教学计划要结合学科特点和学生实际情况制定,不能一概而论。以下是一些值得借鉴的教学计划范文,供大家在编写教学计划时参考和学习。
长方体和正方体教学设计理念(精选17篇)篇一
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。
v=a3v=sh。
长方体和正方体教学设计理念(精选17篇)篇二
3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力。
学生准备小正方体(多个)ppt。
1、填空。
(1)()叫做物体的体积。
(2)常用的体积单位有()()()。
2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。
1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)。
2、出示学习目标:
1、回顾“以旧学新”的几何问题研究方法。
以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。
2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。
3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。
4、出示小组研究提示。
(1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)。
(2)把不同的长方体的相关数据填入下表(29页表格)。
(3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?
6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。
7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3a3读作“a的立方”,表示3个a相乘。
1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)。
2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)。
3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)。
这节课你有什么收获?
v=abh正方体体积=棱长×棱长×棱长。
v=a×a×a=a3。
长方体和正方体教学设计理念(精选17篇)篇三
1、知识与技能目标:通过学习,让学生知道长方体和正方体的各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
2、过程与方法目标:让学生经历观察,交流,归纳等认识长方体和正方体特征的过程。
3、情感态度与价值观目标:让学生积极主动参与数学活动,在总结和归纳长方体、正方体的特征以及关系的过程中获得积极的学习体验。
教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。
(一)创设情境,导入新课。
用多媒体向学生展示一些基本图形长方形、正方形、三角形、平行四边形、梯形,询问学生:“这些图形我们统称为什么形?”在学生回答称为平面图形。
让学生拿出自己准备的盒子,观察之后告诉他们像盒子这样占有一定空间的图形,叫立体图形,今天我们我们来研究立体图形中的长方体和正方体的特征,并板书课题——长方体和正方体的认识。
(二)探究新知。
1、认识长方体的面、棱、顶点。
首先请学生拿出已准备好的长方体(学具),闭上眼睛摸一摸,想一想:“长方体是由什么围成的?两个面相交处有什么?三条棱相交处有什么?”让学生告诉我他们的发现,然后将拿出长方体,边摸边讲解:什么叫面、棱、顶点。
请学生用手中的学具四人一小组研究长方体和正方体面、棱、顶点的特征,完成表格。
给出了三组小棒,让学生判断哪组可以组成长方体。学生汇报正方体的面、棱、顶点的特征。
让学生总结前面讲到的长方体、正方体的特征,并进行对比,说一说它们相同点和不同点。
(三)多种练习,巩固新知。
(四)课堂小节。
让学生谈一谈体会,概括本节课所学知识。
长方体和正方体教学设计理念(精选17篇)篇四
1.通过观察、猜想、操作、想象、推理、探索等数学活动,自主探索长方体、正方体关于面、棱、顶点的特征,理解长方体长、宽、高的含义。
2.立足想象与操作,自主探索并发现长方体顶点、棱、面之间的关系,理解长方体和正方体的关系。
3.在自主探索长方体和正方体特征的过程中,培养学生的空间观念和推理能力。
把握特征,培养空间观念。
空间观念的培养。
课件、模型、搭长方体的材料等。
师:同学们,今天老师给大家带来了很多的数学图形,你认识它们吗?(认识)。
师:那这个图形叫什么?这个呢?这个……。
师:在这些图形里,你能分辨哪些是平面图形,哪些是立体图形吗?(能)。
师:你上来试一试。请将是平面图形的拖到左边,是立体图形的拖到右边。
师:同学们,他做的对吗?(对)。
师:很好,今天,我们就一起进入立体图形的世界,更深入的认识一下长方体和正方体。(板书课题:长方体和正方体的认识)。
师:同学们,你们在生活中见过哪些物体的形状是长方体或正方体的?
师:我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。
2.认识长方体。
师:我们先来认识一下长方体。请同学们看,在长方体中,老师手摸得这些平平的地方叫做长方体的面,然后面与面相交的这条线就叫做长方体的棱,三条棱相交的这个点叫做长方体的顶点。
师:同学们的桌上都有一个长方体的物体。接下来,请同学们带着下面这些问题摸一摸你的长方体。
(1)长方体有()个面。
(2)每个面是什么形状的?
(3)哪些面是完全相同的?
(4)长方体有()条棱。
(5)哪些棱长度相等?
(6)长方体有()个顶点。
师:你们有答案了吗?我们一起来看一下。
师:通过刚刚的活动我们知道了:长方体一般是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。
3.制作长方体,认识长、宽、高。
交流:
师:同学们,刚刚我们初步认识了长方体,你们想亲自动手用小棒做一个长方体吗?(想)。
师:那想要搭成一个长方体,需要几根小棒呢?(12根)。
师:为什么是12根?
师:给你12根一定能搭成吗?
学生思考并回答。
操作:
师:同学们想好了吗?我们一起来试一试。
出示任务要求:
(1)选择其中的一种方案,小组合作搭一个长方体。
(2)进一步思考其他方案可不可以搭成,为什么?
(3)思考在搭长方体的过程中自己的发现。
学生操作。
反馈:
师:同学们完成了吗?请问哪些方案不能搭成长方体?
方案2。
师:这些方案都用了12根小棒,为什么唯独2号方案不可以搭成长方体?
预测1:2号方案黄色小棒不够了,而蓝色的多了一根。
预测2:每种长度都应该是4根才够,否则搭不成。小结:长方体有12条棱,分成3组,每组都是4根。
预测1:每种长度都有4根。
引导学生指一指模型并板书:分成3组,每组4根。
预测2:长度相同的4根小棒,放在相对的位置。
板书:位置相对。
预测3:每组相等的小棒,都是平行的。
师:(利用模型引导学生观察)水平面相对的棱互相平行;
垂直面相对的棱互相平行;
侧面相对的棱互相平行。
预测4:每个顶点上有3条长度不等的棱。
师:同学们,请看模型。老师把长方体的前面和后面拆下来看一下,我们会发现它们的长与宽都是用的一样的小棒,所以前面和后面是一样的长方形,同样的道理,左边和右边是一样的长方形,上面和下面是一样的长方形。我们再一次发现长方体有6个面,并且相对的面大小相同。
师:接下来,我们来看一下方案3搭成的长方体,哪些同学是用方案3搭的?
师:(出示方案3)这个长方体与与用方案1搭的长方体相比,有什么特别之处吗?
预测:方案1搭的长方体6个面都是长方形,方案3搭的长方体有2个面是正方形。
师:是的,这是方案1的长方体,我们可以将它怎样变化,得到方案3搭的长方体呢?(课件演示)。
师:再进一步思考,我们能不能继续把这个长方体变成正方体呢,有什么办法?
学生反馈,师动态演示。
师:(展示方案4所搭成的正方体)正方体与长方体相比有什么相同,什么不同?
师:根据你们的回答,老师画出了这幅图,这个图是什么意思?在以前学习中有没有这样的图?(出示长方形与正方形的集合图,体会两者关系。)。
师:其实,正方体是长、宽、高都相等的特殊的长方体。
长方体和正方体教学设计理念(精选17篇)篇五
2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。
3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。
掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。
每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。
(一)、创设情境。
师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)。
师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)。
师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?
