教学计划是教师对学生学习活动进行合理安排和计划的一种重要工具。接下来,小编为大家带来一些实用的教学计划范文,希望能够对大家的教学工作有所帮助。
六年级数学倒数的认识教学设计(优质12篇)篇一
教学设计及教学反思。
旺业甸学校王晓慧。
一、教学内容:课本28页例1及相应的做一做、练习六的题目。
二、教学目标。
1、知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
3、情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
三、教学重难点。
重点:认识倒数并掌握求倒数的方法。
难点:小数与整数求倒数的方法。
四、教学过程。
(一)、创设情景,生成问题。
师:我说一个字或词你们答出它的反义词,看谁答的又快又准。生答:
师:上、黑、左、强大、兴高采烈、、、、、
生:抢答。
(二)、探索交流,解决问题。
1、学习倒数的意义。
出示一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
学习例2。
找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的'位置。
看一看,例2中的哪些数据没有找到倒数?(1,0)。
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:,1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:分母不能为0,所以0没有倒数。
(三)、巩固应用,内化提高。
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
(四)、回顾整理,反思提升。
师:今天我们学习了倒数的有关知识,请同学们回忆一个,你是怎样学习的。
生:提问――自学讨论――汇报――练习。
师:你能用“我学会了……”来描述你今天学到的知识吗?
生:我学会了……。
(五)、板书设计。
旺业甸学校王晓慧。
“倒数的认识”是在学生掌握了整数乘法等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。在引入部分,我利用朋友的相互关系及中国文字形象的使学生对倒数有了直观的认识,为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行了调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的发现,我引导他们很快就总结出了倒数的概念――乘积是1的两个数叫做互为倒数。
在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数时它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。
六年级数学倒数的认识教学设计(优质12篇)篇二
1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、 培养学生观察、归纳、推理和概括的能力。
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、 看两个分数的乘积是不是1;
2、 看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1、 完成“做一做”。先独立做,再全班交流。
2、 练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、 同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
六年级数学倒数的认识教学设计(优质12篇)篇三
一、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。
二、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。
三、激情投入,挑战自我。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)。
就先聊到这儿吧?好,上课!
一、导入:
生:上下两部分调换了位置,变成了另一个字。
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
二、合作探究:
(一)揭示倒数的意义。
1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)。
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)。
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。
(二)小组探究求一个倒数的方法。
1.出示例题2课件:下面哪两个数互为倒数?
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)。
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)。
师板书:求倒数的方法:分数的.分子、分母交换位置。
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)。
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)。
4.探讨带分数、小数的倒数的求法。
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。
六年级数学倒数的认识教学设计(优质12篇)篇四
1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、培养学生观察、归纳、推理和概括的能力。
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
六年级数学倒数的认识教学设计(优质12篇)篇五
这部分内容是在学习了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。
这部分内容安排了2个例题,教学倒数的意义和求倒数的方法。
让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出它们的共同特点,导出倒数的定义。
教学建议
(1)要让学生充分观察和讨论,找出算式的共同特点。
(2)给出倒数的定义后,结合定义讨论倒数的特点,特别要理解“互为倒数”的含义,即倒数是表示两个数之间的关系,这两个数是相互依存的,倒数不能单独存在。也可以结合判断题,如“73是倒数”对不对?以加深学生认识。
(3)可以让学生根据对倒数意义的理解,说出几组倒数,看学生是否真正理解和掌握。
这里是一个图片教学求倒数的方法。教材先安排找倒数的活动,从而初步体验找倒数的方法。接着总结求倒数的方法,分两种情况。求分数的倒数是交换分数的 分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母的位置。最后提出1和0的倒数的问题,让学生思考讨论得到结论。
教学建议
(1)通过找倒数的活动,交流探讨方法。
(3)把互为倒数的数提出来,还剩下1和0。提出问题:它们有没有倒数?倒数是多少?组织学生讨论,说出理由。在讨论的基础上归纳:根据倒数的意义,因为1×1=1,所以1的倒数是1;因为0与任何数相乘都是0,所以0没有倒数。
