通过阅读范文范本,我们可以拓宽自己的知识面,增加自己的思考深度和广度。以下是小编为大家整理的一些优秀范文范本,供大家学习参考。
六年级倒数的认识课件(模板13篇)篇一
教科书第28~29页例1、“做一做”及相关内容。
1、使学生通过观察、分类、讨论等活动认识倒数,理解倒数的意义。
2、使学生体验找一个数的倒数的方法,会求一个数的倒数。
3、在探索交流的活动中,培养学生观察、归纳、推理和概括的能力,发展数学思维。
理解倒数的意义;求一个数的倒数。
理解“互为倒数”的含义。
教学课件、写算式的卡片。
基本训练,强化巩固。(3分钟)
1、出示几道分数乘法式题:(包括教材中的四道题与另外补充的四道结果不为1的算式)。
2、学生独立完成上面几组题,小组内检查并订正。
创设情境,激趣导入。(2分钟)
请个别学生说说分数乘法的计算方法,突出分子与分母的约分。
提示目标,明确重点。(1分钟)
通过本节课的学习,我们要认识倒数,理解倒数的意义。会求一个数的倒数。
学生自学,教师巡视。(6分钟)
1.观察这些算式,如果将它们分成两类,怎样分?
2、通过观察发现算式的特点。
展示成果,体验成功。(4分钟)
让学生说说乘积为1的算式有什么特点。
学生讨论,教师点拨。(8分钟)
1.学生讨论并说出自己的发现:两个数的乘积都是1。相乘的两个数的分子和分母正好颠倒了位置。
2.认识倒数。出示倒数的定义:乘积是1的两个数互为倒数。理解倒数。让学生说一说如何理解“乘积是1的两个数互为倒数”。引导学生对定义中关键要素的理解:乘积是1;两个数;互为倒数。
3、引导学生思考:互为倒数的两个数有什么特点?
4、探讨求倒数方法。
(1)出示例题,让学生说说哪两个数互为倒数。
(2)在汇报时说说怎样找一个数的倒数,在学生汇报的同时板书
六年级倒数的认识课件(模板13篇)篇二
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
:教学光盘
:自学课本p50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
1.出示例7
学生在自备本上完成,指名核对。
教师板书: ×=1× =1× =1
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和 互为倒数,也可以说的倒数是 ,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×( )=1,再得出结果。
六年级倒数的认识课件(模板13篇)篇三
1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
3、激情投入,挑战自我。
求一个数倒数的方法。
1和0倒数的问题。
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒数的意义。
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)。
师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法。
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师板书:求倒数的方法:分数的分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
4.探讨带分数、小数的倒数的求法。
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)。
你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。
(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。
当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:。
发现1:带分数的倒数都(小于)本身;。
发现2:比1小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1大的小数的倒数都(小于)本身,并且都(小于)1。
(三)学以致用:
师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。
1.想不想检验一下自己学的怎么样?
请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。
2.(课件出示)请你以打手势的形式告诉老师你的答案。
(四)全课总结。
今天学习了什么?我们一起回顾总结出来好吗?
什么叫倒数?怎样找出一个数的倒数?
六年级倒数的认识课件(模板13篇)篇四
1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、培养学生观察、归纳、推理和概括的能力。
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
六年级倒数的认识课件(模板13篇)篇五
新人教版六年级数学上册第28页的例1。
1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
理解倒数的意义,学会求倒数的方法。
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
多媒体课件。
一、猜字游戏导入,揭示课题。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。
师:谁还能说出这样的数?(课件出示)
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)
二、出示学习目标:
1、理解倒数的意义。
2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
三、自主探究新知
(一)探究讨论,理解倒数的意义。
1、(课件出示教材第24页例1的四个算式。)
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)
2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)
(三)运用概念。
1、讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)
小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)
2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)
四、堂堂清作业
(一)填一填。(出示课件)
1、乘积是()的()个数()倒数。
2、a和b互为倒数,那a的倒数是(),b的倒数是()。
3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
4、一个真分数的倒数一定是()。
(二)判断题。(演示课件)
1、5/3是倒数。()
2、因为3/4×4/3=,所以4/3是倒数。()
3、真分数的倒数大于1,假分数的倒数小于1。()
4、因为1/4+3/4=1,所以1/4和/4互为倒数。()
(三)说一说。(课本第29页的第3题)
五、课堂小结:
倒数的认识
乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。
2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。
六年级倒数的认识课件(模板13篇)篇六
1.通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2.使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。
3.通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
认识倒数并掌握求倒数的方法。
小数与整数求倒数的方法。
ppt课件,卡片。
一、情境导入,引出问题。
1、列举数学中两个数乘积是1的算式。
(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。
二、合作探究、解决问题。
1.探究倒数的意义。
(1)观察刚才列举的例子,找出特点。
(2)出示倒数的意义:乘积是1的两个数互为倒数。
(3)小组讨论,什么是倒数?
学生独立思考后,组内交流。
全班汇报,教师根据学生的汇报点拨引导。
师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)。
(4)举例子:3/8×8/3=1,3/8和8/3互为倒数,3/8的倒数是8/3,8/3的倒数是3/8.
(5)口答练习:
2.探究求一个数(分数)的倒数的方法。
(1)小组合作,自学例1。
(2)小组派代表交流例1。
师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。
(4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×()=1,所以1的倒数是1。而0×()=1呢?