生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。
师;看来同学们都是生活中的.有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)。
(二)、认识特征。
1、师出示长方体模型。
师:(师拿模型)关于长方体,你还知道些什么?
生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)。
师:再看一看两个面相交处有什么?
生:有一条边。
师:我们把两个面相交的这条边叫做棱。(板书:棱)。
师:请同学们看一看三条棱相交处有什么?
生:尖。(或点)。
师:三条棱相交的点叫做顶点。(板书:顶点)。
师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。
学生按要求摸一摸。
生:长方体有6个面。
师:你们同意吗?谁来说一说你是怎样数的?
生1:我是转圈数,再数左、右两边的两个面,共6个面。
(边说边演示)。
生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。
(边说边演示)。
生可能回答:
生1:这6个面都是长方形。
生2:上、下两个面大小相等。
生3:左、右两个面大小相等。
生4:前、后两个面大小相等。
生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)。
学生同桌合作交流并集体汇报:
生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。
生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。
师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。
下面我们来看一下大屏幕,(师用课件演示)。
通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)。
师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。
3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?
生:8颗珠子。
师:这些珠子就是长方体的(顶点)。
师:那么长方体有几个顶点?
生:长方体有8个顶点。
师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。
师:再数一数这个长方体用了几根小棒?
生:用了12根小棒。
师:这些小棒就是长方体的(棱)。
师:谁来说一下长方体有几条棱?
生:长方体有12条棱。
师:长方体的棱有什么特点?
生1:这12条棱可以分成3组,相对的棱长度相等。
生2:这12条棱可以分成3组,每组4条棱长度相等。
师指名一生到前面演示。
(师用课件演示说明)。
师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。
4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)。
学生观察,讨论。
5、师:谁来说一说正方体有哪些特征?
生1:正方体也有6个面,6个面都是正方形的。
生2:正方体所有的面完全相等,
生3:它有12条棱,所有的棱的长度都相等。
生4:有8个顶点。
师:同学们真聪明,下面咱们一起来看大屏幕。
长方体和正方体教学设计理念(精选17篇)篇六
在上这节复习课时,我专门翻开了“24字教学模式”操作手册,网上也查阅了四种课型的特点。就复习课和练习课而言:两者不同,复习课是学生对已有知识的再现和梳理,对学生已经建构的知识进行巩固、深化、扩展,使知识系统化、条理化,针对学生的弱点,查漏补缺。要充分发挥复习课的作用,避免将复习课上成重复课,复习课应当选择恰当的教学策略。能通过复习,使学生对所学知识连成线,铺成面。而练习课则是上几节新学课后需要巩固知识、提升学生能力的一种课型。它是新学课的拓展延伸,是新学知识的巩固和提升、拔高和提炼,要上出高效的练习课,教师课前得精选习题,备课是关键。
复习的重要目的在于知识的综合化,因此,复习时要注意对知识进行归纳整理。
本节课前我布置给学生的作业是:采用自己喜欢的方式去梳理本单元的知识点。在课前的十分钟时间里,采用小组交流的环节,让学生对自己梳理的知识进行补充及系统化。反馈:每小组里1号或2号学生能用大括号、知识(框架)表格、知识树等形式去归纳,但学生归纳的系统性、条理性欠缺。然后学生又给这棵“树”添加了“绿叶”。如:复习长正方体的特征:8个顶点、12条棱、6个面。计算它的棱长和、表面积、体积,在计算的同时说说计算的依据。这是通过计算,复习长正方体的求积方法,说依据,反过来帮助学生认清了长正方体的特征就是计算方法的根本。根据长正方体的特征,请学生用一句话概括长方体与正方体的关系,为的是让学生理解长正方体间的关系。
在课前做一些调查,学生对这一单元知识点还存在哪些疑问,教师再把这些疑问集中起来,然后进行归纳分类。在课堂上将所有的疑问摆出来,分小组,让学生交流汇报,老师将学生们的闪光的东西总结出来,通过实践活动,把问题一一解决。
复习课不能仅仅停留于巩固和梳理,更要为学生的思维创设条件,搭设一个思维深化的平台,切实提高学生的思维能力。如遇到不规则的立体图形求体积时,我们也可以用底面积乘以高来进行求解。
基本练习采取选择、连线等方式把体积与容积、表面积的几种不同的解答方法柔和在一起,同时渗透表面积的判断方法。学生脑中先呈现出一幅图,这幅图就是学生脑中的“形”;然后连线,就是将脑中的“形”抽象成了数的运算,最后请学生讲算理,就是将“数”又还原成学生脑中的“形”,这时学生脑中的“形”就更为丰满。几何知识的教学是“形”与“数”最好的结合点。创设好的情景,架构起学生“形”与“数”之间的桥梁。
本节课我觉得设计最好的一道题是最后那道鱼缸的题,这道题几乎涵盖了本单元所有的知识点。在选择此题的时候就是看中了它的综合性,在分析时让学生清晰地明确每个问题所求的是什么。比如:求长方体鱼缸一周用了多少米铝合金条?这个时候听到学生在下面七嘴八舌:这是求棱长总和的……本课最遗憾的是学生参与不积极,每次发言总是那几个。结合班情,剖析班状:学生太懒,学习习惯差,缺乏自主学习的能力。今后努力方向,继续抓学习习惯。
长方体和正方体教学设计理念(精选17篇)篇七
2、通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和长方体表面积计算方法,培养学生的动手操作、观察、抽象概括、探究问题的能力和初步的空间观念。
3、使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
理解长方体、正方体表面积的意义和掌握长方体表面积计算方法。
确定长方体每一个面的长和宽。
第一课时。
1、什么是长方体的长、宽、高?
2、指出长方体纸盒的长、宽、高,并说出长方体有什么特征?正方体有什么特征?
同学们,在我们的日常生活中有许多精美的包装盒,工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。
板书课题“长方体和正方体的表面积”:当你看了课题以后,你想知道什么?
