教案模板的编写应该符合教学设计的原则,注重思维导图、知识结构和教学策略的合理运用。掌握好教案模板的编写,对于提高教学质量和教学效果非常重要,一起来看看吧。
商的变化规律说课稿(汇总22篇)篇一
教材分析:
学情分析:
教法学法:
教学设计:
从四个环节进行,首先,谈话导入,揭示新课。在这环节没有创设情景,我认为这种探究规律课,直接进行探究要好些,另外,本课内容较多如果创设过多情景,可能难以上完。所以我直接安排学生快速抢答九道题,然后由学生分类,教师顺势提问:你是怎么分类的?由学生说出:按被除数不变、除数不变、商不变分类。这样直接为后面探究进行铺垫。
第二环节,探究规律,建构新知。从三个方面进行。
1、被除数不变,商的变化规律。这个规律要强细讲解,先要学生整体观察什么变了?什么没变?被除数不变,除数从上往下变大了,商从上往下反而变小了,反之除数从下往上变小了,商反而变大了。然后再详细讲解从上往下怎么变化,由学生总结规律;从下往上又怎么变化,又由学生总结规律。最后要求学生把以上两个规律用一句话表达出来。及时练习,在这我设计了231÷11=21231÷33=231÷77=这组题学生不可能直接口算,必须要用以上学习的规律才能简便运算,所以,计算后要学生说理,这有利于突破难点。另外,实物展示,把教材中枯燥、抽象的知识,编成学生亲身经历富有情趣的生活问题,使学生在真实的生活情景中,自觉、自主地完成学习的创新要求,体验到了学习的乐趣。
2、除数不变,商的变化规律。这个规律先通过计算、观察、比较、讨论等教学活动教师可以适当点拨,由学生总结规律,然后练习巩固。在这我也设计了一组练习:132÷12=11264÷12=1320÷12=做题过程同上。
3、商的不变规律,完全由学生先猜测规律,然后自己用计算、观察、比较、讨论等方法论证规律,最后用语言总结规律。这时教师要提醒学生注意同时乘几(或除以几),乘的数字或除以的数字一定要相同,并且问一问这个数字能不能是“0”?为什么不能为“0”?最后也象前面两规律一样练习巩固。
第三个环节应用练习,拓展提升。这环节有三题:
2、谁是它的朋友。学生通过计算就会发现320÷80与160÷40、3200÷800,1800÷600与180÷60是好朋友,而360÷60没有朋友,孤零零的请同学们帮助它找到朋友。开放性习题要开放性的练,才能真正拓展学生的思维,激活学生的思维,找朋友习题的设计一改以往“一对一”形式,让学生领悟到这种开放题的实质——不对应,激发了学生极大的参与意识和参与热情;这样“找”,为每个学生都创设了主动发展的空间。伴随学生情感参与的游戏练习,调动了学生学习积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
3、思考题,填空。即可以巩固新知,又可以发散学生思维。尤其是第四小题,可以同时填乘也可以同时填除以,后面正方形中可以填不为“0”的任何数。设计此题是为了更好的照顾每个学生,让学优生吃得饱,让学困生吃得好,让人人在数学学习中得到提高。
第四环节课堂小结。通过这节课,你学到哪些知识?
帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的体验。
在上新课时充分利用学生已有的知识和经验,放手让学生能过计算、观察、比较、讨论等活动去发现规律。该课的教学让我真正感到了学生是学习的主体,是创造的主体。为学生营造一个充分发挥思维能力和创造能力的氛围。给他们充足的时间和空间,就会收获希望,碰撞出思维的火花,达到真正感受数学的魅力。
商的变化规律说课稿(汇总22篇)篇二
教学内容:四年级上册教材58页例4,做一做,练习九第1―4题。
教学目标:
1.知识技能:尝试用简洁的语言表达积的变化规律,培养学生初步的概括表达能力;
3.情感态度:培养学生团结协作、敢于交流表达的学习精神,体会与人交流和学习成功的体验,培养学生集体荣誉感。
教学重难点:
1.用简洁的语言概括“一个因数不变,另一个因数改变引起积的变化规律”;
2.有序交流、表达自己的想法。
教学过程:
一、探究“一个因数不变,另一个因数扩大几倍,积就扩大几倍”
1.初步感受问题。
8月,舟曲、汶川等地发生了严重的泥石流灾害,当地人民的生命和财产遭受了巨大的损失。为了帮助灾区人民渡过难关,4.1班的同学积极奉献自己的.爱心,踊跃捐款,平均每人捐款约3元,照这样计算:
2名同学捐款多少元?(3w2=6)。
20名同学捐款多少元?(3w20=60)。
200名同学捐款多少元?(3w200=600)。
(1)学生说出算式、口算;
(2)教师板书算式;
(3)进行德育。
2.研究问题。
观察算式,独立思考:以上算式有什么联系和规律?
3.归纳规律。
(1)小组交流:在小组内发表自己的看法,大家商讨:怎样用清楚简洁的语言记录表达所发现的规律。
4.验证规律。
(1)另外写一组算式,验证规律的正确性;
(2)根据发现的规律,在上面的算式下面再写两个算式。
二、探究“一个因数不变,另一个因数缩小几倍,积就缩小几倍”
1.按从下往上的顺序观察刚才的算式组,感知问题;
2.研究问题:思考,有什么规律;
3.归纳规律:
(1)在小组内用自己的话说说发现的规律;
(2)全班交流。
4.验证规律:
(1)小组内举例验证;
(2)按发现的规律把下面的算式再写两个:
80w4=320。
40w4=160。
20w4=80。
三、运用规律、解决问题。
1.做一做:学生独立完成;说出思考过程。
2.练习九第1题:独立完成;说明,补充。
3.练习九第2题:齐读题;独立思考;小组交流;讲解。
4.练习九第3题:独立完成;;小组交流;讲解。
四、补充练习。
练习九第5题。供。
五、课堂总结。
六、作业:练习九第4题。
七、课后反思:
商的变化规律说课稿(汇总22篇)篇三
2、掌握交变电流的变化规律及表示方法,理解描述正弦交流电的物理量的物理含义.。
3、理解正弦交流电的图像,能从图像中读出所需要的物理量.。
5、理解交流电的有效值的概念,能用有效值做有关交流电功率的计算.。
能力目标。
1、掌握描述物理规律的基本方法——文字法、公式法、图像法.。
2、培养学生观察能力、空间想象能力、立体图转化为平面图进行处理问题的能力.。
3、培养学生运用数学知识解决处理物理问题的能力.。
情感目标。
分析:线圈。
bc。
da。
始终在平行磁感线方向转动,因而不产生感应电动势,只起导线作用.。
(1)线圈平面垂直于磁感线(甲图),
ab。
cd。
边此时速度方向与磁感线平行,线圈中没有感应电动势,没有感应电流.、
cd。
cd。
边的瞬时速度方向,跟线圈经过图(乙)位置时的速度方向相反,产生的感应电动势方向也跟在(图乙)位置相反.边线速度以磁感线的夹角也等于,这时。
ab。
边中的感应电动势为:
同理,
cd。
边切割磁感线的感应电动势为:
就整个线圈来看,因。
ab。
cd。
商的变化规律说课稿(汇总22篇)篇四
本节课内容是在学生已经学习了三位数乘两位数和使用计算器进行计算的基础上进行的,因此这节课中,我放手让孩子们自己去计算,去比较,再通过我的适时引导,让孩子用简洁的语言概括出积的变化规律。
根据对教材和学情的分析,我制定了以下三维目标:
知识目标:
使学生结合具体情境,通过计算、观察、比较,发现积随因数变化而变化的规律,并在此基础上放手探讨积的变化规律。
能力目标:
培养学生初步的抽象概括能力和数学语言表达数学结论的能力。
情感目标:
体验探索和发现数学规律的过程,进一步产生对数学的好奇心与兴趣。
教学重点:
教学难点:
引导学生自己发现规律、验证规律、应用规律。
我引导学生在具体的情境中通过观察、猜想、验证来自主探索概括出积的变化规律。
学生经历观察思考、提出猜想、验证猜想、表述规律、应用规律的自主探索过程,获得探索教学规律的一般经验。
小黑板。
谈话导入猜想规律验证规律表述规律,小结探索方法应用规律拓展延伸课堂小结。
1、谈话导入。
课的开始我与孩子进行谈话学校为了奖励参加大扫除的学生,每人发一本笔记本,每本笔记本6元,买2本需要多少元钱?买20本,200本呢?孩子你们算算。
2、根据学生的回答,我板书三个算式及其结果:
62=12(元)。
620=120(元)。
6200=1200(元)。
设计理念:我创造性地利用教材,将纯粹的算式赋予一定的生活意义,让孩子感受数学知识就在身边,从而更大地激发学生的学习兴趣。
(1)我提出问题:观察这三个算式,你会发现什么规律呢?
