋友,你能用两种不同的公式解答下面的题目吗?
北师大版圆柱的表面积教学设计(模板14篇)篇五
1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
2、培养学生分析推理,解决实际问题的能力。
3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。
4、在计算机操作中培养学生的信息素养。
使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
在计算机操作中培养学生的信息素养。
计算机辅助教学课件一套。
一、创设情境,提出问题。
1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)
2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)
二、自由选择,自学新知。
1、电脑显示: 自学新知a 自学新知b
说明:在学习新的知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。
2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。
(展开侧面)
自学新知a:
(1)
长方形
底面周长
高
长方形面积=
圆柱的侧面积=
(2)
底面
底面
侧面
圆柱表面
(动画)
圆柱的表面积=
(3)小组讨论:
(2)求圆柱的底面积必须具备什么条件?
自学新知b:
(1)思考:把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱底面的(),宽等于圆柱的()。
长方形面积= ×
圆柱的侧面积= ×
(2)思考:圆柱的侧面积加上两个底面积就是圆柱的表面积,
所以:圆柱的表面积= +
(3) 小组讨论:
(2)求圆柱的底面积必须具备什么条件?
三、初步应用,尝试例题。
学生在学习完自学新知后,进入尝试例题:(注:每道例题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
电脑显示:
例1:一个圆柱,底面的直径是0。5米,高是1。8米,求它的侧面积。(得数保留两位小数)
例2:一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
例3:一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)
提示学生在做完例3后,查阅知识点::这里不能用四舍五入法取近似值,在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1,这种取近似值的方法叫做进一法。
四、灵活选择,星级题库。
1、师说明:大家在做例题时,完成得都挺不错,下面就请大家把今天所学的知识运用到练习当中,这里有三星题库,题目依次由易到难,请每位同学根据自己的能力,自由选择一星、二星或三星。
2、生自由选择,有困难可以与老师、同学间交流。(注:每道练习题旁都设有计算器、帮助、重做按钮,学生可以进行计算、查阅正确答案、重新再做一遍,学生每做对一题,会出现一个卡通人物表示祝贺)
题库:
1、 一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积?
2、 一个圆柱,底面直径是2分米,高是45分米,求它的表面积?
题库:
题库:
1、 一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
2、 一个没有盖的圆柱形铁皮水桶,高是12分米,底面直径是高的3/4,做这个水桶大约用铁皮多少平方分米?(用进一法取近似值,得数保留整十平方分米)
五、课外知识,开阔视野。
1、师:练习完成又快又好的同学,可以点击课外知识,查阅其它的数学知识。
2、学生点击课外知识:链接北京科教信息网
1、师小结本节课所学内容。
2、学生点击布置作业,查看作业内容:
给一个圆柱形罐头盒加外包装,在计算材料时,注意使用“进一法”。
北师大版圆柱的表面积教学设计(模板14篇)篇六
知识与技能:理解并掌握圆柱体的侧面积和表面积的计算方法,能结合具体情境,灵活运用计算方法解决实际问题。
过程与方法:经历圆柱表面积、侧面积计算方法的探索过程,培养学生自主探索、合作交流的能力。
情感态度与价值观:学生获得积极成功的情感体验,体会数学与生活的密切联系。
重点:理解并掌握求圆柱体表面积、侧面积的计算方法
难点:能结合具体情境,灵活运用圆柱侧面积、表面积的计算方法解决实际问题。
教具:圆柱形模型、剪刀
(一)创设生活情景,引入新课
我根据学生喜欢喝饮料的爱好,创建生活情景,“同学们都喜欢喝饮料,那么你们知道做这样的一个饮料罐至少需要多少的铁皮吗?怎样计算?”这节课,我们就来一起学习圆柱的表面积(板书课题)(设计意图:数学来源于生活,又应用于生活,我利用学生的生活实际设疑引入新课,很容易激发学生的学习兴趣,进而求知,解决问题。)
(2)引导探究,学习新知
1、认识圆柱的表面
师:我们来做一个“饮料罐”,该怎样做?