1.初步认识长方体的表面积。
2.初步认识正方体的表面积。
请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。
深化主题。
1、探索活动:长方体的表面积。
2、集体研讨:学生归纳,
老师板书:长方体表面积:长×宽×2+长×高×2+高×宽×2或:(长×宽+长×高+高×宽)×22。出示例1做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
3、小结:计算长方体的表面积,关键是要正确找出3组面中每个面的长和宽。同学们真爱动脑筋,我们计算时可以选择最简便的算法。
4、迁移:把高0.4米改为0.5米,怎样计算?学生讨论,交流汇报:
这是一个特殊的长方体,有两个相对的面是正方形,四个完全一样的长方形(只列算式不计算结果)。
勇闯第二关:智力冲浪园。
教后反思:
长方体和正方体教学设计理念(精选17篇)篇八
1、通过观察、分类、操作、讨论等活动,进一步认识长方体、正方体,了解长方体、正方体各部分的名称。
2、经历观察、操作和归纳过程,发现长方体和正方体特点,理解他们之间的关系。
3、通过具体的操作活动,发展空间观念,增强数学学习的兴趣和学好数学的自信心。
通过观察、操作等活动概括出长方体、正方体的特征。掌握长方体、正方体的特征,以及长方体和正方体之间的关系。让学生理解长方体棱的关系和建立初步的空间观念。
本课我设计了四个环节。
第一环节创设情境,激发学生的兴趣。让学生联系已知、观察实物、建立表象,导入新课:
首先,课件显示已经学过的平面图形,强调“平面图形是由线段围成的”,为下面讲“体是由平面围成的”埋下伏笔。接着,老师出示长方体并引导学生观察:“它是由什么围成的?生活中哪些物体的形状是这样的?”在学生作答的基础上,课件出示生活中见到的各种长方体物体,告诉学生这些物体的形状是长方体,让学生初步感性认识长方体。然后老师适时提问:“怎样判断一个物体的形状是不是长方体呢?我们研究了长方体的特征,就能够准确地判断了。”这种利用直观图形复习旧知,提问题导课的方式能够激发学生的学习兴趣,使学生明确本节课的学习目标,并激起了求知欲,自觉、有意识地投入到新知识的学习中去。
第二环节动手实践,探索新知。
在这个环节中我抓住目标,让学生合作学习,概括出长方体和正方体的特征,抽象图形。
(一)探究长方体的特征。
在这个重点环节中,我设计了四个教学层次。
1、观察实物或模型,认识长方体的面、棱、顶点,初步感知面、棱、顶点的含义。让学生仔细观察,并用手摸一摸,通过视觉、触觉等多种感官共同参与大脑的分析活动,鼓励学生交流讨论。在学生观察的时候,教师要深入到学生当中,引导他们观察,概括定义时,引导学生用自己的话来描述长方体的外部构成。在学生充分感知的基础上,课件进行演示,然后用下定义的方式揭示概念,(课件出示长方体的面、棱、顶点及定义——长方体上平平的部分是长方体的面;两个面相交的边叫长方体的棱;三条棱相交的点叫长方体的顶点。)对于顶点的认识,让学生观察,用手摸一摸长方体三条棱相交的地方有什么?学生可能说有一个角。如果出现这种情况,教师可以引导学生回忆什么叫角,并画角研究它的构成,使学生知道刚才看到的不是角而是顶点。课件演示:先闪动三条棱,再闪动三条棱相交的点,指出顶点的含义:我们把三条棱相交的点叫做顶点。这样使学生对长方体各部分的名称留下深刻的印象,为展开研究长方体的特征铺平道路。
2、师生共同探究长方体的特征,解决重点。
这部分重点教学我采用分组讨论、合作学习的方式,让学生动手操作,用数一数、比一比、量一量、剪一剪等方法,并动脑想一想,长方体有哪些特征,给学生留出广阔的探究空间。在学生充分讨论的.基础上,组织学生汇报交流。如果学生回答得不够充分或条理不太清晰时,我预设了这样一些铺垫性的问题:
(1)长方体有几个面?你是怎样数的?每个面是什么形状?相对的面有什么关系?
(2)长方体有多少条棱?你是怎样数的?哪些棱的长度相等?
(3)长方体有多少个顶点?
学生汇报交流,教师借助课件动态显示验证:大家请看。
(1)这是演示让学生数面,并验证相对的面完全相同。鼓励学生用多种方式进行探索,如把长方体剪开,用重叠的方法比较面的特点;也可以把面拓印在纸上,通过比较发现相对的面完全相同。让学生知道根据长方体面的位置,我们分别把它们叫做前面、后面、上面、下面、左面、右面。
关于面的形状让学生观察发现有两种情况:一种是6个面都是长方形,另一种情况是有4个面是长方形,另外两个相对的面是正方形。
(2)这是演示把棱分成四组,有规律地数出有12条棱,并验证相对的4条棱的长度相等。
探讨棱的特征时,可以问问学生是怎样数的,怎样数才能既不重复又不会遗漏,让学生直观感受数棱时把棱分成三组,每组4条,然后按顺序数。通过量每条棱的长度,发现规律:相对的棱的长度是相等的。通过课件的演示发现这四条棱是平行的。在与学生交流中通过观察、数一数来突破教学的难点。
(3)这是显示有8个顶点。
让学生结合课件体会按照一定的顺序数一数,长方体有几个顶点,学生说出数的结果。
探究出面、棱、顶点的特点之后,让学生看课件再简单回顾一下,指名让学生把长方体的特征完整的总结。(课件出示:依次隐去6个面,再分组闪动12条棱,最后一次闪动8个顶点。)学生回答以后教师指出,我们要判断一个物体是不是长方体,要根据长方体的特征去分析。
观察、发现、总结长方体的特征是本课的重点和难点。在这个过程中,老师要适当引导,循序渐进。比如在数面和棱的多少时,通过先让学生自已数,过渡到老师指导下的有规律地数,不仅教知识而且教方法,对培养学生的能力大有益处。预设:学生在数面、棱、顶点时可能重复或遗漏,所以在此引导学生按一定的顺序数,同时数的时候不要随意翻转手中的学具。此外,学生可能会认为相对的棱只有两条,教师要再次给学生观察的时间,使学生发现长方体相对的棱有四条。让学生分组讨论、合作学习,使学生充分参与到知识的形成过程,体现了教师为主导、学生为主体的教学原则,培养了学生团结协作解决问题的精神。
由实物到几何图形,是认识的又一次飞跃,是培养和发展学生空间观念的主要凭借,也是本节课的教学难点。所以在和学生一起观察、发现、归纳出了长方体的特征后让学生认识长方体立体图,完善对长方体的整体认识。(过渡语)刚才我们认识了这些长方体,如果把它们画下来该是什么样的呢?下面我们就来研究如何画图表示长方体。
让学生拿自己的长方体,从不同角度进行观察,看最多能看到几个面。学生观察后发现,最多能看到它的三个面。然后让学生把自己的长方体放在桌子的左上角进一步观察,你看到了哪三个面,哪三个面看不到?学生实践后用课件演示,如果把这个长方体放在左前方观察,所看到的图形就是这样的。(课件演示)在这个图形中,你看到了哪几个面?哪几个面看不到?结合课件告诉学生,看不到的面用虚线表示。这叫长方体的立体图,看图的时候,同学们要注意,上、下、左、右这四个面画的是平行四边形,但实际上表示的却是长方形。然后让学生指一指书上立体图形的6个面、12条棱、8个顶点加以巩固。
这样设计的原因是实物与图形之间的相互成像是空间观念的主要表现。经过这样一个过程就能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。并运用多媒体的动画功能,从实物中隐化、抽象出长方体物体的图形。并与前面学习的长方体的特征,在学生头脑中共同构建,由实物特征、图形,形成长方体的概念,突破了本节课的教学难点!