我引导孩子从上向下观察:因数到因数,积到积有什么规律。
(2)小组交流,集体汇报。让孩子把自己发现的规律讲给同伴听,经过小组内交流,孩子不难提出猜想:一个因数不变,另一个因数乘以几,积就乘以几。
(3)我引导孩子再次从下向上观察,这次孩子很快提出新的规律:一个因数不变,另一个因数除以几,积就除以几。
设计理念:孩子通过独立观察,小组交流,使学生真正体验自主探索和发现数学规律的过程。同时,我活用教材,用一组算式揭示两条规律,先后有序,主次分明。
3、验证规律。
孩子都看出规律来了,那么这些规律是不是适合所有的算式呢?下面请孩子自己来验证一下。
我出示小黑板,男生女生分为两组,一组应用规律直接写出结果,另一组用笔算或计算器验证。两组交换角色再次验证。
设计理念:通过学生分组协作,体验验证数学规律的过程。
4、表述规律,小结探索方法。
设计理念:孩子通过对探索过程的反思,逐步形成自己的思维策略。
5、应用规律。
孩子自己完成教材1—4题。指明孩子自己说说如何得出结果的。个别孩子可能会提出:我用笔算也挺简单的,那我今天学的有什么用呢。好问题出来了,进入下一环节。
6、拓展延伸。
(1)一个数乘以18积是270,如果这个数乘以54,积是()。
(2)3610=360。
(362)(362)=。
(363)(363)=。
设计理念:通过层次分明,形式多样的练习,可以有效地激发学生学习兴趣,拓展学生的思维空间,使不同的学生得到不同的发展。
7、课堂总结,内化规律。
这节课你学到了什么?学的高兴吗?
设计理念:培养学生自我总结、自我反思的学习能力。
本节课我创造性地活用教材,营造了宽松、自主的学习氛围,孩子们通过看、想、说、做等数学活动,去经历主动观察独立思考小组交流提出猜想验证规律运用规律的过程,丰富了学生学习的体验,培养学生的数学思维。
商的变化规律说课稿(汇总22篇)篇五
今天听了赵艳波老师的一节数学课,受益匪浅。赵老师在教学中以两组乘法算式为载体,引导学生探索当一个因数不变,另一个因数与积的变化规律。通过这个过程的探索,学生经历了研究问题——归纳发现规律——解释说明规律——举例验证规律四个层次的学习过程。在这一系列学习过程中老师非常重视学生的自主学习善于引导学生通过观察、计算、说理、交流等活动,归纳积的变化规律。过程的设计很紧凑,老师的讲解清晰、简洁,设问、追问都处理的恰如其分。学生的思维在一个个追问中得到开启,不失为一堂很实的课。一环扣一环的层层剖析,让学生知其然更知其所以然。在巩固练习中,可以看出教师平时非常重视对学生进行审题能力的训练。让学生的观察能力、推理能力得到充分发展。年轻教师在课堂中能把问题的设置运用自如,确实难得。我比较欣赏。
1.小结时,可先让学生试着用自己的语言说说,再整理完善。
2.板书再工整些更加完美了。
如果是我执教这一内容。我会这样设计:
1.出示两组乘法试题。
2.提问:你能根据上面每组算式的特点接下去再写两道算式吗?试试看。
让学生在尝试写算式的过程中自己发现规律。这个过程,手脑并用,使规律的探索落到实处。
商的变化规律说课稿(汇总22篇)篇六
王老师这节课的设计是按照“让学生在观察、思考、抽象、概括的过程中逐渐形成规律,并进行验证与应用”这几个环节来开展教学的。教学过程清晰,科学,构建“研究问题——归纳规律——验证规律——运用规律”的教学主线,教学目标明确,教学环节清晰、流畅,教学语言生动丰富,学生的主体性和教师的主导性得到了很好的体现,而且从学生在课堂上的表现来看,教学效果是很明显的。总的来说,教师作为学生学习活动的组织者给学生提供了自主探索的空间,引导学生在观察、猜测、反思等活动中逐步体会数学知识的产生、形成与发展的过程。使学生拓展思路,乐于质疑,乐于合作。下面就本节课的教学活动来谈谈自己的看法和建议:
