在每一个学期开始之前,教师都需要制定一份教学工作计划,以确保教学工作的有序进行。教学工作计划的写作并没有固定模式,小编提供的范文仅供参考,希望能够给您一些灵感。
积的变化规律教案(专业18篇)篇一
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
教学设计:
一、出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
非常好!同学们,请仔细观察上面每组算式,你能根据每组算式的特点接着再往下写2个算式吗?试一试。
学生独立写出。
二、自主学习,探索新知。
1.现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3.猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
5.同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
6.你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
59页3、2、4、5。
四、结束。
积的变化规律教案(专业18篇)篇二
《积的变化规律》是四年级上册第四单元的教学内容,需对整数乘法的算理和算法进行回顾与整理,运用规律使一些计算简便,总结梳理乘法运算的数量关系,充分体验运用相应的数量关系解决一些实际问题的过程,本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
1.学生已有知识基础:学生已经有了乘法为前提,并且能够准确而熟练地计算。
2.学生已有生活经验和学习该内容的经验:四年级学生对于面积计算并不陌生,从基础知识和基本技能方面来看,准备状况是良好的。
3.学生学习该内容可能出现的情况会很多,因此教师要给学生多一点时间思考。
4.在探索过程中利用小组合作学习方式,一定要建立在独立思考的基础上。
我的思考:学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。课中让学生通过观察、比较推理得出结论。以及如何将新知与旧知相互之间如何转化,更是把学生推到了前台,让他们自己来推导出结果并解决实际问题。
《积的变化规律》这一课的教学重点是经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。并能利用规律解决实际问题。
教学中,我设计了以下三个环节。
一、找:在教学中,我首先出示一组乘法算式,其中一个因数不变,而另一个因数发生了变化,那么积是怎么变化的,变化有没有规律呢?让学生经过独立思考、小组讨论、全班交流三个步骤,发现积的变化规律,并且同时探究出研究积的变化规律的方法。
二、验:在发现积的变化规律的基础上,让学生思考,是不是其他的乘法算式中也都有这样的规律呢?再在另外的题目中验证规律。
通过这样的步骤,让学生感受到数学研究要讲究严密,培养学生严谨的数学学习态度。
2尝试用简洁的语言表达积的变化规律,培养学生的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
使学生经历积的变化规律的发现过程,感受发现教学中的规律是一件有趣的事情。
一、创设情景,导入新课。
8×2=16(下)。
8×20=160(下)。
8×200=1600(下)。
这三题都是什么算式,在乘法算式中,乘号前面的数叫什么?(因数)乘号后面的数也叫因数?等号后面叫积?同学们这三道乘法算式的积变了吗,猜一下,积的变化与谁有关?是的,积的变化与因数之间藏着一个秘密规律,是什么呢?同学们想知道吗?那今天这节课我们就来研究…积的变化规律(板书课题)。
二、自主合作、探究规律。
1、同学们,坐好了,小眼睛看黑板,请用数学的眼光来认真观察这。
三道乘法算式,你会发现什么样的数学问题呢?
(一个因数没变,另一个因数不断变大,积也随着变大)师:真是一群善于观察的孩子。
2、那么积到底是怎样随着因数的变大而变大的呢?先独立思考,再把你的想法在小组里交流一下。(为了研究方便,可以把三个算式标上序号。)。
一个因数没变,另一个因数乘儿,积就乘几。孩子们,老师突发奇想,我们的这个发现是不是一个普遍存在的规律呢?大胆猜想一下在别的乘法算式里行吗?别急,数学家研究数学问题一般不匆忙下结论,这还需要我们来验证一下,用什么办法来验证呢?(举例)。
3、引导学生说出举例的具体方法-------。
师:通过验证,你们发现有这个规律吗?真是一伟大的发现,那就大声地把我们发现的规律齐读一遍吧!(一个因数不变,另一个因数乘几,积也乘几。)。
4、探索积随一个因数缩小而缩小的规律。
(1)梳理方法。
师:同学们回想一下,我们是通过哪些方法才总结出这个规律的呢?生:先计算出得数,仔细观察因数和积有什么变化,大胆猜想,举例验证、最后进行验证。(板书:仔细观察、大胆猜想、举例验证、总结规律)。
师:刚才我们通过仔细观察、大胆猜想、举例验证的方法,总结出积的这个变化规律。
关于积的变化还有没有其它的变化规律呢?刚才我们是从上往下来研究的,请运用这些学习方法,按照从下往上的顺序观察这组算式,你又会发现什么呢?,先自己思考(1分钟左右)再在小组里说一说,一会我们选一位小老师给大家讲一讲。
(2)、运用方法。
学生独立思考后,在小组内进行交流。
师:你有什么发现?你又是怎么发现的呢?谁愿意当一次小老师到前面展示一下。(指名板前讲解)。