4、抽象图形,并认识长方体的长、宽、高。
在认识长方体图形的基础上,课件演示并讲解长、宽、高的概念,(我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。)突出强调由于长方体放置的方式不同,其长、宽、高也随之变化,(结合立体图说明,习惯上,长方体的位置固定以后,把底面中较长的棱叫做长,较短的中棱叫做宽,和地面垂直的棱叫做高。)然后,教师将长方体横放、竖放、侧放,让学生分别说出长方体的长、宽、高。接着让学生指出自己手中长方体的长、宽、高,再量一量手中这个长方体框架的长宽高分别是多少?根据学生交流的结果可能不同的情况,说明长方体摆放位置不同,长宽高的说法可能不一样。这样做的意图是在空间观念的形成过程中,视觉、触觉可以为大脑思维提供直接的、丰富的素材,因此我设计让学生的手、眼、脑协同发挥作用,以形成长方体的表象。
(二)探究正方体的特征。
有了研究长方体特征的基础,在探究正方体的特征时,可以通过长方体变成正方体的动画,把正方体的特征化难为易,让学生初步体会到正方体与长方体的关系,迁移学习方法,较好的达到学习目标。
用课件出示动画图像:长方体转换为正方体,学生观察后讨论新得到的长方体与原来长方体比较有什么变化?归纳得出结论:长、宽、高变为相等,我们把它的长、宽、高都叫做棱长,六个面都变成了正方形,长方体变为正方体。然后让学生观察自己带来的正方体,如魔方、积木等,用刚才研究长方体特征的方法研究正方体的特征。通过学生的研究可以得到:正方体的6个面是完全相同的正方形,正方体12条棱长相等。
通过观察、实践学生概括出了长方体和正方体的特征,此时需要对新课进行归纳总结。
引导学生按照面、棱、顶点的次序,找出长方体和正方体的相同点和不同点,并整理出表格。然后分组讨论:正方体在具有长方体这些特征的前提下,它的独特之处是什么?归纳出结论:正方体是特殊的长方体。课件出示长方体、正方体的集合图。
通过对长方体及正方体的特征比较,从而渗透事物是相互联系的辩证思想,以图文结合的形式生动形象直观地展现本节课的重点内容,让学生铭刻记忆,融会贯通。
第三环节实践运用,巩固新知。
1、判断。
前3道小题为基本题,通过这样的练习使学生进一步掌握并灵活运用长方体、正方体的特征。第4小题加深了难度,培养学生的空间想象力,当学生有困难时,可让学生利用手中的小正方体摆一摆,可以在本上画一画,教师则借助课件帮助学生理解。
2、选择。
让学生区分计算某一个面的面积时需要用到哪一条棱的长度。独立探讨长方体棱长总和的计算方法。这题的设计目的是让学生在空间想象力的基础上根据所求问题筛选出有效信息解决问题,并且及时反馈学生对前面所学知识的掌握程度。也可以为调整后续教学方案获得新的信息。
3、拓展题。
变式拓展练习的设计,是为了在加强基础知识训练的同时,提升学生灵活应变的能力。
第四环节梳理知识,反思总结。
要求学生以小组为单位进行学习汇报,整理本节课学到的知识,并说出是怎样学到的。这样做的目的是不仅关注学习的结果,更关注知识的探讨过程,把学生当作知识建构的主体,当作活生生的、富有个性的人,使数学课堂焕发出生命的活力。
以上是我对《长方体的认识》一课的粗浅的理解和不成熟的设计,“三人行,必有我师焉。”学无止境,研无止境,在思维的碰撞中方能迸射出智慧的火花。请各位领导老师多批评指正。
长方体的长和宽到底如何确定?是以底面长方形的长边为长,短边为宽,还是以长方体水平放置后左右方向的棱为长,前后方向的棱为宽?这一问题在我校数学组内产生了争议。其实,如何确定长方体的长、宽、高可能只是人们的一种约定俗成。无论如何确定,它的表面积和体积的大小都不会因此发生改变。但如果按左右方向为长、前后方向为宽,垂直方向为高,那么在教学长方体的表面积时就可以帮助学生总结出如下规律:
长方体的前、后面=长x高x2。
长方体的左、右面=宽x高x2。
长方体的上、下面|=长x宽x2。
如果按底面长方形的长边为长、短边为宽,则在长方体的表面积计算推导过程中就必须根据物体的摆放来灵活确定每个面的面积如何列式了。这一问题如何处理,将关系到后继长方体表面积的教学设计。
在无法定夺的情况下,请教了教研员。结论如下:如果长方体是水平放置,人们习惯于将左右方向的棱称为长,前后方向的棱称为宽。如果长方体非水平方向放置,人们则一般以底面较长的边为长,较短的边为宽。
2、纸上得来终觉浅,绝知此事必躬行。
有人说“我听了,就忘了;我看了,记住了;我做了,才理解了。”听、看、做代表着三个不同层次,在大脑皮层留下的痕迹也有深有浅。今天的课堂教学很好地印证了上面这段话,也使我深切地感受到课堂应该成为所有学生探究的舞台,而非老师或个别学生展示的舞台。
实践证明:教师的演示或部分学生的操作不能代替大家的自主探究,只有亲身参与,才能更好地将书本知识内化为个体储备,进而运用到解决生活中的实际问题。因此在今后教学中,要注意拓展探究的时间和空间,让课堂成为学生探究的舞台。
在教学完长、宽、高的认识后,我顺势补充了长方体棱长和的相关内容。原因有二:一是通过拼摆长方体框架,能够帮助学生顺利推导出棱长和的计算公式;二是教材练习中对这部分有所涉及,必须在课堂教学中有所渗透。
作业中相应习题建议调换一下顺序,先教学第7题,再讲第6题。因为第7题是要求长方体12条棱长之和,而第6题则需要根据实际灵活处理,只求出其中8条棱长之和即可(少了两条长和两条宽)。
4、知识点较多,时间分配上有些力不从心。
本课我既想让学生通过充分探究发现长方体的特征,又想培养他们的空间观念,能仅凭立体图就正确回答出长方体各个面的面积该如何列式,还想让他们掌握棱长和的简便求法。
我将长方体的特征定为本课教学重点,因此在探究上给予学生充分的时间,并在方法与策略上注意引导,学生学得较扎实。但到后面两部分时,明显觉得教学时间不够,只能囫囵吞枣。总之,感觉一节课40分钟难以扎实完成教学任务。
长方体和正方体教学设计理念(精选17篇)篇九
1、知识与技能:让学生理解长方体和正方体的表面积意义,初步学会长方体和正方体面积的计算方法。
2、过程与方法:能根据现实情景和信息,通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和计算方法,初步培养学生探求意识和探求能力。
3、情感态度价值观:使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
长方体和正方体药盒、长方体和正方体学具、直尺、不同规格的长方形和正方形纸板若干组、剪刀、透明胶、卷尺、竹竿等。
1、师:同学们,我们已经学习了长方体和正方体的认识了,下面请同学们用老师为大家准备的这些长方形或正方形纸板每个小组做一个封闭的长方体纸盒。比一比哪一个小组合作得最好,最先做完,下面开始吧!