1、复习导入时,王老师创设了看谁算的快的口算活动,这为探索积的变化规律做好了铺垫。紧接着教师出示30×8=240,让学生说出算式各部分的名称后,教师直接总结出“当一个因数不变,另一个因数变化,积会怎样变化呢”引出课题。我觉得这里处理较突兀,如果教师能引导学生从口算的式子中找乘法算式各部分的名称,然后引导学生认真观察其中的一组算式,让学生自己去发现“一个因数不变,另一个因数变化,积也发生了变化”从而顺势引出新课,这样引导学生自主的发现和猜想,为新知的学习做好铺垫。
2、自主学习问题设计有渐进性,符合学生的认识特点。王老师让学生自主地进行探索和交流,鼓励学生独立思考、发现规律,让学生把自己的发现组内交流,交流中鼓励学生用一句话概括出规律来,引导学生在观察、猜测等活动中逐步体会积的变化规律。如果能给学生留出充足的探索时间和空间,让学生真正理解了积的变化规律,那么在下一个例题的学习中学生会轻松很多,教师也可以真正做到放手让学生自学。
3、在探索规律的学习活动中,教师构建了“研究问题—归纳规律—验证规律—运用规律“的教学主线,让学生经历想办法、找问题、找方法的过程,并能尊重每一个学生的个性,鼓励学生用自己的语言表达想法和归纳规律。培养了学生初步的概括和表达能力,同时学生获得了探索规律的一般方法和经验,发展了学生的推理能力。四、应重视对中下等学生的指导。由于本节课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。作为数学老师,在课堂上要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极的更有目标的去思考,增强他们的自信心,从而能主动的去获取知识。
商的变化规律说课稿(汇总22篇)篇七
本节课的教学内容是四年级上册第三单元的例4---“积的变化规律”。在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面。教材例题以两组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。在这个过程的探索中,我让学生理解两数相乘时,积的变化随其中一个因数(或两个因数)的变化而变化,同时体会事物间是密切相关的,受到辨证思想的启蒙教育。
在教学过程中,有以下几点感觉还不错的地方:
1、我设计了让学生自己举例像书上那样写出2组算式,还设计了让学生写出自己的发现,这样让学生有自己的独立思考,也对后面规律的揭示起到铺垫的作用。
2、通过规律过程的探索,不但让学生理解两数相乘时积的变化随其中一个因数的变化而变化,同时体会事物间是密切联系的,培养学生迁移类推的能力。
3、练习的设计能由易到难,让学生在学习中感到轻松自如,并且重视每次练习的反馈,及时掌握学生的学习情况。
这节课也有一些不足之处:
1、教师的语言不够简练,在教学2的.规律时让学生探究规律的时间太多,有的时候学生已经说的很好了就不要让其他学生再说了。
2、教师的提问要精练,例如教师提问“你能用我们今天学的知识来解决下面的问题吗?”可以换成“这节课我们用积的变化规律来解决下面的问题。”
将本文的word文档下载到电脑,方便收藏和打印。
商的变化规律说课稿(汇总22篇)篇八
我说课的内容是人教版小学数学四年级上册第五单元除数是两位数的除法中的例5“商的变化规律”。
(二)教材分析。