生:我们从下往上看,仔细观察它的因数有什么变化?(指名回答)积有什么变化?我们可以猜想一下,是不是一个因数不变,另一个因数除以几,积也除以几呢?我们可以验证一下。比如(),大家在练习本上也举一个这样的例子。(师:我可以补充一下吧。)(生举例)。
生:谁能说说你举了什么例子?(指名)大家有没有和我们不同的意见。所以我们就可以总结出一个因数不变,另一个因数除以几,积也除以几。
师:小老师讲的真是太有条理了。我们把这个规律读一遍吧!(课件出示)。
同学们针对老师总结的规律,大家还有没有想说的或想问的问题呀?老师:0要除外。
5、概括规律:
积的变化规律教案(专业18篇)篇三
1、新课伊始,出现有趣的思维体操题目,来启迪学生思维,来诱发学生的猜想,激发学生求知的欲望,扣住学生的心弦,产生良好的学习动机。
2、大胆地将教材提供的两组算式重新改编并打乱以口算的形式呈现,让学生在分类整理中初步感悟两组算式的特征,再让学生根据算式的特征从上往下观察、从下往上观察,在观察的过程中学生自然会去思考其中隐藏的规律,从而形成探究规律的冲动,再通过研究交流得出“一个因数变化时积的变化规律”,并适时进行验证。让学生在猜想验证中逐步概括提升。之后对研究出来的规律进行解释与应用。最后总结归纳本课的学习过程,让学生初步获得探索规律的一般方法和经验。
3、在研究规律时,因为张老师提供了大量的有规律的算式。学生建立在充分的感知上,所以水到渠成的总结出一个因数不变,另一个因数乘几,积也乘几。接着又请同学们讨论验证一下这个结果是否正确?这样,既调动了学生的积极性,又充分的体现了新课改的精神。然后让学生在大量的`例子的基础上,验证积的变化规律的正确性。尤其是在探索第二组题由下往上观察时,能放手让学生探讨积随因数缩小而缩小的规律,让学生用刚才掌握的研究过程,实现方法的迁移运用,再让学生根据规律举例,充分开阔了学生的思路,使学生在动脑,动手,动口,相互交流中,培养了学生自主探索能力与合作交流意识。
4、数学是思维的体操,课堂上必须要让学生亲历知识的形成过程,要养成善于用所学知识解决实际问题的习惯,这样才能激发学生的学习兴趣,拓宽学生的思维,从而掌握牢固的数学知识。这节课中张老师在这方面做的特别好,给学生提供了大量的时间和空间去探索、去发现、去创新、去总结积变化的规律,不急不燥。让学生充分自由的发挥,体验知识形成的过程,而不是急于让学生跟着教案走。跟着老师走。虽然没有完成自己预定的教学设计,但是落实了知识点,真正体现了以生为本的教学理念。
积的变化规律教案(专业18篇)篇四
教学内容:
教科书第57~58页,例2、试一试、练一练,练习十第3题。
教学目标:
1、使学生结合具体情境,用平移的方法探索并发现把图形分别沿两个方向进行平移后被该图形覆盖的次数的规律,会根据平移次数推算把图形分别沿两个方向平移后该图形覆盖的总数,并能解决简单的实际问题。
2、使学生主动经历自主探索和合作交流的过程,体会有序列举和思考是解决问题的基本策略之一,进一步培养发现和概括规律的能力,初步形成回顾和反思探索规律过程的意识。
3、在小组合作与交流中,努力克服数学活动中的困难,获得成功的体验。
教学过程:
一、复习引入。
1、12345678910111213141516。
每次框出3个数,需要平移几次?可以得到几个不同的和?
说说自己的方法。
2、今天我们继续学习图形被覆盖的次数的规律。
板书课题:找规律。
二、教学新课。
1、出示例2。1、如果小芳家浴室的一面墙上改用由4块瓷砖拼成的图案贴在这面墙的任意一个位置,有多少种不同的贴法?(出示情境图)。
理解题意。
3、不论你贴在哪,最多能够有多少种方法?你们能解决吗?
请同桌两人合作平移,看有多少种不同的贴法。平移好了后就请大家围绕下面三个问题在小组里讨论。(电脑出示)。
(1)怎样贴,才能做到既不重复有不遗漏?
(2)沿这面墙的长贴一行有多少种贴法?沿着宽贴一列呢?
(3)一共有多少种贴法,与这面墙的长和宽各有多少种贴法是什么关系?
学生动手操作,完成后小组交流讨论。
4、交流汇报。
怎样数才能做到比较有序?
学生边汇报边演示。沿着长一行一行的贴,沿着宽一列一列的贴。(电脑演示)。
师:沿这面墙的长贴一行有多少种不同的贴法呢?
学生回答:8—2+1=7(板书:8—2+1=7)(电脑演示)。
师:平移了几次?有几种贴法?
学生回答。(电脑演示)平移了几次?有几种贴法?
(板书:6—2+1=5)。
师:这样一列一列的贴,贴了这样的7列,求贴法总数,就是求7个5。
师:5个7或7个5都可以写成5×7=35。
5、一共有多少种方法?与这面墙沿长和宽贴各有多少种贴法有什么关系?
得出:贴法总数=沿长的贴法×沿宽的贴法。
6、小结规律。
7、试一试。
1、小芳家阳台上的一面墙要贴这种图案的瓷砖,你能算出有多少种不同的贴法吗?(出示情境图)学生尝试练习,教师讲解。(电脑演示)。
板书:10—3+1=86—2+1=55×8=40。
师:为什么一个减3,一个减2?
2、如果贴的瓷砖图案是这样呢?有多少种不同的贴。
法呢?仔细观察以下,这个图形与刚才的图形有什么不同?(电脑演示)。
学生异口同声:长方形。(电脑演示)。
师:你是怎样想的,可以和小组里的同学交流。
8、练一练。
独立完成。
汇报交流自己的思考方法。
三、巩固练习。
1、完成练习十第3题。
理解题意。
指导方法。
任意框9次?看看框出的每个数的和是多少?与中间的数有什么关系?
根据这个发现,你能解决第(2)小题的问题吗?
说说你是怎样框的?