2、小组合作,利用长、正方形纸板动手制作长方体纸盒。
3、师:同学们合作得很好。哪个小组的同学能说一说你们制作的长方体纸盒它得基本特征,指出它的长、宽、高,并分别指出和长、宽、高相等的棱。
生1:长方体有6个面、12条棱、8个顶点。
生2:在一个长方体中,相对的面完全相同,相对的棱长度相等。
生3:长方体的6个面是长方形,特殊情况有两个相对的面是正方形。
生4:拿着长方体指出它的长、宽、高。
师:沿着长方体纸盒的前面和上面相交的棱剪开,再展平。(教师将长方体表面积教具展开贴再黑板上)。
师:同学们说得真好,下面请同学们观察自己制作好的长方体纸盒,分别用"上"、"下"、"左"、"右"、"前"、"后"标明六个面。
师:长方体有哪些面是完全相同的长方形?它们的面积怎么样?
生:(拿着手中展开的长方体)上面和下面、左面和右面、前面和后面是完全相同的长方形,它们的面积相等。
师:有几组面积相等的长方形?
生:总共有三组面积相等的长方形。
师:刚才我们观察了长方体的展开图形,现在我们一起来观察正方体的展开图形(课件演示正方体展开图形)。
师:展开后的每个面是什么形状的?有几个相等的面?
生:每个面是正方形的,有6个相等的面。
师:(指着两个展开的图形说明)长方体和正方体的6个面的面积总和叫做它的表面积。
师:既然长方体六个面的总面积叫做它的表面积,那么怎样求长方体的表面积呢?请你们用自己制作的长方体纸盒,想一想、量一量、算一算,合作完成。
生合作探究计算方法,汇报如下:(预设)。
生1:我们组列式是6×5+6×5+6×3+6×3+5×3+5×3,分别求出长方体上、下、前、后、左、右6个面的面积,再把它们的积加起来就是它们的表面积。
生2:我们组列式为6×5×2+6×3×2+5×3×2。我用6×5×2求上下两个面的面积;用6×3×2求出前后两个面的面积;用5×3×2求出左右两个面的面积,然后把三次乘得的结果加起来就是长方体的表面积。
生3:我们组列式是(6×5+6×3+5×3)×2。我用6×5求出上面;6×3求出前面;5×3求出后面。然后用它们相加的和再乘以2,就求出六个面的总面积。因为长方体六个面中分别有三组相对的面的面积相等。
生4:我们组列式是(5+3+5+3)×6+5×3×2。我用5+3+5+3求的是长方体展开后大长方形的长,再乘以6就求出上下、前后4个面的面积;5×3×2求的是左右两个面的面积。最后再求出它们的和。
生5:我们组制作的长方体纸盒和他们的不一样,因为左右两个面是正方形,所以我列式是:6×3×4+3×3×2,我用6×3×4求的是上下、前后四个面的面积;用3×3×2求的是左右两个面的面积。把两次乘得的结果加起来就是长方体的表面积。
师:你们计算的很准确!你们组制作的长方体纸盒是一个特殊的长方体,你能具体问题具体分析,找到简捷的计算方法,很值得学习。生活中的长方体确实是各种各样的,找到解决实际问题的好方法才是最重要的。
师:长方体的表面积我们会计算了,那么正方体的表面积应该怎样计算?
生1:正方体同长方体一样都是六个面,而这六个面的面积是相等的,每个面都是正方形,所以我认为正方体的表面积等于正方形面积乘以6。
生2:正方体的六个面都是正方形,面积相等,所以正方体的表面积等于棱长×棱长×6。
1、师出示一个长方体药盒,问:你能计算出它的表面积吗?(不能。)为什么?(生:因为不知道每个面的长和宽)现在告诉你这个长方体的长、宽、高分别是10、8、6厘米,你能算出它的表面积吗?只列出算式不计算。
2、生独立计算。
3、师:通过列算式,你有什么发现?(只要知道了长方体的长、宽、高,我们就可以求出它的表面积。)。
简析:此环节是加强了学生对所学内容进一步理解深化巩固,也是对学生由感性认识上升到理性认识的抽象过程。
2、师出示一个正方体纸盒,让学生观察有什么特别之处?(只有5个面)告诉学生它的棱长是10厘米,求出制作一个这样的纸盒至少要用多少纸板?(只说算式)。
3、师:假如我们的教室要重新粉刷,你能计算出需要粉刷的面积是多少吗?请同学们利用老师给大家准备的测量工具,分工合作,看哪一个组最先计算出结果。(可把学生分成两个或三个组,在实际测量中遇到困难可与本组同学或老师进行交流)。
师:这节课你有什么收获?
长方体和正方体教学设计理念(精选17篇)篇十
“综合与实践”是课程改革之后出现的一个新领域,它是以问题为载体,以学生自主参与为主体,以积累活动经验、培养应用意识和创新意识、激发创造潜能为目标的学习活动。在本课的教学中我突出了以下几点:
在综合实践活动中,学生深入到生活实践之中,处处碰到数学的存在,处处遇到数学问题,感受到数学与生活的紧密联系,比起数学知识的学习过程来,这种感受更实在,更真切,更深刻,因此也更具有现实意义。比如学习了本课之后,学生就可以计算灯箱上张贴的海报的面积、超市里的大立柱需要多大的彩纸才能张贴完整,那么在准备海报和彩纸时就可以先计算,再准备。让学生真切的体验到数学与生活的联系,体验到生活中处处有数学,处处用到数学,进一步认识数学在生活中的价值,增强学好数学的信心。
自主探究、动手实践、合作交流是新课程标准倡导的学习方式,在日常的学习过程中,虽然也可以实现这种学习方式的转变,但我们总是那么不能放手,总是那么不由自主的把知识灌输给学生。然而在综合实践活动中,学生成了活动的主体,必须自主地去探索,去实践,去交流,教师不得不放手,否则,就不成其为综合实践活动了。本节课中,从学习内容的收集——学习内容的分类——探究每一类的计算方法——规律的总结,无不是学生们自己实践、探索、交流的结果。整节课中学生真正成为了学习的主体,教师只是起到组织和引领的作用。
综合实践活动最本质的要求,就是让学生灵活地运用已学的知识和已具备的经验,解决生活中的实际问题,这比起课堂上、作业中、试卷里的纸上谈兵似的解决问题,来得更直接、更实在、更真实、更具有灵活性、更具有综合性,也就更能培养学生解决实际问题的能力。本节课中求火柴盒、烟囱、正方体立柱等的表面积问题,是学生在生活中亲眼看到、亲手摸到的东西,比在教室里想象更直接、更真实、更易于灵活掌握方法,从而提高解决问题的能力。
在进行实践活动的过程中,离不开合作交流,在师生、生生,小组与小组,小组与大组等的交流中,学生对知识或活动内容的理解更丰富,更全面。所以在合作交流中要让学生想说、敢说、乐说,畅所欲言。在交流的过程中学生的思想在撞击、知识在整合,在相互启发的过程中思维会实现质的飞跃。本节课中在计算衣柜的的表面积时,学生一句“摆放位置不同,表面积的求法肯定不一样”,激活了学生的思维,想象出了表面积是一个面、两个面、三个面、四个面等不同情况,发展了学生的创新能力。