这是一节新授课,主要学习商的三个变化规律:即商随除数的变化而变化的规律、商随被除数的'变化而变化的规律和商不变的规律。“商不变的规律”是一个新的数学规律。在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘、除法、分数、比的基本性质等知识的基础。在学习本节课前学生已经掌握了除数是两位数的除法法则,为本节课的学习提供了知识铺垫和思想孕伏。本堂课利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律,这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象,概括能力,以及善于观察、勤于思考,勇于探索的良好的学习习惯。基于对教材的以上认识,依据数学课程标准,确定如下教学目标。
(三)教学目标。
知识与技能目标:
1、结合具体情境,通过计算、观察、比较、探索,引导学生发现商的变化规律,并能运用规律解决问题。
2、培养学生初步的观察分析和抽象概括能力。
过程与方法目标:引导学生经历“计算—观察—比较—探索—应用”的过程。
教学难点:运用规律,进行被除数和除数末尾都有零的简便计算,明晰算理。
(四)教学设想:
1、充分发挥学生主体作用,自主探究。
通过这一节课的学习,使学生掌握商的三个变化规律,也为学生今后的数学学习打下了坚实的基础。通过课堂教学的实施,引导学生积极参与到探究规律、总结规律的过程中,让学生在观察、思考、尝试、交流的过程中,实现师生互动、生生交流,促进学生主动参与知识的形成过程。
2、紧抓学生知识的生长点,将学生知识、能力有效延伸。
本课通过研究商不变的规律,在学生初步感知到被除数、除数、商之间存在着变化的规律基础上,抓住学生这个知识的生长点,从单纯的算式计算延伸到算式内部、算式之间的联系上,延伸学生的知识范围。进而使学生通过本节课研究,经历数学规律产生或发现的一般过程。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼睛观察,比较相关算式的内在联系;动脑去想,抽象出“变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情景中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主观察、发现、抽象概括、语言表达能力以及创新精神。
在整堂课中,始终围绕着观察算式、找出规律、表述规律,充分体现了学生主动参与学习的积极性。
我把整个教学过程分为四大环节进行的。
第一环节:创设情境,导入新课。
在这一环节,我设计的是通过小精灵聪聪给大家带来两组口算题,要同学们同桌两人一组进行口算比赛,先算完又全对的为赢。我认为这样设计有利于吸引孩子注意力,激发学生学习兴趣。
第二环节:自主探索,发现规律。
(一)探索“商随除数(被除数)的变化而变化的规律”。
(课件出示例题)在学生汇报结果之后,引导学生仔细观察算式并思考:
(1)每一组题中的什么数变了?
(2)什么数没有变?
(3)除数(或被除数)和商的变化有什么特点?(被除数不变,商随除数的变化而变化的)。
根据回答边引导观察第一组算式,提问:除数是怎样变化的?商是怎样随着除数的变化而变化的?分别从上往下、再从下往上看第一个算式和第二个算式比较、第二个算式和第三个算式比较,从而发现:被除数不变,除数乘几扩大,商除以几变小;除数除以几变小,商乘几扩大。
这是本节课要学习的第一个规律:被除数不变,商随除数的变化而变化的,因为被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,所以我采取帮扶的方法,一来减缓知识梯度,二来培养了学生自主探究的方法,为第二个除数不变,商随被除数的变化而变化的规律探究,奠定了自学的基础,所以第二个规律的学习我放手让学生自学。
认真观察第二组算式,看看你能发现什么?边观察边思考,然后和小组同学说一说:
(1)每一组题中的什么数变了?
(2)什么数没有变?
(3)除数(或被除数)和商的变化有什么特点?