生:要做一个圆筒,和两个完全相同的圆。
师:用什么形状的纸来做卷筒呢?同学们说的意见不一致时,我适时引导,你们动手剪一剪不就知道了吗?每一组的同学都剪开自己带来的圆筒,有的得到了长方形,有的得到了平行四边形,也有的得到了正方形。
(设计意图:动手操作,使学生对圆柱各部分的组成有了完整的认识,培养了学生的创造能力,同时也揭示了知识间的内在联系,实现了知识的转化和迁移。)
2、探究圆柱侧面积的计算。
师:我们先来研究把圆筒剪开展平是一个长方形的情况,求这个饮料罐要用铁皮多少?就是求什么?学生观察、思考、议论。
生1:求饮料罐铁皮用料面积就是求:圆面积×2+长方形面积。
生2:也就是求圆柱体的表面积。
师:这两位同学说得对吗?要求圆柱体的表面积要知道什么条件?
生3:我看只要知道圆的半径和高就可以了。
师:我们来听听这位同学是怎么想的。
生3:长方形的长与圆的周长相等,长方形的宽与圆柱的高相等,所以只要知道圆的半径就可以求出长方形的长,也可以求出圆的面积。
生4:我觉得知道圆的直径和高也可以了。
生5:我还觉得知道圆的周长和高也行。
师:这三位同学都说得很好,那么圆柱的侧面积该怎样求?
生6:因为长方形面积=长×宽所以圆柱的侧面积=底面周长×高
师:如圆柱展开是平行四边形或正方形,是否也适用呢?
学生分组动手操作,动笔验证,得出了同样的结论。
小结:同学们会动手、动脑,巧妙地把圆柱的侧面转化为平面图形,圆柱的侧面展开后不论是长方形、正方形或平行四边形,圆柱的侧面积都等于它的底面周长乘高。
师板书:圆柱侧面积=底面周长×高s侧=ch出示例1让学生独立计算出圆柱的侧面积,一生板演,集体订正。
(设计意图:学生在教师创设的情境中,分组合作得出结论,充分调动了学生学习的积极性,同时个性也得到发展。)
3、探究圆柱表面积的计算
师:我们知道了圆柱侧面积的计算了,那么它的表面积该怎样算呢?
(1)出示例2
分组讨论例2中给了哪些条件?求什么问题?它的表面积应包括几个面?怎样解答。
(设计意图:学生已掌握了圆面积和侧面积的计算方法,教学圆柱的表面积时,让学生自学交流就能掌握方法。)
(2)教学例3
师:通过计算,你有哪些收获?
生5:我知道了,做这个无盖水桶要用铁皮多少平方厘米就是求一个侧面积和一个底面积的和。
生6:在得数保留时,我觉得应该用进一法取近似值,因为用料比实际多一些,因为有损耗,所以要用进一法。让学生看34页,看“注意”后的一段话。
(设计意图:让学生从生活实际出发,充分讨论,理解进一法,明确在什么情况下用“进一法”取近似值,培养学生实际应用意识。)
(3)巩固练习,灵活运用
小结:计算圆柱的表面积要根据具体实物分别处理,要学会运用新学的知识合理灵活地解决生活中的实际问题。
2、综合练习(只列式,不计算)
(设计意图:通过这种练习进一步培养学生根据实际情况灵活运用知识的能力。)
3、实践与应用
小组合作测量计算:制作所带的圆柱形实物的用料面积,先让学生讲讲需要测量哪些数据,以及测量方法,再进行测量和计算。
(设计意图:培养学生合作意识和动手操作能力,锻炼学生用所学知识解决生活中的实际问题,使学生感受数学就在身边,不断提高应用数学的意识。)
(4)全课小结在实际生活中,计算圆柱的表面积,要根据具体情况灵活掌握,如计算油桶的表面积是求侧面积与两个底面积的总和;无盖水桶的表面积是求侧面积加上一个底面积;水管-的表面积只求侧面积,另外,在实际中使用的材料都要比计算得到的结果多一些,所以都要采用“进一法”取近似值。
板书
圆柱的表面积
圆柱的表面积=两个底面积+侧面积
圆柱的侧面积=底面周长×高
长方形的面积=长×宽
北师大版圆柱的表面积教学设计(模板14篇)篇七
一、引入新课:
昨天我们认识了一个新的几何体朋友——圆柱,谁能向大家介绍一下你的这位新朋友?