长方体和正方体教学设计理念(精选17篇)篇十一
教学目标:
知识与技能:知道长方体和正方体的各部分名称以及它们的特征,知道正方体是特殊的长方体。
过程与方法:经历观察、交流、归纳等认识长方体和正方体的特征以及它们之间关系的过程。
情感态度价值观:积极主动参加数学活动,获得进行数学归纳概括的经验和积极的学习体验。
教学重点:认识长方体和正方体面、棱、顶点的特征,知道长方体的长、宽、高和正方体的棱长,了解长方体和正方体的关系。
教学难点:数长方体的12条棱,分成三组,有规律的数出来,理解每一组棱的长度与长、宽、高的关系。
我们都知道,对于那些构建空间观念能力薄弱的学生来说,本单元的学习是有一定难度的。而对长方体正方体特征的充分认识就显得尤为重要了。虽然说长方体在学生的身边随处可见,但是要发现它的特征,并不容易。基于以上的认识,我设计了如下教学过程:
第一个教学环节:炫我两分钟。
首先复习正方形和长方形之间关系的知识,为研究长方体和正方体的关系进行铺垫,其次学生通过自己寻找日常生活一些长方体、正方体的实物,并获得了丰富的感性经验。这些都是学生探索长方体、正方体有关知识的重要基础。并通过动画的形式让学生感知体的形成。激发学生学习的兴趣。
第二个环节认识长方体和正方体的面、棱、顶点。
学生对知识的认知是建立在经验和活动基础之上的,这就需要学生从已有的知识和经验出发,经历由具体到抽象、有特殊到一般的`探索过程,逐步形成数学知识,因此,在教学中设计让学生观察引导学生在具体的活动中,进一步积累空间与图形的学习经验,发展空间观念。我首先设计了一个切土豆的小游戏,让学生通过动手操作更深刻的感知长方体和正方体的面、棱、顶点。
第三个环节:小组合作探究长方体和正方体的特征。
在本环节教学中,我能注意锻炼学生的归纳总结能力,在认识长方体特征时,学生通过数一数、看一看,拆一拆、比一比等活动归纳总结的,我还设置了具体的问题,例如:数一数:1、长方体有几个面,正方体有几个面?你是怎样数的?2、观察长方体和正方体框架各有多少个顶点,多少条棱?这样学生就非常明确,小组内进行交流。在学生弄清长方体和正方体的面、棱、顶点的特征基础上,组织学生比较,发现长方体和正方体的相同点与不同点,使学生认识到正方体是一种特殊的长方体。这样既有利于发展学生的迁移、类推能力,又有利于发展学生的空间观念,培养学生思维的灵活性。接着通过ppt让学生认识了长方体的长、宽、高及正方体的棱长。
第四个环节是挑战自我。
第一题看图说出每个长方体的长、宽、高分别是多少?
主要是面向全体学生,进一步落实知识与技能目标。
这道题设置为以后学习长方体和正方体的体积等知识打基础。
接下来的环节是梳理收获。目的是培养学生的自主反思的建构能力,但是我们可以看出学生在总结收获时往往都是知识上的收获,在这里可以引导学生说说其他方面的收获。
最后一个环节:拓展延伸。
(2)前面的面积是()平方厘米,()面和()面的面积都是90平方厘米,左右两个面的面积都是()平方厘米。
通过这节课的教学,,我发现还存在一些问题,在学生汇报长方体和正方体面、棱、顶点时,应点拨学生在数的时候不能来回翻转应固定好位置,以免遗漏。
长方体和正方体教学设计理念(精选17篇)篇十二
上完《长方体和正方体表面积》这节课后,我的心情并不轻松,有遗憾也有欣慰,遗憾的是在引导新课这一环节中,让学生用受去摸长方体的六个面,由于教师叙述不周,把“表面”说成“面”,再加上学生操作不熟练,造成学生在汇报时,有说摸到棱的、顶点的.、长、宽、高的,就是不重点受六个面的,等教师再引导学生按顺序摸上、下、左、右、前、后6个面并标出来,再展开观察长方体展开平面图,进一步了解长方体的6个面及相对的两个的面积相等,从而引出长方体或正方体表面积的意义。
本节课上完后,我不断思考,问题出在哪儿,最终还是觉得有以下几点不妥:首先教师在设计上有问题,在此环节中不设计让学生去摸长方体的每个面,因为在长方体、正方体的认识中,学生已经通过摸知道了长方体、正方体、面、棱、顶点的特征,在此处再去摸一方面与整个环节衔接不当;另一方面降低学生的认知水平,浪费了学生探究新知的最佳时间,造成这一环节每一步比较生硬,学生纯粹被老师牵着鼻子走,走得很不协调。另一方面是展开教师或学生无法用实物展示的东西。而本节课长方体、正方体,学生手中都有,根本没必要用多媒体展示。
本节课出现上述问题使我发现,教师要想提高课堂效率,教学设计是非常重要的,而在设计时最重要的一点就是了解学生,了解他们的认知前提,了解他们的认知需要,了解他们的认知困难,只有这样教师才能在各个环节时间,加大课堂密度,增加课堂练习量,提高课堂效率。另外,还要注意钻研教材,因材施教,不能盲目地套别人的设计,最终使学生和教师陷入不和谐,反而降低了课堂效率。
长方体和正方体教学设计理念(精选17篇)篇十三
生1:饼干盒是长方体。
生2:木箱是正方体。
师:对于长方体和正方体你们已经知道了什么?
生1:长方体和正方体都有6个面,12条棱,8个顶点。
生2:长方体相对面的面积相等。
生3:长方体的每个面都是长方形,可能有两个相对面是正方形。
生4:正方形的6个面的面积相等。
……
师:同学们知道的可真多,那对于这两个物体你还想知道什么?
生1:我想知道它们的12条棱共有多长?
生2:我想知道它们的面积是多少?
……
师:同学们想知道的可真多,我们今天先来研究长方体和正方体的表面积好吗?(板书课题)
(二)探究
1、表面积的意义
师:那什么叫做长方体和正方体的表面积?
(拿出饼干盒、木箱)谁愿意上来摸一摸,并说说什么是它们的表面积?
生1:(边摸边说)长方体6个面的和是它的表面积。
生2:(边摸边说)正方体6个面的和是它的表面积。
师:(电脑演示长方体、正方体展开的过程)长方体和正方体6个面的总面积叫做它们的表面积。
生1:课本是长方体,它6个面的面积和是它的表面积。(边说边摸)
生2:橡皮的6个面的面积和是它的表面积。(边说边摸)
……
师:老师这里也有两个物体(出示无盖杯子和香皂盒),这两个物体的表面积在哪里?谁愿意上来摸一摸。
(指名学生上来边摸边说)
师:象这些物体几个面的总面积,就叫做它们的表面积。
2、表面积的计算
(1)一般长方体的表面积计算
生1:可能和长方体的棱长有关。
生2:可能和它的长、宽、高有关。
师:那请大家再猜猜它的表面积大概会是多少?