2、独立完成第(2)、(3)小题。
说说思考过程。
四、课堂小结。
积的变化规律教案(专业18篇)篇五
本课主要是介绍一些图形简单的排列规律以及数形结合下的简单的数字的排列规律,培养学生用数学观点发现规律的意识,通过物品的有规律的排列,使学生初步感知简单的排列规律,并会根据规律找出下一个物品。体验数形结合的规律特征,能用数字表示图形的规律。在此基础上,再培养学生完整的语言表达能力,让学生在发现规律的过程中能用完整的数学语言表达规律。通过涂色、摆一摆、画一画的活动,培养学生的动手操作能力并激发学生的创新意识。为进一步学习有关数的排列规律做好准备。新教材对这部分知识的编排,结合学生日常生活实际,从联欢会装饰物有规律的排列现象,引出图形排列的一些简单规律,使学生感受生活中的规律美,以及规律在生活中的广泛应用性。
本课主要采用学生独立思考、创造的教学方式,由浅及深,环环相扣。以学生感兴趣的主题图引入,让学生充分观察并感知图中的事物,如:彩旗、小花、灯笼、人物的排列规律。同时也使学生感知颜色是有规律的排列的。教师的问题中涉及“排列”二字,让学生初步理解排列的含义并为后面的“重复排列”这个概念做铺垫。为了让学生能更亲近新知,设计了让学生上来摆一摆的活动,不仅活跃了课堂氛围而且引入了本节课的难点“以某某为一组重复排列”的完整数学语言的表达。再结合学生们的作品以及利用多媒体技术,让学生多说一说,使学生逐渐掌握找规律的方法及能完整的表达规律的排列。通过观察同学们的作品也使学生发现,同一种物品能摆出各种各样的规律。为了使学生更好的掌握找规律的方法以及体验规律的不同变化,在此设计了丰富多彩的层次分明的小游戏,如:学生做操,拍掌游戏,让学生充分掌握到找规律的方法以及体会生活中的各种事物都可以有规律。为了使本课的学习不枯燥,让学生将生活与课堂联系起来,在教室和生活中找规律,培养了学生的数学练习实际的能力,也培养的学生的观察能力。
不足之处在于,教师的`提问不够准确,学生没有听清老师的提问而答非所问。教师应用简洁明了的问题,提出问题的重点使学生理解;在设计习题时没有避免矛盾,比如:在教师拍手时,这个规律可以说113,也可以说成23,在这里学生课下的反馈使我明白,习题的设计要贴近实际知识并要经过反复练习研究再确定是否可用。
积的变化规律教案(专业18篇)篇六
目标预设:
2、在探索规律过程中,培养学生初步的观察、比较、归纳、概括的能力和主动探索数学规律的兴趣。
3、结合探索规律的学习,让学生了解一些社会常识和自然常识,拓宽学生的知识视野。
教学重点:
教学难点:
应用规律正确计算一个小数乘10、100、1000,特别是其中小数点移动时须补“0”。
课程实施:
一、情景引入。
1、谈话:最近老师作了几项物品单价的调查。
小黑板出示。
品名一枝圆珠笔一块橡皮一辆玩具小汽车一台电风扇。
单价2.50元0.25元25.00元250.00元。
2、你能将这些小数从小到大排列起来吗?
3、引导比较。
这四个小数有什么相同的地方?有什么不同的地方?
板书:数字相同,小数点位置不同。
4、揭示课题:
二、自主探索,发现规律。
1、出示例2。
(1)用计算器计算,并观察小数点位置的变化情况。
2、汇报计算结果,并板书。
5.04×10=50.4。
5.04×100=504。
5.04×1000=5040。
问:5.04乘以10、100、1000后,小数点位置的变化情况怎样?
引导比较:5.04×10以后小数点位……。
问:5.04是一个两位小数,将5.04×1000小数点位置向右移动三位,这里值得我们注意的问题是什么?(移动小数时数位不够用“0”补足)。
指名回答,教师板书。
4、引导小结,并适当评价。
把一个小数乘以10、100、1000……后,你能发现什么规律?
小黑板出示规律。
三、应用规律,解决实际问题。
1、教学例3。
(1)出示例3,并说说你能从表格中知道些什么?
(2)问:你能告诉大家:每千克黄豆中蛋白质含是多少克吗?
你能把0.351千克改写成克作单位的数吗?
(给你们一分钟时间,一分钟后,请在小组里交流)教师巡视。
(3)组织交流指名回答适当评价。
2、完成试一试。
(1)读题。
(2)填空。
(3)交流。
3、完成练一练。
指名口答:
问:36乘10、100、1000时你是怎样想的?
四、巩固练习,拓展延伸。
1、完成练习十二第4、5题。
2、完成练习十二第6题。
(2)引导审题,相机板书。
先理解题意,再问:地球上重10千克物体在月球有多重,认为什么怎样算?为什么?
板书:地球月球。
1千克0.16千克。
10千克?千克。
100千克?千克。
1000千克?千克。
(3)学生独立完成后两个问题。
3、完成练习十二第7题。
(1)引导审题,板书引领。
先理解题意,相机板书,再问:1000。
平方米释放多少千克氧?吸收多少千克二氧化碳?
1平方米0.1千克0.073千克。
1000平方米?千克?千克。
(3)学生口算结果,并说说小数点怎样移动?
4、拓展延伸。
10千克甘蔗可榨糖4.2千克,照这样计算,1000千克甘蔗可以榨糖多少千克?
五、全课总结。
六、作业布置。
教后反思:
一、实现两个转变,促进数学学习的有效性。
整节课给学生创设一个宽松、自由、和谐的学习氛围,实现了教师教学方式的转变和学生学习方式的转变,在让学生自主探索和发现规律应用规律解决问题的途中,采取多维互动,合作交流,让不同程度的学生在合作交流中得到启迪。实现了对知识的自我构建,让数学思维能力得到培养,促进数学学习的有效性。
二、多维互动,实现学生认知的自主构建。
学生深层次的认知发展,既需要独立思考,也需要合作交流。学生之间本来存在着个体差异,这种差异其实也是一种宝贵的学习资源,因为学生的思维彼此之间就是最低的发展区。在教学中,先让学生用计算器计算,发现小数点位置的变化情况,再通过学生自己举例观察点位置的变化情况,从而引导学生比较、合作、交流。在应用规律解决实际问题时,请他们选择各自的方法把0.351千克改写成用克作单位的数。整个教学过程,教师在让独立思考的同时,通过小组合作交流、师生交流、全班交流,让极大部分学生能发现“小数点向右移动引起小数大小变化”的规律,从而实现学生认知的自主构建。
三、激励评价是推动有效学习的动力。
评价的主要目的是通过对学生探究精神的肯定和鼓励,增强学生学习的主动性和积极性,促进学生主体性的发展。教学中教师在给学生激励评价的同时,让学生之间相互评价、学生自我评价,这种评价既是一种数学化的过程,也是推动有效学习的动力。
积的变化规律教案(专业18篇)篇七