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
演示这一过程
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
师:今天我们就一起来研究怎样求圆柱的表面积。(板书:圆柱的表面积)
二、探究新知
指名学生摸其表面积,并追问:怎样求它的表面积?
生:六个面的面积和就是它的表面积
师:怎样求圆柱的表面积呢?(学生分组讨论)
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)
1、圆柱的侧面积
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高
呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答
(2)指明学生解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
2、圆柱的表面积
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积
师生小结:圆柱的表面积=底面积×2﹢侧面积
3、反馈练习:(略)
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……
四、自我评价
你认为自己这节课的表现如何?
北师大版圆柱的表面积教学设计(模板14篇)篇八
教材分析:《圆柱的表面积》是人教版版小学数学六年级下册第二单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。
教学目标:
知识技能:1.通过动手操作使学生理解圆柱体表面积的意义,掌握圆柱体表面积的计算方法。2.会正确计算圆柱的侧面积和表面积。
数学思考:运用知识的迁移,用“化曲面为平面”的方法得出圆柱体侧面积的计算方法;能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
问题解决;使学生能根据实际情况区分圆柱体表面积的不同情况,并灵活地选择计算方法;通过比较、观察培养学生的观察能力和空间想象力;通过独立思考、交流合作,类比推理而成功地获取知识,并能积极地运用所学知识解决实际问题。
情感态度:让学生体验出自己探究发现的快乐;感受到数学与日常生活联系广泛,激发起热爱数学的情感。
教学重点:动手操作展开圆柱的侧面积。
教学难点:圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。
学具准备:纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。
教学过程:
一、创设情境,引起兴趣。
拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?
想一想工人叔叔做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)。
那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)。
二、自主探究,发现问题。
1、探究圆柱侧面的计算方法。
教师提问:将圆柱体的侧面展开,会是什么形状的呢?
这个长方形与圆柱体有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)。
即长×宽=底面周长×高。
所以,。
s侧=c×h。
(1)、现在请大家试着求出这个圆柱体茶叶罐用料多少。
学生测量,计算表面积。
(3)、动画:圆柱体表面展开过程。
三、实际应用。
四、回顾全课。
本节课你收获了什么,有什么遗憾。
北师大版圆柱的表面积教学设计(模板14篇)篇九
2、掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.。
3、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力.。
重点:认识圆柱的表面积,理解圆柱表面积的含义.。
难点:掌握表面积的计算方法,能正确运用公式计算圆柱的表面积.教具准备:
2、学生每人准备圆柱形模型两个;剪刀;教学过程:
一、复习引入。
1、圆柱有哪些特征?它各部分名称叫什么?
2、学生回答后,让学生拿出自己做的模型,指出哪一部分是侧面.。
3、引入新课。
二、新课教学。
(一)出示学习目标:
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、认识取近似值的进一法。
4、学习推导方法。
1、出示自学提示:
(1)、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?