在全班汇报自学情况,然后引导小结第二个规律:除数不变,被除数乘几,商也乘几;被除数除以几,商也除以几。
通过对刚才这两组算式的观察、比较,我们发现商的变化和被除数、除数有密切的关系。这就是这节课我们要研究的新知识:商的变化规律。板书课题。(商的变化规律)。
(二)小组合作,探索“商不变的规律”。
在这一环节主要探讨第三个规律:被除数和除数同时扩大(或缩小)相同的倍数(零除外)商不变。这是本节课的教学重点,我采用了小组合作学习的方法,因为数学课程标准指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动的广泛经验。这样既培养的学生的合作意识与合作能力,又充分体现了教师是数学学习的组织者、引导者与合作者。
1、(课件出示)例题的表格,
说明要求:先填表,再回答问题,然后和小组同学交流:
(1)表中什么数有变化?什么数没有变化?
2、在小组交流的基础上全班交流时引导学生分别从左往右、从右往左每两栏进行比较从而发现并概括出规律:被除数和除数同时扩大(或缩小)相同的倍数(零除外)商不变。
第三环节:应用反馈、运用规律。
这一环节我采取由易到难的形式呈现,首先完成练习十七的第四题,直接运用本节课所学的规律;加深对知识的巩固,进一步熟悉商的变化规律,了解商的变化规律的应用价值。第二完成第五题,虽然也是运用商不变的规律,但是题型稍有变化,练习题不是成组出现的提高了一点难度。从而达到知识的升华。
第四环节:课堂总结、拓展延伸。
先启发学生回顾本节课学习的知识,让学生根据板书了解本节课知识重点,从而形成完整的知识结构体系。拓展延伸练习的难度在巩固练习的基础上又加大了一点,既锻炼学生的思维能力,又加深了对商不变规律的进一步理解。
商的变化规律说课稿(汇总22篇)篇九
教学目标:
1、探索积的变化规律,尝试用数学语言进行描述,并进行简单运用。
2、经历“积的变化规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。
3、感受探索、运用规律的乐趣。
教学过程:
一、从生活中来。
结合这三个算式说说你的发现。
积变了,有怎样的变化呢?
二、探索规律。
请同学们拿出学习单一,有两组算式,大家可以选择其中一组研究,也可以两组都完成。
在研究之前请同学读一读学习建议。
我们来听听他们是怎么思考的。
按什么顺序观察的第一个因数,从到()乘几,第二个因数不变。积也乘几,看来观察得越全面,得到的结论才能越完整。
2、表达规律。
汇报,强调几相同,0除外。把这条规律写在黑板上。那这条重要的规律就是积的变化规律。
3、像刚才那样,我们用大量的不同的例子来概括这个规律的方法,叫做不完全归纳法。
4、应用规律。
1、你能根据8×50﹦400,直接写出下面各题的积。
三、到生活中去。
商的变化规律说课稿(汇总22篇)篇十
今天教学了积的变化规律,昨天布置了预习作业:计算、再观察比较下列算式30*24=720(30*2)*24=(30*4)*24=30*(24*5)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?30*24=720(30÷2)*24=(30÷5)*24=30*(24÷6)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的`倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。
但遗憾的是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据记得变化规律直接用原来的积乘几求到现在的积。我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650直接写出275*92=的结果并说明解题思路,到此学生才全部理解了记得变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
商的变化规律说课稿(汇总22篇)篇十一
教学内容:
探索当一个因数不变时,另一个因数与积的变化规律情况。(课文第58页的例4,“做一做”及相应的练习)。
教学目标:
2、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
3、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
4、初步获得探索规律的一般方法和经验,发展学生的`推理能力。
5、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学重点:
教学难点:
教具准备:
课件、计算器。
教学过程:
一、研究“两数相乘,其中一个因数变化,它们的积如何变化的规律。
1、研究问题,概括规律。
(1)两数相乘,一个因数不变,另一个因数乘几时,积怎么变化。
6×2=。
6×20=。
6×200=。
组织小组交流。
教师出示课件二进行集体交流。
教师出示课件三:根据8×50=400,直接写出积。
16×50=。
32×50=。
学生自做后教师演示。
归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
教师出示课件四,学生小组合作计算。
80×4=。
40×4=。
20×4=。
引导学生概括:两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
(3)整体概括规律。
问:谁能用一句话将发现的两条规律概括为一条?