《积的变化规律》是四年级上册第四单元的教学内容,需对整数乘法的算理和算法进行回顾与整理,运用规律使一些计算简便,总结梳理乘法运算的数量关系,充分体验运用相应的数量关系解决一些实际问题的过程,本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。通过这个过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
1.学生已有知识基础:学生已经有了乘法为前提,并且能够准确而熟练地计算。
2.学生已有生活经验和学习该内容的经验:四年级学生对于面积计算并不陌生,从基础知识和基本技能方面来看,准备状况是良好的。
3.学生学习该内容可能出现的情况会很多,因此教师要给学生多一点时间思考。
4.在探索过程中利用小组合作学习方式,一定要建立在独立思考的基础上。
我的思考:学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。课中让学生通过观察、比较推理得出结论。以及如何将新知与旧知相互之间如何转化,更是把学生推到了前台,让他们自己来推导出结果并解决实际问题。
《积的变化规律》这一课的教学重点是经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。并能利用规律解决实际问题。
教学中,我设计了以下三个环节。
一、找:在教学中,我首先出示一组乘法算式,其中一个因数不变,而另一个因数发生了变化,那么积是怎么变化的,变化有没有规律呢?让学生经过独立思考、小组讨论、全班交流三个步骤,发现积的变化规律,并且同时探究出研究积的变化规律的方法。
二、验:在发现积的变化规律的基础上,让学生思考,是不是其他的乘法算式中也都有这样的规律呢?再在另外的题目中验证规律。
通过这样的步骤,让学生感受到数学研究要讲究严密,培养学生严谨的数学学习态度。
2尝试用简洁的语言表达积的变化规律,培养学生的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
使学生经历积的变化规律的发现过程,感受发现教学中的规律是一件有趣的事情。
一、创设情景,导入新课。
8×2=16(下)。
8×20=160(下)。
8×200=1600(下)。
这三题都是什么算式,在乘法算式中,乘号前面的数叫什么?(因数)乘号后面的数也叫因数?等号后面叫积?同学们这三道乘法算式的积变了吗,猜一下,积的变化与谁有关?是的,积的变化与因数之间藏着一个秘密规律,是什么呢?同学们想知道吗?那今天这节课我们就来研究…积的变化规律(板书课题)。
二、自主合作、探究规律。
1、同学们,坐好了,小眼睛看黑板,请用数学的眼光来认真观察这。
三道乘法算式,你会发现什么样的数学问题呢?
(一个因数没变,另一个因数不断变大,积也随着变大)师:真是一群善于观察的孩子。
2、那么积到底是怎样随着因数的变大而变大的呢?先独立思考,再把你的想法在小组里交流一下。(为了研究方便,可以把三个算式标上序号。)。
一个因数没变,另一个因数乘儿,积就乘几。孩子们,老师突发奇想,我们的这个发现是不是一个普遍存在的规律呢?大胆猜想一下在别的乘法算式里行吗?别急,数学家研究数学问题一般不匆忙下结论,这还需要我们来验证一下,用什么办法来验证呢?(举例)。
3、引导学生说出举例的具体方法-------。
师:通过验证,你们发现有这个规律吗?真是一伟大的发现,那就大声地把我们发现的规律齐读一遍吧!(一个因数不变,另一个因数乘几,积也乘几。)。
4、探索积随一个因数缩小而缩小的规律。
(1)梳理方法。
师:同学们回想一下,我们是通过哪些方法才总结出这个规律的呢?生:先计算出得数,仔细观察因数和积有什么变化,大胆猜想,举例验证、最后进行验证。(板书:仔细观察、大胆猜想、举例验证、总结规律)。
师:刚才我们通过仔细观察、大胆猜想、举例验证的方法,总结出积的这个变化规律。
关于积的变化还有没有其它的变化规律呢?刚才我们是从上往下来研究的,请运用这些学习方法,按照从下往上的顺序观察这组算式,你又会发现什么呢?,先自己思考(1分钟左右)再在小组里说一说,一会我们选一位小老师给大家讲一讲。
(2)、运用方法。
学生独立思考后,在小组内进行交流。
师:你有什么发现?你又是怎么发现的呢?谁愿意当一次小老师到前面展示一下。(指名板前讲解)。
生:我们从下往上看,仔细观察它的因数有什么变化?(指名回答)积有什么变化?我们可以猜想一下,是不是一个因数不变,另一个因数除以几,积也除以几呢?我们可以验证一下。比如(),大家在练习本上也举一个这样的例子。(师:我可以补充一下吧。)(生举例)。
生:谁能说说你举了什么例子?(指名)大家有没有和我们不同的意见。所以我们就可以总结出一个因数不变,另一个因数除以几,积也除以几。
师:小老师讲的真是太有条理了。我们把这个规律读一遍吧!(课件出示)。
同学们针对老师总结的规律,大家还有没有想说的或想问的问题呀?老师:0要除外。
5、概括规律:
师:我觉得咱们班的同学真是太厉害了,这么一会就发现了两个规律。同学们,数学讲究简洁美,我们能不能把这两条规律合成一条昵。
积的变化规律教案(专业18篇)篇八
教学目标。
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3.初步获得探索规律的一般方法和经验,发展学生的推理能力。
教学教程。
一、唤起学生得探求新知的欲望。
1.口算。
6×2=80×4=。
6×20=40×4=。
6×200=20×4=。
2.请仔细观察上面每组算式,你能根据每组算式的特点接着再往下写2个算式吗?试一试。学生独立写出。
二、自主学习,探索新知。
1.现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
如果让你接着再往下写,你还能再写出来吗?
3.猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?请同学们写出一组这样的算式验证一下。学生写出后汇报。如果扩大30倍呢?如果扩大100倍呢?你能试着用一句话来概括一下我们发现的这些规律吗?让我们一起把刚才的发现记录下来:一个因数不变,另一个因数乘几,积也要乘几。
4.同学们都这么爱动脑思考,你一定也发现了第二组算式的特点?谁来说一说?
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数除以几,积也要除以几。
谁来出一组算式,验证一下我们的猜想!