小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
2、学生汇报交流。
出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。
3、推导公式。
侧面积=底面周长×高。
4、口答。
把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。
小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
2、学生汇报交流。
3、推导公式。
(三)运用公式计算。
1、求下面各圆柱体的侧面积。(只列式不计算)(1)、底面周长1.6米,高是0.7米。(2)、底面半径是3.2分米,高是5分米。(3)、底面直径是10厘米,高是25厘米。
3、出示例3学生独立完成.指名板演,然后小组内交流。
三、课堂小结。
大家回顾一下今天我们学了什么内容?计算时要注意什么?《圆柱的表面积》教学反思。
屏南实验小学韦斌。
整个教学过程,学生学习兴趣浓厚,学得主动积极。我认为教学成功的关键在于关注了学生的学习过程,创设了一个有利于学生生动活泼,主动发展的教育氛围。片通过学生动手动脑,来突破难点;引导学生在应用中加深认识,形成能力。
动手实践,主动探索和合作学习是小学生学习数学的重要方式。而在儿童的精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的基本数学知识和技能的同时,在情感、态度和价值观等方面得到充分发展。
本节课,教师通过让学生动手制作圆柱体模型,让学生“自由结合”进行探索,这便是给学生提供主动发展的时间和空间。人各有其个性,有的爱独立思考,有的爱互相讨论,有的爱听听别人怎么说。于是,有的独立思考,有的同桌讨论,有的由几个人组合,一个生动活泼的学习形式油然而生,使每个学生达到了“既竭我才,欲罢不能”的地步,在主动探索中意识和感觉到自己的智慧和力量,再互相交流启发,自然就获得了成功。
教师为学生提供了基本题以及多向思维的材料,引导学生善于联想所学的知识,从不同的角度、不同层次、不同方法分析问题,使学生开阔思路,思维灵活,从而敏捷地解决问题。使不同的学生都能获得学到知识的满足感,体会到学习数学的快乐,对于未获得成功者,教师决不能简单地批评、指责,教师应尽量发现其错误中的正确成份,给以肯定,并启发学生自己发现,纠正错误。即使彻底错了,教师也要循循善诱,启发引导,给予机会让他争取成功,从而增强学生学好数学的自信心,使他们获得人的尊严,享受成功的快乐,教师也因此而分享快乐。
总之,学生在以上学习过程中,探索意识和发现能力得以展示,知识获取和能力提高相辅相成,大大有利于整体素质的提高。
学习目标:
2、掌握圆柱的侧面积和表面积的计算方法,并能正确计算。
3、认识取近似值的进一法。
4、学习推导方法。
自学提示:
1、认真观察自己手中的长方形,思考这个长方形与圆柱体的哪一部分有关系?
2、推导出圆柱体侧面积的计算公式。小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
把直圆柱体侧面展开得到一个()形,这个()形的长等于圆柱体的(),宽等于圆柱体的(),因为长方形的面积等于(),所以圆柱体的侧面积等于()。
自学提示:
2、讨论:求圆柱体的表面积需要知道哪些数据?小组合作注意:组长负责发言次序,同学之间尊重他人,懂得谦让,互相帮助。
1、底面周长1.6米,高是0.7米。
2、底面半径是3.2分米,高是5分米。
3、底面直径是10厘米,高是25厘米。
目标检测:
(得数保留整百平方厘米)。
拓展题:
一个圆柱体的侧面展开是一个边长为25.12厘米的正方形,求这个圆柱体的表面积。
给下面的物体分类。
(1)。
(2)。
(3)。
(4)。
(7)。
(5)。
(8)。
(6)。
(9)。
北师大版圆柱的表面积教学设计(模板14篇)篇十
结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。
【过程与方法】。
通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。
【情感态度与价值观】。
能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。
【教学重点】。
圆柱表面积的计算方法以及在生活中的应用。
【教学难点】。
(一)导入新课。
师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)。
(二)生成原理。
师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。
(2)创疑激趣。
(3)小组合作交流。
小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。
师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)。
师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。
(三)深化原理。
圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。
(四)应用原理。
(五)课堂小结。
生:测量、确定笔筒的大小。
师:如何确定?