教师出示课件五。
两数相乘,一个因数不变,另一个因数乘(或除以)几,积也要乘(或除以)几。
2、验证规律。
先用积的变化规律填空,再用笔算或计算器验算。
教师出示课件六:
12×8=40×21=。
12×16=40×7=。
12×32=20×21=。
12×64=。
3、应用规律。
完成例4下面的做一做和练习9的1-――4题。
学生完成后,教师出示课件7―10进行集体订正。
二、研究“两数相乘,两个因数都发生变化,积变化的规律“。
1、独立思考,发现规律。
完成下列计算,说规律。
18×24=432。
(18×2)×(24÷2)=(18÷2)×(24×2)=。
2、组织全班交流,概括规律:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
三、巩固新知。
教师出示课件11根据12345679×9=111111111,直接写出下面各题的积。
集体订正。
四、总结:
这节课有什么收获?
五、作业:
第59页4、5。
商的变化规律说课稿(汇总22篇)篇十二
留美博士黄全愈在他著的《素质教育在美国》一书中指出:“创造性就象种子一样,它需要一定的环境:包括土壤、气候、科学的灌溉、施肥、培养才能发芽、生根、开花、结果。”可见,创造性只能培养,不能教。我们作为一位教育工作者就是要去创设适合培养学生创造性的环境,充分利用课堂主渠道,以学生为主体,教师为主导,积极主动地运用探究模式,优化课堂教学。
新时期物理教育面临的时代背景可以这样概括:建构主义风行全球,素质教育传遍神州,研究性学习方兴未艾、网络教学日渐盛行、洋思模式备受亲睐。
教学工作的主要职责是促进学生认知结构的有序构建。
二、教学分析。
1、教材分析交变电流的产生和变化规律是本章的重点,又是电磁感应、楞次定律、导体在磁场中切割磁感线运动、右手定则等知识的进一步具体应用,跟生产和生活实际有密切的联系,是学生综合应用电磁学知识分析、解决问题,提高能力的物理情景。
本节内容相对于直流电而言,最大特点就是“变”,对于变化的物理量学生往往会感到困难,特别是第一次接触这么多的新名词,如:交变电流、正弦式电流、中性面、瞬时值、峰值等,如何让学生清楚地理解这些概念,掌握交流电的变化规律,是处理好这节课的关键。
2、学生分析。
学生的认知结构示意图公式、图像交变电流的波形。
矩形线圈在磁场中匀速转动。
直流电欧姆定律电磁感应知识楞次定律。
三、教学目标。
1、通过回顾电磁学知识,观察直流电发光和发电机的`模型,说出什么是交变电流和产生交变电流的原因。
3、学会用公式和图象来表示交变电流。
4、培养观察实验能力和分析、归纳、推理等思维能力。
5、了解两种交流发电机的构造和优缺点。
教学重点:
商的变化规律说课稿(汇总22篇)篇十三
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
商的变化规律说课稿(汇总22篇)篇十四
例[4]通过学生观察两组乘法算式,引导学生探索当其中一个因数不变时,另一个因数和积的变化情况,并从中归纳出因数和积的变化规律,渗透变与不变的函数变化规律。第一组呈现的是:当一个因数不变,另一个因数扩大几倍,积也扩大几倍;第二组呈现的是:当一个因数不变,另一个因数缩小成原来的几分之一,积也缩小成原来的几分之一。在教学中,侧重的是让学生在计算练习中理解数的变化,至于如何准确的表述出来,并不重要。
练习九的5题练习题都是应用积的变化规律来解决实际问题的,要引导学生先找到变化规律,理解题意后再解答。特别是第4题,苹果5元3千克,不能算出1千克多少元,只能应用变化规律来解答:5元能买3千克,打算买6千克,千克数是原来的2倍,积也是原来的2倍,即5×2=10元。
教学目标。
(2)、初步获得探索规律的一般方法和经验,发展学生的推理能力。
(3)、培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学设计:
一出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