5.同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。
7.小结:我们是怎样探索发现积的变化规律的?研究问题,归纳规律,验证规律。
三、巩固拓展,运用新知。
第59页3、1、2、4、
四、送一首小诗。
同学们,你们用自己的智慧发现了数学上的规律,真了不起。只要大家肯动脑筋,数学中还有许多规律等待我们去发现。大家有信心吗?送大家一首小诗。
生活中并不缺少美,
缺少的是发现美的眼睛。
生活中并不缺少数学,
缺少的是发现数学的眼睛。
让我们用数学的眼光来发现生活中的美,
更要学会用数学的方法来创造生活中的美。
教后反思。
《辞海》将“规律”解释为:事物之间的内在的必然联系和趋势。至于“探索”,则是当代学习理论所倡导的,强调独立思考和发现。因此,探索规律是一个发现关系、发展思维的过程,有利于学生夯实基础,鼓励创新,更能够体现数学思考,凸显过程与方法,同时,也能够让学生在自主探索与思考中感受到学习的快乐,形成积极的学习情感与态度。
1.探索规律,改进学生的学习方式。
改进学生的学习方式是当前课程改革的一个主要目标,在数学学习过程中,有多种学习方式并存,我们应该处理好接受性学习与自主合作探究的学习方式之间的关系,绝不是简单划一或者替代。因为“学什么与怎样学是分不开的”,离开了学习内容,学习方式本身也无本身的优劣。而作为探索规律的教学,应该依托内容来驱动学生进行自主思考,合作学习,主动探究。
探索规律的内容更需要自主思考。在出示两给算式之后,让同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?让学生尝试用自己的语言说明写算式的理由,也就是解释自己发现的规律。
从元认知的发展来说,学生要思考的不仅是结果是什么?而且还要思考过程是怎样的—“我们是怎样发现这个规律的”。学生反思探索规律的过程,陈述有观察,有猜想,有验证。探索规律过程中蕴藏着更多的问题,就更需学生自主思考。在本节课的教学中,我引导学生总结了探索规律的一般过程,并让大家应用这一过程发现“两个数相乘,一个因数不变,另一个因数除以几,积也除以几”。当然这一环节的教学展示得不够充分,没有很好地体现出课标精神。
探索规律中有一部分内容可以采用合作学习的方式组织教学,发展学生的合作能力。在日常教学中我们不难发现,有的合作是来自老师的指令,而并非是学生自觉性的合作,理想的合作,应该是在学生个体独立思考基础上,因学习需要而自主寻求合作。学生自主验证规律,如果只出示一个或两个算式验证,这一验证过程是不规范的。虽然验证规律这一环节从组织形式分析,可以单独完成,也可以小组合作。我们可以想见,与学生独立学习相比,小组之间的合作探究从知识形成的角度来说:这样的规律是更具数学的普遍性,因为例证不是来自于一个个体,而是一个群体。
探索规律本身就是一种探究活动。探究性学习不仅天然地成为其普遍的学习方式,反过来,探索规律这一内容也能很好地发展学生的探究能力。与一般的基础知识和基本技能的学习过程相比,探索规律的教学具有更大的思维强度,具有更大的挑战性和思维的驱动性。
2.给学生创造成功的数学学习体验。
教育俗语“跳一跳,摘果子”,是寓意学习具有一定的挑战性,学生才会乐于参与,才会产生学习的成功感。从教育学“成就动机理论”也同样可以发现:当问题的成功可能性p=50%时,学生的学习动机强度最大,最愿意参与学习。在教学实践中,我们可以发现“随随便便的成功,学生很难有深刻的体验”。由此,与一般的教学内容相比,探索规律具有一定的挑战性,就具有吸引学生参与学习、参与挑战的一种潜质,探索规律的教学,能激发学生学习数学的兴趣,能让学生在学习的活动中,经历一个探究的过程,体验到学习成功的不易,真切地体会到学习的快乐。
积的变化规律教案(专业18篇)篇九
2、经历“积的变化规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。
3、感受探索、运用规律的乐趣。
一、从生活中来。
结合这三个算式说说你的发现。
二、探索规律。
1、发现规律。
请同学们拿出学习单一,有两组算式,大家可以选择其中一组研究,也可以两组都完成。
在研究之前请同学读一读学习建议。
我们来听听他们是怎么思考的。
按什么顺序观察的第一个因数,从()到()乘几,第二个因数不变。积也乘几,看来观察得越全面,得到的结论才能越完整。
2、表达规律。
汇报,强调几相同,0除外。把这条规律写在黑板上。那这条重要的规律就是积的变化规律。
3、像刚才那样,我们用大量的不同的例子来概括这个规律的方法,叫做不完全归纳法。
4、应用规律。
1、你能根据8×50﹦400,直接写出下面各题的积。
三、到生活中去。
积的变化规律教案(专业18篇)篇十
我讲的是人教版小学数学四年级上册第五单元“商的变化规律”,这是一节新授课,“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。通过计算比较,提出问题,引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好习惯。
通过本节课的教学,使学生理解掌握商不变的性质,会用商不变的性质对口算除法进行简便运算。学生在参与,观察,比较,猜想,概括,验证等学习过程中体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
根据课程标准要求:小学数学教学要达到知识与技能,过程与方法,情感态度与价值观三维目标的有机结合,由此我定了一下教学目标:
通过计算,观察,比较,探索,使学生发现商随除数(或被除数)的变化而变化的规律。培养学生初步抽象和概括的能力。培养学生善于观察,勤于思考,勇于探索的良好习惯,激发学生对数学学习的'兴趣。
教学重点难点:通过观察比较,探讨发现商的变化规律,掌握规律。
教学方法:探究法,合作法,观察法,比较法。
教具准备:实物投影,题卡、小黑板。
我们的校本研修主题是:在数学课堂中如何使用激励性语言。我在本节课中的每一个教学环节,都要抓住适当的时机,适时,适当,适量的对学生进行激励性评价,建立评价目标多元,评价方法多样的评价体系,以达到全面了解学生的数学学习历程,激励学生学习热情,促进学生全面发展的目的。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。
在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。
我把整个教学过程分为六大环节进行的。
第一环节谈话引入,有利于吸引孩子注意力,激发学生学习兴趣。
第二环节,探究新知。我把例题用投影展示,既直观形象,又节省时间,快速达到目标。在这一环节当中有三个变化规律要探讨,第一个规律是被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,再放手让学生自学这一规律,就很容易了。第三个规律,是被除数和除数同时变化,相同的倍数(零除外)商不变。这是本课的重点内容,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。