生:确定底面半径,还有笔筒的高。
师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。
北师大版圆柱的表面积教学设计(模板14篇)篇十一
教学内容:
小学数学第十二册教材p33~p34。
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件。
教学重点:
教学过程:
一、猜测面积大小,激发情趣导入。
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高。
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积。
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法。
圆柱的表面积=侧面积+两个底面的面积(板书)。
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)。
底面积:3.14×5×5=78.5(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+78.5×2=748.576(平方厘米)。
情况二:半径:18.84÷3.14÷2=3(cm)。
底面积:3.14×3×3=28.26(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+28.26×2=648.096(平方厘米)。
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。
所以圆柱体表面积=长方形面积=底面周长×(高+半径)。
用字母表示:s=c×(h+r)。
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、分组闯关练习。
1、多媒体出示题目。
第一关(填空)。
沿圆柱体的高剪开,侧面展开后会得到一个形,长是圆柱的(),宽是圆柱的(),因此圆柱的侧面积=()×()。
第二关。
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是()平方分米,它的底面积是()平方分米,它的表面积是()平方分米。
第三关(用你喜欢的方法完成下面各题)。
一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、质疑(同学们还有什么疑问吗?)。
五、反馈小结:
教学反思。
1、自主探究,体验学习乐趣。
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
北师大版圆柱的表面积教学设计(模板14篇)篇十二
《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。
学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
重点。
难点。
圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。
一、激趣导入。
(复习圆柱体的特征)。
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、目标定向。
1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、我能通过对已有知识的迁移,探索新知识。
三、自主合作。
2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
1、引导探究圆柱体侧面积的计算方法。
设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
四、交流展示。
底面积×2+侧面积=表面积。
1、小组合作探究。(剪圆柱形纸筒)。
2、汇报交流研究结果,各小组展示。
3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
(三)以小组为单位自己做例4,做完组长检查。
五、拓展延伸。
(1)底面周长是1.6米,高是0.7米。
(2)底面半径是3.2分米,高是5分米。
(1)底面直径是12米,高是16米。
(2)底面半径是3.2分米,高是5分米。
板书设计。
底面积=圆面积。
底面积×2+侧面积=表面积。
我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。
1、实践操作。
在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
2、精讲多练。
新知的获得时间要短,课后的练习要从易到难。
本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。
数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。
北师大版圆柱的表面积教学设计(模板14篇)篇十三
3.会正确计算圆柱的侧面积和表面积。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教学过程。
一、复习准备。
(一)口答下列各题(只列式不计算)。
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征。
二、探究新知。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。
(二)教学例1.
1.出示例1。
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)。
2.学生独立解答。
教师板书:3.140.51.8。
=1.75l.8。
2.83(平方米)。
答:它的侧面积约是2.83平方米。
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
(四)教学例2.
1.出示例2。
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的.表面积是多少?
2.学生独立解答。
侧面积:23.14515=471(平方厘米)。
底面积:3.14=78.5(平方厘米)。
表面积:471+78.52=628(平方厘米)。
答:它的表面积是628平方厘米。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
(五)教学例3.
1.出示例3。
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
3.学生解答,教师板书。
水桶的侧面积:3.142024=1507.2(平方厘米)。
水桶的底面积:3.14。
=3.14。
=3.14100。
=314(平方厘米)。
需要铁皮:1507.2+314=1821.21900(平方厘米)。
答:做这个水桶要用1900平方厘米。
4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
5.四舍五入法与进一法有什么不同。
(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。
(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
三、课堂小结。
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
四、巩固练习。
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)计算下面各圆柱的表面积。(单位:厘米)。
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)。
五、课后作业。
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
北师大版圆柱的表面积教学设计(模板14篇)篇十四
1、必要的铺垫。 。
出示实物,让学生观察。使学生对圆柱有一个感性的认识。
引导学生归纳圆柱形有哪些特征?增强学生概括能力和抽象能力。
2、在老师指导下,学生自主探究,获取新知。
老师设计以下四个层次:
(1)老师给出问题:
讨论:a、侧面展开是什么形状?
b、长方形的长等于什么?
c、长方形的宽等于什么?
(2)学生动手操作,观察,讨论。
自主发现结果:a、圆柱的侧面积=其侧面展开所得长方形的面积。
b、长方形的长=底面周长;宽=高。
(3)老师演示课件:直观看出,圆柱的表面积=圆柱的侧面+2底面面积。
层层设疑,让学生主动去探索,通过自身实践,获得新知,使学生。
3、通过变式训练,促进深化。
a、思考:侧面积的计算。
c、阅读:培养学生自学能力。
(板书:3个概念,2个公式,1次计算)。
三、 教学后记。
在教学过程中,我应更加重视和发展学生的好奇心,让每一个学生养成想问题、问问题、挖问题和延伸问题的习惯。让所有的学生都知道自己有权力和能力提出新见解、发现新问题。这一点对学生的发展很重要,它有利于学生克服迷信和盲从,树立起科学的思想和方法,有利于学生形成良好的学习品质。