(4)完成“做一做”,检查对倒数意义的理解和求倒数方法的掌握。
第2题是一个活动,可以同桌互说,一个人说出一个数,另一个人说出它的倒数,再交换说。
第3题通过判断对错的活动,加深对倒数的认识。
第(1)题,依据倒数的意义进行判断,是对的。
第(2)题,两个数互为倒数,而不是三个数,所以不对。
第(3)题,0没有倒数,所以不对。
第(4)题,不一定。大于1的假分数的倒数一定比这个假分数小,而真分数的倒数比这个真分数大。
整理与复习
对本单元的学习内容进行整理与复习。分为两个部分,第一部分以知识整理的形式回顾本单元的主要学习内容,引导复习;第二部分安排练习。
具体内容的说明和教学建议
复习部分
第1题,复习分数乘法的计算方法,呈现分数乘整数、整数乘分数和分数乘分数三道题。可以先由学生独立完成,再说说每道题的计算方法,回忆总结分数乘法的计算方法。做错的找一找错在哪里,然后完成练习七的第1、2、3题。
第2题,运用乘法运算定律进行简便计算。可让学生先独立完成,再说说运用了什么运算定律。然后完成练习七的第4题。
第3题,解决问题。第(1)题,求一个数的几分之几是多少的问题。可让学生画线段图表示数量关系,列式解答,再说说解答的思路。第(2)题是稍复杂的 求一个数的几分之几是多少的.问题,也先要求学生画出线段图表示题意,再列式解答,并交流有什么不同的方法,是怎样想的。然后完成练习七的第5、6题。
第4题,先说说什么叫倒数,再找出各个数的倒数,并说说找的方法。然后完成练习七的第7题。
六年级数学倒数的认识教学设计(优质12篇)篇六
1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、培养学生举例、观察、比较、抽象概括能力。
3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
一、口算导入
师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。
展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)
师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。
指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)
二、教学新课
师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1。
(1)问:“互为”是什么意思?(互相)
一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。
(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(a)是(b)的倒数或者(b)是(a)的倒数。
(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。
(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)
(5)选择一个算式,跟你的同桌说说谁是谁的倒数。
三、求一个数的倒数
1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)
为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)
讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?
2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:
自主探究
a四人为一小组,选择一种情况研究
b生交流汇报,师板书例子
c引导概括求倒数的方法
3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)
那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1。)(板书)
4、归纳如何求一个数的倒数
求一个数的倒数(0除外),只要把它的分子、分母交换位置。
5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)
展示,核对,强调互为倒数的两个数之间不能用“=”连接。
六年级数学倒数的认识教学设计(优质12篇)篇七
教学目标:
1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程。
一、创设活动情景,引入概念。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解。
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法。
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、看两个分数的乘积是不是1;
2、看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解。
看一看,例2中的哪些数据没有找到倒数?
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习。
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动。
六、总结。
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
六年级数学倒数的认识教学设计(优质12篇)篇八
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数。
教学难点:1、0的倒数的求法。
教具准备:课件。
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生:我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。这样学生对马上接触到的.“互为倒数”就比较容易理解了。
二、揭示倒数的意义。
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。)。
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个。
出示例7。
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)。
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义】教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:2/5和5/2的积是1,我们就说??(生齐说)。
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)。
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)。
探索求一个倒数的方法。
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能。
师:试一试!