生1:74平方厘米。
生2:90平方厘米。
生3:120平方厘米。
……
师:那这个长方体的表面积到底会是多少呢?你们敢自己去探究它的表面积吗?
生:敢。
师:真勇敢,那请同学们拿出1号物体独立思考一下,求它的表面积需要测量它的哪几条棱,怎样计算3的表面积,好吗?然后再开始研究,研究时做好记录,完成表格,如果自己研究有困难,可以和小组里的同学一起研究。
数据记录计算方法
长方体长:
宽:
高:
(自主探究)
师:接下来我们在小组里交流一下自己的方法,交流时要求每位同学都说说自己的方法,交流结束后各小组准备派两个代表汇报。(生在小组里交流)
生1:我们先算上面的面积10×6,再算左侧面的面积4×6,再算前面面的面积10×4,因为长方体相对面的面积相等,所以把3个面的面积加起来,再把它们的和乘以2,10×6+4×6+10×4(方法一)
积和它相等,它们的和是6×4×2,最后把他们加起来是10×6×2+10×4×2+6×4×2。(方法二)
生3:10×(4+6)×2+4×6×2(方法三)。
师:你是怎样想的?
生3:因为前后两个面的面积是10×4×2,上下两个面的面积是10×6×2,两部分合起来是10×4×2+10×6×2,我再利用乘法分配律把它改写成10×(4+6)×2,再加两个侧面的面积10×(4+6)×2+4×6×2。
师:你真聪明!
师:现在我们来看看刚才的猜测,我们猜得准吗?
生:不准。
生1:我比较喜欢第一种方法。
生2:我喜欢第三种。
……
(2)特殊长方体、正方体的表面积计算
师:接下来,我们就用自己喜欢的方法来解答两个物体的表面积,每个桌上还有两个物体,2号长方体的长是8厘米,宽是5厘米,高也是5厘米,正方体的棱长是5厘米,请你们求出他们的表面积。
生独立计算后交流
师:我们先来看2号物体,说说你是怎样解答的?
生1:8×5×2+8×5×2+5×5×2。
生2:(8×5+8×5+5×5)×2。
生3:8×5×4+5×5×2。
师:说说你是怎样想的?
生3:因为这个长方体的左右两个侧面是正方形,所以中间4个面就相等,先算出一个面的面积8×5,把它乘以4就可以了,再加上两个侧面的面积5×5×2,就是8×5×4+5×5×2。
师:这三种方法,你们比较喜欢哪一种?
生:第三种。
师:我们再来看看这个正方体,你是怎样求它的表面积的?
生1:5×5×6,我是这样想的:因为正方体6个面的面积相等,所以可以先算一个面的面积,再乘以6。
生2:5×5×2+5×5×2+5×5×2。
师:哪种方法比较简便?
生:第一种。
师:看来特殊情况下,我们还要灵活处理,可能回有更好的方法。
……
1、鼓励大胆猜想,诱发探究意识
关于猜想,著名数学教育家波利亚有一段精彩的论述:我想谈一个小小的建议,可否让学生在做题前猜想该题的结果或部分结果。一个孩子一旦表示出某些猜想,他就把自己与该题连在一起,他会急切地想知道他的猜想正确与否,于是他便主动地关心这道题,关心课堂的进展。在教学中,我从学生的生活实际出发,设计问题情境,为学生提供两种生活中常见的几何体(饼干盒、木箱),要学生说说“对于这两个物体,你已经知道了什么?”“还想知道什么?”使他们自发地提出所要探究的问题,然后再鼓励学生用自己的思维方式大胆地猜想:“这个长方体的表面积可能与什么有关?”“它的表面积大概会是多少?”学生凭借自己直觉和自己的数学实际,提出各种看法,虽然有些“猜想”是错误的,但创新的智慧火花瞬间被点燃,同时一种种不同的猜想又激起了学生的探究愿望和进行验证的需要。
2、搭建探究舞台,挖掘思维潜力
在上面的教学中,在学生独立探究长方体表面积计算的活动中,先引导学生思考“求长方体表面积需要测量哪几条棱?”“怎样计算他的表面积?”这两个问题,再让学生独立思考。在这独立思考的过程中,每个学生都在根据自己的体验,用自己的思维方式自由的、开放地去探究,去发现解决长方体的表面积计算方法。在测量棱长的过程中,有的学生只测量长方体的长、宽、高就可计算,而有的学生其实也测量长、宽、高,但他们需要测量6次,也有的学生测量12次。在探索其计算过程中,有的学生是先算上面的面积10×6,因为相对面的面积相等,所以只用再乘以2,也就是10×6×2+10×4×2+6×4×2,有的是(10×6+10×4+6×4)×2,还有两位学生解决的方法更是出乎意料。在这过程中,我们不难发现学生的活动是自主的,是鲜活生动的,是富有个性和创造的,学生的创造潜力能在这样的活动中得到充分的发挥。学生经过自己的探究,找到了解决的方法,不仅智慧能力得到发展,而且获得了深层次的情感体验。
3、提供交流机会,实现合作互动
长方体和正方体教学设计理念(精选17篇)篇十四
“长方体和正方体”一单元结束后,我上了两节复习课。教材中安排第一课内容为长方体和正方体的特征与体积单位;第二课时为表面积与体积。考虑到这样安排第一课内容显的比较少,而第二课练习时间较少,我就作了一下调整,把第二课中的表面积移到了第一课,以使第一课内容充实些,使第二课有更多时间进行拓展延伸,从而提高复习的效率。
在“长方体和正方体的特征与表面积”这课中,对于第一板块的复习,主要以引导学生自己回忆与整理为主。课的一开始,即明确了本课复习的目标,然后让学生对照复习,归纳长方体与正方体的特征,小组内先行交流,互相补充。汇报时,教师板书成表格形式,并要求学生口述时配合手的动作。这样一方面避免整理时的零敲碎打,提高时间利用率,另一方面使得所复习知识更为系统化,直观化,有利于掌握、巩固。对后面的多练留出足够的时间。
在第二板块练习中,我注重了练习的层次性。对表面积计算,较之基本计算方法,我更重视了对方法本身意义的理解。让学生列出求表面积的算式,不计算,但要写出算式中每步求的是什么,这样就为后面解决相关实际问题做好了准备。在应用练习中,我让学生自己举出生活中的相关实例,帮助他们补条件后再组织练习,这样也比教师直接出示题目对学生更有吸引力。
纵观这一课,我尽量避免了对学生发言无价值的重复与不必要的讲授,而在关键处适度点拨,突出要点,在学生掌握较好之处省下时间用以拓展练习,基本做到了精讲多练。
长方体和正方体教学设计理念(精选17篇)篇十五
本节课的内容是在学生已经学习了面积和面积单位、长方体和正方体特征的基础上进行教学的,为进一步学习其他立体图形奠定基础。