1的倒数是它本身,0没有倒数。
(5)引导学生概括求倒数的方法。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(6)练习:师生对口令,找倒数。
老师说一个数,学生快速抢答出它的倒数。
3、探究求整数、小数、带分数的倒数方法。
师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。
a:学生选择一种研究,教师巡视指导。
b:学生交流汇报,教师分别板书一例。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1.请你填一填。
2.我是小法官。
3.游戏:找朋友。
师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思。
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
乘积是1的两个数互为倒数。
求一个数(0除外)倒数的方法:
把这个数分子、分母调换位置。
六年级倒数的认识课件(模板13篇)篇七
《倒数的认识》是在学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备。核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。本节课的教学难度不大,但是因为学生基础太差,所以我在设计教学时力求所有的学生能听得懂,学得进去,尽量引导学生能在交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力。
1、复习题合理,紧扣这节课的学习内容,为这节课的学习做了很好的铺垫。
2、学生能深入了解倒数的意义。明白“乘积是1的两个数叫做互为倒数”,理解相互依存的概念。
3、归纳全面,教学紧凑,由简入繁介绍了整数、小数、带分数、分数的倒数;0没有倒数,1的倒数是它本身。
4、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习提高。
1、在教学倒数的定义时,对于倒数的相互关系教学不够深入,应该让学生多说。
2、学生活动环节不够,参与太少。
3、在问题导入时提问不够精准,应明确分类条件。
4、小组合作效果不佳,反响不好。
5、知识点归纳留给学生自主完成,教师点拨即可,不要讲太多。
六年级倒数的认识课件(模板13篇)篇八
p27倒数的认识,练习六全部习题。
这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。
使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。
1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。
2、提一个开放性的问题:看到这个课题,你们想到了什么?
师生共同确定本节课的目标研究倒数的意义、方法和用处。
师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。
学生自学后,问:有没有疑问?
师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
(1)师:下面,请大家各自举例加以说明。
(2)学生先独立思考,再交流。
(a、以真分数为例;如:5/8的倒数是8/5真分数的倒数是假分数。)。
(b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)。
(c、以带分数为例;带分数的倒数是真分数。)。
(d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)。
(e、以整数为例;整数相当于分母是1的假分数)。
学生举例的过程同时将如何寻找倒数的方法也融入其中。
1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)。
(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)。
1、完成练一练。
学生独立完成后,集体订正。重点问:8的倒数是几?
2、练习六5(判断)。
3、补充判断:
a、a是自然数,a的倒数是1/a。
六年级倒数的认识课件(模板13篇)篇九
引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
通过合作活动培养学生学会与人合作,愿与人交流的习惯。
通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。
教学难点:掌握求倒数的方法。
课件出示:
找规律:指生回答。
找规律,填空,指生回答。
口算,开火车口算。
你能找出乘积是1的两个数吗?指生说。
今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识。
课件出示:
练习六第2题:填一填。
找朋友。
写出上面各数的倒数。
辨析练习:练习六第3题“判断题”。
我的发现。
马小虎日记,开放性训练。
谜语:
五四三二一。
(打一数学名词)。
你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?
六年级倒数的认识课件(模板13篇)篇十
一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
三、激情投入,挑战自我。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)。
就先聊到这儿吧?好,上课!
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒数的意义。
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法。
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师板书:求倒数的方法:分数的.分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
4.探讨带分数、小数的倒数的求法。
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。
六年级倒数的认识课件(模板13篇)篇十一
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
理解倒数的含义,掌握求倒数的方法。
掌握求倒数的方法。
一、导入
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
二、教学实施
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
4、求倒数的方法。
(1)出示例1.
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1-5题。
三、课堂作业设计
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是( ),( )的倒数是六分之七。
(2)10的倒数是( ),( )的倒数是1。
(3)二分之一的倒数是( ),( )没有倒数。
六年级倒数的认识课件(模板13篇)篇十二
1、使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2、培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
教学光盘。
自学课本p50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
一、作业错例分析。
二、学习分数的倒数:
1.出示例7。
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1。
2、你能模仿着再举几个例子吗?
学生回答,教师板书。
3、观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4、你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5、观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6、合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
1、电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×=1,再得出结果。
六年级倒数的认识课件(模板13篇)篇十三
通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。
学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。
在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。
理解倒数的意义,学会求倒数的方法。
熟练正确的求小数、带分数的倒数,发现倒数的一些特征。
多媒体课件。
上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。
如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。
师:谁还能说出这样的数?(课件出示)。
象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)。
理解倒数的意义。
掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。
探究讨论,理解倒数的意义。
(课件出示教材例1的四个算式。)。
开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)。
生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。
深化理解。
乘积是1的两个数存在着怎样的倒数关系呢?
举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)。
互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)。
例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)。
想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
又因为0与任何数相乘都不等于1,所以0没有倒数。)。
运用概念。
讨论求一个数的倒数的方法。
所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)。
小结:求一个数(0除外)的倒数,只要把这个数的`分子、分母调换位置。)。
怎样求小数和带分数的倒数呢?(课件演示,学生观察。)。
师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。
怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。
填一填。(出示课件)。
乘积是()的()个数()倒数。
a和b互为倒数,那a的倒数是(),b的倒数是()。
只有当假分数为()时,它与它的倒数相等;而()是没有倒数。
一个真分数的倒数一定是()。
判断题。(演示课件)。
5/3是倒数。()。
因为3/4×4/3=,所以4/3是倒数。()。
真分数的倒数大于1,假分数的倒数小于1。()。
因为1/4+3/4=1,所以1/4和/4互为倒数。()。
说一说。(课本的第3题)。
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:
乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。
2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。
求小数的倒数的先把小数化成分数,再把分子和分母调换位置。