师在黑板上出示3/57/2,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀?还有1又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数求带分数的倒数的方法:带分数。
三、分数倒数。倒数。假分数。
师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)。
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。)师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。)。
四、巩固练习。
1、打开书,阅读课本p34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)。
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是()(2)9/7的倒数是()。
2/5的倒数是()10/3的倒数是()。
4/7的倒数是()6/5的倒数是()。
(3)1/3的倒数是()(4)3的倒数是()。
1/10的倒数是()9的倒数是()。
1/13的倒数是()14的倒数是()。
由学生说出各数的倒数。然后。
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。假分数的倒数也可能等于1。生4:我发现分子是1的分数。
4、填空:
7×()=15/2×()=()×3又2/3=0.17×()=1。
五、课堂小结。
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计。
倒数的认识。
乘积是1的两个数互为倒数1的倒数是1。0没有倒数。
0.1的倒数105的倒数是51又1/8的倒数是8/9。
(0.1=1/10)(5=5/1)(1又1/8=9/8)。
求小数的倒数的方法:求带分数的倒数的方法:带分数。
将本文的word文档下载到电脑,方便收藏和打印。
六年级数学倒数的认识教学设计(优质12篇)篇九
1、使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2、培养学生的观察能力、数学语言表达能力、发现规律的能力等。
求一个数的倒数的方法。
理解倒数的意义,掌握求一个数的倒数的方法。
教学光盘。
自学课本p50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
一、作业错例分析。
二、学习分数的倒数:
1.出示例7。
学生在自备本上完成,指名核对。
教师板书:×=1×=1×=1。
2、你能模仿着再举几个例子吗?
学生回答,教师板书。
3、观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)。
和互为倒数,也可以说的倒数是,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4、你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5、观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6、合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
1、电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×=1,再得出结果。
六年级数学倒数的认识教学设计(优质12篇)篇十
1、学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2、学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3、培养学生的观察能力和概括能力。
教学重点和难点。
1、正确理解倒数的意义及“互为”的含义。
2、正确地求出一个数的倒数。
教学过程设计。
(一)激发兴趣,引出概念。
1、投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的'奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)。
2、同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1两个数。
3、你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)。
4、举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)。
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。
5、思考:1的倒数是几?为什么?0有倒数吗?为什么?
板书:1的倒数是1。0没有倒数。
(二)求一个数的倒数。
1、出示前面的投影,找特点。
观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。
问:谁来说说你发现了什么?
生:互为倒数的两个数,是分子、分母交换了位置。
师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。
学生说老师板书:
3、同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。
谁来给同学们汇报一下?(2~3名)。
板书:求一个数()的倒数,只要把这个数的分子、分母调换位置。
问:老师为什么要空出一些地方?
生:0除外。
问:为什么要加上0除外?(板书:0除外。)。
问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。
4、课堂练习。
写出下面各数的倒数:
35的倒数是怎么想的?
问:2的倒数是几?10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?
5、写出1、5的倒数,怎样做?
(三)课堂总结。
下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。
六年级数学倒数的认识教学设计(优质12篇)篇十一
教学目标:
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
教学重点:
理解倒数的含义,掌握求倒数的'方法。
教学难点:
掌握求倒数的方法。
教学过程:
一、导入。
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
二、教学实施。
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
4、求倒数的方法。
(1)出示例1.
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1-5题。
三、课堂作业设计。
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是(),()的倒数是六分之七。
(2)10的倒数是(),()的倒数是1。
(3)二分之一的倒数是(),()没有倒数。
六年级数学倒数的认识教学设计(优质12篇)篇十二
1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。
2、通过互助活动,培养学生与人合作、与人交流的习惯。
3、通过自行设计方案,培养学生自主探索和创新的意识。
理解倒数的含义,掌握求倒数的方法。
掌握求倒数的方法。
一、导入
1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。
2、按照上面的规律填数。
3、揭示课题。今天,我们就来研究这样的数——倒数。
二、教学实施
1、师:关于倒数,你想知道什么?
2、学习倒数的含义。
(1)学生观察教材第28页主题图。
(2)学生根据所举的例子进行思考,还可以与老师共同探讨。
(3)学生反馈,老师板书。
学生可能发现:
每组中的两个数相乘的积是1。
每组中两个数的分子和分母的位置互相颠倒。
每组中两个数有相互依存的关系。
(4)举例验证。
(5)学生辩论:看谁说得对。
(6)归纳:乘积是1的两个数会为倒数。
3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。
4、求倒数的方法。
(1)出示例1.
(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。
5、反馈练习。
(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。
(2)完成教材第29页练习六的第1-5题。
三、课堂作业设计
1、找一找下列各数中哪两个数互为倒数。
2、填空。
(1)三分之四的倒数是( ),( )的倒数是六分之七。
(2)10的倒数是( ),( )的倒数是1。
(3)二分之一的倒数是( ),( )没有倒数。