1、重视表面积概念的教学。在教学中利用在上节课中学生粘贴的长方体和正方体,让学生沿着棱剪开得到它们的展开图,并标出“上、下、前、后、左、右”六个面。这样把长方体和正方体的展开图与表面积的概念结合起来进行教学,便于把展开后的每个面与展开前的每个面的位置对应起来,可以更加清楚地看出长方体相对的面的面积相等,每个面的长和宽与长方体长、宽、高之间的关系,从而得出表面积的概念,即长方体和正方体六个面的总面积,叫做它的表面积。
2、重视表面积计算公式的推导。在例1的教学中,通过结合生活中的情境将知识学习、方法探究和解决问题三者统一起来进行教学,可以使学习内容基于问题学习,让学生进行主动探索表面积的计算方法,从而起到“一石三鸟”的功效。另外在推导长方体表面积计算公式的过程中,得出两种计算方法,教学中充分利用已有知识乘法分配律来沟通两种方法。特别要突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢固进行记忆,避免出现死记硬背计算公式的现象。
1、计算出现错误的现象很严重,主要是学生不细心,对于小数的计算不重视。
2、个别同学对于上下面、前后面、左右面的计算混淆,导致出现有的面不需要计算还是计算在内。
3、对于特殊的长方体进行侧面积计算时应补充为侧面积=底面周长×高,这样对于计算特殊长方体比较简便。
突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢记。
长方体和正方体教学设计理念(精选17篇)篇十六
长方体表面积的计算是在学生认识并掌握了长方体和正方体特征的基础上教学的。本节课让学生自己去尝试,发现长方体表面积的不同计算方法。学生学得轻松、愉快而扎实。让学生经历知识的获得过程,经历思维的形成过程,充分凭借学生的已有知识,提出问题,解决问题。使学生在讨论、探索、思考、表达、交流中得到发展,课后反馈效果很好。
在思考、讨论中步步为营。在教学中,对长方体表面积的计算,教师从学生已有经验长方体的认识引入,先让学生回顾长方体的特征,如:让学生拿出准备的长方体纸盒,按照一定的位置在六个面上分别表明前、后、左、右、上、下;想一想:根据长方体棱的特征,我们可以八长方体的12条棱分成几组?怎么分?为什么?同桌之间互相指一指长方体的长、宽、高等。在每一个细小问题的思考、讨论、交流中都给学生足够的时间和空间,让学生自主地对每个环节知识的掌握都落实到位,并为后面的知识作好循序渐进的铺垫,让学生在这种环环相扣、步步为营的学习过程中,顺其自然地掌握方法、解决问题、获得发展。
长方体和正方体教学设计理念(精选17篇)篇十七
《长方体和正方体的整理与复习》是人教实验版第十册数学的第三单元内容,是在学生探究平面图形的基础上,第一次接触三维立体图形,是由平面扩展到立体的开始。立体图形是学生初次有了”看不到“的地方,开始了真正意义上的空间想象。前面两个单元都没有整理复习专项内容。本单元特意安排一个整理和复习板块,这足以说明整理本单元内容是非常必要。着眼复习课和练习课不同,复习课是学生对已有知识的再现和梳理,对学生已经建构的知识进行巩固、深化、扩展。使知识系统化、条理化,针对学生的弱点,查漏补缺。要充分发挥复习课的作用,避免将复习课上成练习课,复习课应当选择恰当的.教学策略。因此,本节课我尝试使用“先学后教、当堂训练”教学模式,经历了“自学—巩固—解决问题能力培养—思维培养”四阶段。
本节课的重点是让学生通过自主回忆,自我梳理,整理归纳形成系统的知识网络。
首先课件出示长方体和正方体立体图,让学生猜一猜今天的学习内容,引出课题。再直截了当地出示学习目标、自学指导,让生明确今天学习本节课的目的,并有方向可循。接着放手给学生自己完成“整理表”,最后引导全班交流,完善整理表,形成知识网络。这一过程,我充分发挥学生的主体作用,让每个学生都参与到知识的整理中来,巧妙的帮助学生从概念,公式,单位,进率等角度去整理知识点。学生都能快速完成整理表,对计算公式的掌握较好,但在引导全班交流时,发现学生对排水法的理解不够深入。
在本单元教学过程中,我发现学生对12条棱的分组、排水法理解不透,导致解决问题时不够灵活,阻碍学生解决能力的培养。学生由于第一次接触“立体图形”,空间想象有待培养与发展。我从以下3个问题入手,发展空间观念,知识巩固。
(1) 长方体6个面中,只能有2个正方形,这两个正方形只能相对,不能相邻。
(2) 12条棱可以怎样分组?
(3) 排水法求不规则物体的体积。
学生能独立完成问题(2)和问题(3),但语言组织不够严谨,问题(1)的解决比较困难,从中反应出学生的想象能力有待提高。立足我班学生实际情况,此环节我借助了多媒体的动画效果,较直观地再现并解决了这些“难点”,给学生提供想象的“直观基础”,培养学生想象能力,发展空间观念。
复习课的主体是知识的再现,而必要的基础训练是再现知识的最好手段。本堂课,我在学生整理完本单元的知识点,设计了疑点追踪后,直接出示如下解决问题,放手给学生独立完成。
生生商行做了一个长方体灯箱,长0.6米,宽0.5米,高1米。
1、焊这灯箱框架,至少需要多少米的钢管?
2、灯箱上贴着一圈商标纸(底面不贴),这商标纸至少多少平方米?
3、这灯箱占空间有多大?
接着抽3个出错的学生板书,学生自己相互订正。最后学生自己总结概括解决这些问题的思路。
本节课我力图挑战性和思考性。从学生掌握到的知识出发。提供出接近学生已有知识经验,智能水平,但又必须”跳一跳“才有可能够到的问题,于是,我设计“找不变量、割拼、排水法、铺瓷砖”四种类型的思维突破题,让学生自己选择一至两题进行挑战与突破,最后教师借助课件引导理解问题的难点,探究解决问题的思路,培养解决问题的能力,培养思维。本节课重点解决了“排水法”,问题:一个从里面量长是80厘米,宽是50厘米,高是60厘米的长方体玻璃鱼缸中,装有200l的水,亮亮把一块珊瑚石完全放入水中,这时水深50.5厘米,这个珊瑚石体积是多少?学生一开始不能快速提炼200l水是“水体积”这一知识,我借助课件引导理解,在动画演示放珊瑚、水上升的过程,让生明白“这时的总体积=水的体积+珊瑚石的体积”,要求珊瑚石的体积,就得用总体积—水的体积,探究出解决问题的思路,得以解决问题。
总的来说,这节课自我感觉在教学环节的设计,教学资源的运用,学生的学习以及学生对知识的达成等方面表现的还不错,学生也学到了我预期想让他们学到的东西。但仍存在很多不足之处。如:在练习题的表现形式上都是以文字出现的,显得有些单一,如果有实物图就更好了。其次是,一节课复习完后,应让学生谈谈本节课的收获与遗憾,给学生一个自我反思,自我总结的机会。由于时间关系就草草收兵了。因此,在今后的教学中还应合理安排课堂时间,达到灵活调控课堂。