第三环节是运用规律。采取了由易到难的设计方案,首先完成练习十七的四题,直接运用本节课所学的规律;第二完成五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。
第四环节,拓展训练。难度在此基础上又加大了一点,即锻炼学生的思维能力,又加深了对商不变规律的进一步理解。反馈练习加深巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。
第五环节,归纳总结,启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。
六、板书设计、
这样设计的板书简洁明了,使学生对本课的重点一目了然。在对比下,便于学生掌握商的变化规律。
积的变化规律教案(专业18篇)篇十一
我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的`计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
积的变化规律教案(专业18篇)篇十二
教学内容:人教版小学数学四年级上册第58—59页内容。
教材分析:积的变化规律是学生计算思维能力的一次飞跃,它是学生的思维由单一、松散向灵活、多样化转变的一个突破口。它是在学生熟练掌握两位数乘法口算、笔算基础上进行的,同时又是学生对以前所学乘法计算的一个规律性的总结,它引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。
学情分析:四年级的学生已具有初步的分析和探索能力,本节课在教学安排上充分体现了以学生为主体,去探究新知。
教学目标:
知识与技能:使学生经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律。
过程与方法:1、初步获得探究规律的一般方法和经验,发展学生的推理能力。
2、在学习过程中培养学生的探究能力,合作交流能力和归纳总结能力。
情感与态度:在经历探究的过程中,使学生感受到发现数学中的规律是一件十分有趣的事情。
教学准备:课件。
教学过程:
一、迁移旧知,巧导入。
同学们,刚才我们相互了解了,其实,我最想知道的是,你们的计算能力强不强?真的很强吗?我可找到对手了。
2、543+380=()。
1、543+382=()。
3、546+382=()。
师:出示1题,用自己喜欢的方法算,有困难的同学可笔算。
师:大家算的真的挺快啊,这是个小小的热身,比赛开始。
出示2题,这么快啊,快说说你是怎么算的?
预设:
生:我发现543是一样的,382变成380少了2。所以我想,和也少2,就是923。师板书学生的发现。
师:好眼力,通过你的细心观察,发现了规律,还能利用规律,形成了计算的技巧。敢不敢再来一道。
出示3题。学生用刚才发现的规律很快的说出了结果,有困难的学生也会了方法。
师:说说你为什么算的快?
预设:我发现,382没变,546比543多3,所以,和也多3,就是928。
师:你能不能把你的发现,用自己的话说说呢?
预设:如果一个加数不变,另一个加数加几,和就加几,要是另一个加数减几,和就减几。
(设计意图:小小的巧算环节,兼顾着不同学生的需求,会使学生的特殊需要得到满足。将学生的学习兴趣充分调动起来了,由不会巧算到算得很快。同时为探究积的变化规律作了一个很好的铺垫。学生很自然的利用知识的迁移,去探究新知。也暗示了先观察,再发现规律,并运用规律,这一探究的方法。)。
二、引导观察,巧探究。
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
师:先自己算算,再想一想你发现了什么,在小组中交流你的发现,准备汇报。
汇报:先说结果,哪小组愿意上来边指边说你们的发现?
预设:1、在第一组中,6是一样的,第二个因数变了,积也不一样。
2:我发现6都是一样的,第二个因数一个比一个后面多一个0。积也多一个0。
3:我发现6不变,第二个因数2乘10得20,积也乘了10。第二个因数乘100,积也乘100.(组内可补充)。
师:在第二组中有没有这样的规律呢?哪组愿意说?
预设:我发现4不变,5乘2的10,积由20乘2得40。5乘4得20,积也乘4得80。
师:能不能把你们的发现用一句话概括呢?
预设:一个因数不变,另一个因数乘几,积也乘几。
师:一个因数不变,另一个因数乘4,积会怎样?
一个因数不变,另一个因数乘4,积乘5,行吗?为什么?
(说明这两个“几”是一样的数。)。
(设计意图:这一环节让学生充分经历了学习的过程,学会了研究问题的一般方法:研究具体问题---归纳发现的规律---解释说明规律。使学生尝到了探究新知的甜头,感受到探究的快乐。)。
师:你们真的太厉害了,其实啊,在这算式中还有规律呢?刚才我们是怎么观察的?(从上往下),如果我们倒着看,你又能发现什么呢?先想想,在于小组同学交流。
请2-3个组汇报。(边指边说)。
预设:1、一个因数不变都是6,另一个因数除以10,积也除以10。
2、一个因数不变,另一个因数除以4,积也除以4.
……。
你能不能也用一句话概括一下你的发现呢。
预设:一个因数不变,另一个因数除以几,积也除以几。
有没有想说的?
(设计意图:既然是猜想,给了学生更加广阔的思维和想象的空间。前面已经探究出一个规律,这里教师就放手了,让学生用刚才掌握的研究过程实现方法的迁移运用。最后疑问的提出,是想看看学生能不能想到0除外的问题。)。
师:孩子们我们数学追求的是准确,简练。你能不能把这两句话合并为一句呢?先独立想,在汇报。
总结规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
这条规律是不是真的试用呢,你能用这个规律写一组算式吗?
要求:同桌合作,左边的同学写一个算式,右边的同学运用规律写一个算式。比一比谁做的快。
汇报,这几组同学说的都是一个因数不变,另一个因数乘几,积也乘几的算式。还可以写怎样的呢?(除以几的)再写一组,同桌交换。
谁和老师合作,你说一个算式,我来写第二个,好吗?
预设:当学生说算式7×9=63我来写了,我想让7不变……。
7×=可以吗?
预设:不可以,因为0不能做除数,学生会发现,在这条规律中应加上(0除外)。
(设计意图:让学生动脑、动口、动手,相互交流,进一步培养学生的合作交流意识。这个设计表面看是对新知的巩固,其实,暗含着对0除外的问题解决。同时让学生体会到对待数学要有严谨的态度。)。
三、巩固拓展,巧运用。
1、师:我们找到了规律,有什么用啊?我们来做组练习吧。(课件出示)。
2、想想?是谁。
4×50=200。
(4×2)×50=200×?
4×(50×3)=200×?
(4×2)×(50×3)=200×?
(设计意图:练习的设计充分体现了层次性、灵活性、启发性、挑战性。通过学生进行不同类型的练习,可以有效的激发学生的学习兴趣,拓展学生的思维空间,是不同的学生得到不同的发展。)。
四、课堂小结:孩子们,短暂的40分钟过得很愉快,你们开心吗?这节课你都记住了什么。
板书设计:
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
规律:------------------。
课后反思:
本节课充分体现了“让过程和方法进课堂”的新理念。
1.精心选题,巧引入。
俗话说,良好的开端是成功的一半。在课的伊始,利用学生的好胜心里,引导观察,激发学生的欲望,扣住学生的心弦,有利于架起已知与未知的桥梁,发现一些新的结论。
2.合作探究,体快乐。
本节课我引领学生经历科学发现的完整过程,注重学生对比较,猜测,验证,思辨等数学方法的习得,同时让学生在探究过程中获得成功的体验,积累探究经验,从而为学生探究能力的提高提供了全方位的保障。让学生学得开心,真正体验到学习得快乐!
3.学练结合,显梯度。
本节课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学练相得彰显,最后练习的设计既注重了基础知识巩固,又注重了不同层次学生的需求。
整节课的设计,把自主、合作、探究落到了实处。
积的变化规律教案(专业18篇)篇十三
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
积的变化规律教案(专业18篇)篇十四
规律《积的变化规律》是人教版小学数学四年级上册第三单元的内容,教材安排了积的变化规律的例题学习,掌握这些规律,为学生进一步加深对乘法运算的理解,以及理解小数乘法的计算方法做准备。
本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。
根据对教材和学情的分析,我制定了以下三维目标:
知识目标:使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。
能力目标:培养学生初步的抽象概括能力和数学语言表达数学结论的能力。
情感目标:体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。
教学难点:引导学生自己发现规律、验证规律、应用规律。
我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。
学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。
小黑板。
谈话导入——猜想规律——验证规律——表述规律,小结探索方法——应用规律——拓展延伸——课堂小结。
1、谈话导入。
课的开始我与孩子进行谈话“学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。”
根据学生的回答,我板书三个算式及其结果:
6×2=12(元)。
6×20=120(元)。
6×200=1200(元)。
设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
(1)我提出问题:观察这三个算式,你会发现什么规律呢?
我引导孩子从上向下观察:因数到因数,积到积有什么规律。
(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。
(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。
设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。
孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。
我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。
设计理念:通过学生分组协作,体验验证数学规律的过程。
4、表述规律,小结探索方法。
设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。
孩子自己完成教材1—4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。
6、拓展延伸。
(1)一个数乘以18积是270,如果这个数乘以54,积是()。
(2)36×10=360。
(36÷2)×(36×2)=。
(36×3)×(36÷3)=。
设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。
这节课你学到了什么?学的高兴吗?
设计理念:培养学生自我总结、自我反思的学习能力。
本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察——独立思考——小组交流——提出猜想——验证规律——运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。
积的变化规律教案(专业18篇)篇十五
例[4]通过学生观察两组乘法算式,引导学生探索当其中一个因数不变时,另一个因数和积的变化情况,并从中归纳出因数和积的变化规律,渗透变与不变的函数变化规律。第一组呈现的是:当一个因数不变,另一个因数扩大几倍,积也扩大几倍;第二组呈现的是:当一个因数不变,另一个因数缩小成原来的几分之一,积也缩小成原来的几分之一。在教学中,侧重的是让学生在计算练习中理解数的变化,至于如何准确的表述出来,并不重要。
练习九的5题练习题都是应用积的变化规律来解决实际问题的,要引导学生先找到变化规律,理解题意后再解答。特别是第4题,苹果5元3千克,不能算出1千克多少元,只能应用变化规律来解答:5元能买3千克,打算买6千克,千克数是原来的2倍,积也是原来的2倍,即5×2=10元。
教学目标。
(2)、初步获得探索规律的一般方法和经验,发展学生的推理能力。
(3)、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学设计:
一出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
二、自主学习,探索新知。
1、现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3、猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
4、同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
5、你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
教学建议和教学思路。
本课内容的学习需要学生的自主探索和合作交流,因此,教学时可以让学生以小组为单位,互相交流自已的想法和发现的规律,对所得到的信息、资源进行整合、概括,教师则作适时的提示、补充和纠正。
积的变化规律教案(专业18篇)篇十六
我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。
一、教材分析。
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
二、教学目标、重点难点。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
三、教法学法。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
四、教学设计。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
文档为doc格式。
积的变化规律教案(专业18篇)篇十七
《积的变化规律》是在学生掌握一定的乘除法计算方法和用计算器进行计算的基础上教学的,本课用计算器来探索一些积的变化规律。
本课的教学思路:用口算导入,其中口算中安排了一些因数变化的对比题,如:25×4和25×8等。口算完成后,教师板书:3564×158=?你能口算吗?怎么办?使学生明白用计算器方便我们进行大数目的或复杂的运算。
新课教学,出示教材中的例题,帮助学生理解题意:积的变化是什么意思?跟谁比变化了?怎样计算?在计算前,先让学生猜一猜:你觉得积会怎样变?能提出你的猜想吗?然后学生借助计算器进行计算,填写教材中的表格。集体交流,提出问题:你的猜想正确吗?那在其他的乘法算式中还有没有这样的规律呢?写出一道算式,运用刚才的方法去试一试,并在你的小组里交流。小组汇报,并总结出积的变化规律——一个因数不变,另一个因数乘几,得到的积就是原来的积乘几。
巩固练习,由浅入深。先是模仿例题的练习,根据规律直接填表;然后是直接根据一道算式填出变化后的得数;最后是应用规律解决生活中的实际问题,如:购买同一种商品,数量发生变化,总价也跟着发生相同的变化。
教学后,有几点体会:
一、在充分经历中感悟。
在本课教学中,我就充分注意这一点,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。
二、在充分感悟中提炼。
在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
不足之处:
一、教师的语言不够凝练。如:引导学生用计算器探索变化规律时,提的问题太多,不利于学生独立分析和思考。
二、缺乏耐心,不善等待。如:第1题练习,当学生没有自觉地应用规律进行计算时,教师缺乏耐心,直接请发现规律的同学起来说。如果当时能引导这位同学观察一下,因数怎样变化的,能不能不计算就报出积是多少?等待会让课堂和谐和大气。
三、练习设计可以更有深度。如:设计逆向思维的练习,在表格中加入已知积的变化求因数的变化;拓展练习,因数同时变化,求积等。
将本文的word文档下载到电脑,方便收藏和打印。
积的变化规律教案(专业18篇)篇十八
《商的变化规律》一课属于比较传统的知识,它是在学生学习了笔算乘法、除法的基础上进行教学的。与旧教材相比,教材对本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变商随除数变化的规律和除数不变商随被除数变化的规律,提升了学生自由探究数学问题的空间,因此颇具挑战性。那么老师怎样做到“老课新上”?做到在“主动教育”模式下始终让学生成为课堂教学活动中的小主人,怎样在自主活动中发现问题、探索问题、解决问题以及主动优化,努力实现数学课堂的真正高效?基于以上几点,我们的教学策略定为:扶放结合、引导探索、自主参与、学会学习、培养能力。
在课堂呈现上余老师紧紧地把握住了以下三点:
1、“问题生成单”是主动教育课堂的“魂”。
我校的“主动教育”教学模式的基石是“问题生成单”,我们在设计本节课之处就始终用“问题生成单”作为课堂的主线,经历试教之处的时间不够用、教学环节不够精简、课堂探究不够深入、课堂效率不够高效等问题后,我们对预习生成单进行了再次设计,将教材中简单、静态、结果性的文本,设计成为丰富、生动、过程化的“问题生成单”,让问题生成单成为整堂课的“魂”。在整堂课中,“问题生成单”分三次呈现。
第一次呈现:在开课环节,教师设计了第一层次的旧知复习,用积的变化规律旧知为新知搭桥铺垫,为探讨除法中商的变化规律起到了方法上的迁移。
第二次呈现:教师要求学生根据问题生成单研究当被除数不变时,研讨除数变商会怎样?除数不变,商会随着被除数的变化而发生怎样的变化,起到了为学生分散难点的目的。
第三次呈现:老师要求学生根据第二次的呈现,对被除数、除数都变,商会怎样变进行合理猜想。
一张小小的问题生成单凝聚着老师课前精心解读教材的心血,三次精彩的呈现为学生提供了探究的空间,使学生为完成一定任务而进行设想、预见、磋商、探究、讨论、辩解,思维发生碰撞,构筑了课堂上有活力、有价值的教学资源,成为了主动教育的“魂”,进而促进学生在有限的40分钟课堂里获得了最高效的主动发展。
2、“学生自主探究”成为了主动教育课堂的“根”。
“让过程和方法进课堂”可谓余老师上课的特色。整节课余老师非常注重培养学生在学习过程中对数学问题的探究,体现了学生的主动和教师的主导,师生和谐共荣,极符学生的认知规律、新课程标准和我校主动教育模式要求。课堂上我们看到教师始终把激励学生学习、为学生搭建学习平台作为教学的主线,让小组中的每个学生都在宽松的氛围中,始终处于一种积极求知、好学向上的状态,奠定了学好数学信心的基础;同时重视合作、探究,使得学生愿意与伙伴交流,敢于自由表达自己的想法,在参与中体验到学习的乐趣。
课堂上一次次探究活动真正成为师生互动、生生互动,共同发展的数学活动过程,使学生在课堂上有了自主,有了发扬个性、施展才能的空间,成为了主动教学的“根”。
3、“学生自主构建、归纳、总结、提炼”,成为主动教育课堂新的增长点!
课堂中余老师紧紧抓住探究三条规律的过程,注重让学生构建思考问题的方法,启发学生有序观察,多角度、多方向去挖掘思路,引导学生参与到发现规律、探究规律、总结规律的过程中。在学生发现商的变化有某种规律的萌动时,余老师鼓励学生:“用自己的话讲一讲发现的规律。”并及时给予肯定,让学生在观察、比较、思考、尝试中,实现师生互动、生生互动,激活了学生主动参与获取知识的过程。
整节课教师下放“教学”,只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,既重视学生独立思考的过程,又重视发挥集体的智慧,给学生提供了多向交流的机会。学生在静思、合作、商讨中,轻松、愉快地学到知识,增长本领,从而达到乐学、会学、创造学的境界。
本课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学与练相得益彰。同时教师非常注重总结性的语言,能适时地把学生表达的变化规律的用语,加以提炼并呈现给学生,使学生在全面了解商的变化规律的同时,又培养了学生用数学语言表达数学规律能力。
1、“积”、“商”是一对矛盾的统一体,学生极易混淆,建议可先复习乘法、除法的概念及算式各部分名称,做好知识储备,便于学生表述规律。
2、教师还应加强指导学生表述完整的练习,同时要适时引导、及时纠正,比如学生总结第一个规律时,说被除数不变,除数扩大(或缩小)几倍,商就扩大或缩小几倍。
主动教育是一种教育思想,教育策略,教育艺术,教育境界。教师大胆地把舞台和空间让给学生,把自己隐蔽起来,让学生充分发挥其主动性,这样,课堂就绽放出空灵之美。当然,“冰冻三尺非一日之寒”!模式的创新、思维的转变,也都不是一蹴而就的过程。我们也从这节课中看到了自身许多的不足。
创新终归出于实践,期待在以后的实践中与我们的孩子们共同转变、携手同行!正如我校“主动教育”教学理念中提出的“关注学生兴趣,兴趣焕发生命精彩;关注学生习惯,习惯影响学生未来;关注学生质疑,质疑引发智慧觉醒。”