二、自主学习,探索新知。
1、现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3、猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
4、同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
5、你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
教学建议和教学思路。
本课内容的学习需要学生的自主探索和合作交流,因此,教学时可以让学生以小组为单位,互相交流自已的想法和发现的规律,对所得到的信息、资源进行整合、概括,教师则作适时的提示、补充和纠正。
商的变化规律说课稿(汇总22篇)篇十五
一、解读教材:
《商的变化规律》一课属于比较传统的知识,它是在学生学习了笔算乘法、除法的基础上进行教学的。与旧教材相比,教材对本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变商随除数变化的规律和除数不变商随被除数变化的规律,提升了学生自由探究数学问题的空间,因此颇具挑战性。那么老师怎样做到“老课新上”?做到在“主动教育”模式下始终让学生成为课堂教学活动中的小主人,怎样在自主活动中发现问题、探索问题、解决问题以及主动优化,努力实现数学课堂的真正高效?基于以上几点,我们的教学策略定为:扶放结合、引导探索、自主参与、学会学习、培养能力。
二、课堂呈现:
在课堂呈现上余老师紧紧地把握住了以下三点:
1、“问题生成单”是主动教育课堂的“魂”。
我校的“主动教育”教学模式的基石是“问题生成单”,我们在设计本节课之处就始终用“问题生成单”作为课堂的主线,经历试教之处的时间不够用、教学环节不够精简、课堂探究不够深入、课堂效率不够高效等问题后,我们对预习生成单进行了再次设计,将教材中简单、静态、结果性的文本,设计成为丰富、生动、过程化的“问题生成单”,让问题生成单成为整堂课的“魂”。在整堂课中,“问题生成单”分三次呈现。
第一次呈现:在开课环节,教师设计了第一层次的旧知复习,用积的变化规律旧知为新知搭桥铺垫,为探讨除法中商的变化规律起到了方法上的迁移。
第二次呈现:教师要求学生根据问题生成单研究当被除数不变时,研讨除数变商会怎样?除数不变,商会随着被除数的变化而发生怎样的变化,起到了为学生分散难点的目的。
第三次呈现:老师要求学生根据第二次的呈现,对被除数、除数都变,商会怎样变进行合理猜想。
一张小小的问题生成单凝聚着老师课前精心解读教材的心血,三次精彩的呈现为学生提供了探究的空间,使学生为完成一定任务而进行设想、预见、磋商、探究、讨论、辩解,思维发生碰撞,构筑了课堂上有活力、有价值的教学资源,成为了主动教育的“魂”,进而促进学生在有限的40分钟课堂里获得了最高效的主动发展。
2、“学生自主探究”成为了主动教育课堂的“根”。
“让过程和方法进课堂”可谓余老师上课的特色。整节课余老师非常注重培养学生在学习过程中对数学问题的探究,体现了学生的主动和教师的主导,师生和谐共荣,极符学生的认知规律、新课程标准和我校主动教育模式要求。课堂上我们看到教师始终把激励学生学习、为学生搭建学习的平台作为教学的主线,让小组中的每个学生都在宽松的氛围中,始终处于一种积极求知、好学向上的状态,奠定了学好数学信心的基础;同时重视合作、探究,使得学生愿意与伙伴交流,敢于自由表达自己的想法,在参与中体验到学习的乐趣。
课堂上一次次探究活动真正成为师生互动、生生互动,共同发展的数学活动过程,使学生在课堂上有了自主,有了发扬个性、施展才能的空间,成为了主动教学的“根”。
3、“学生自主构建、归纳、总结、提炼”,成为主动教育课堂新的增长点!
课堂中余老师紧紧抓住探究三条规律的过程,注重让学生构建思考问题的方法,启发学生有序观察,多角度、多方向去挖掘思路,引导学生参与到发现规律、探究规律、总结规律的过程中。在学生发现商的变化有某种规律的萌动时,余老师鼓励学生:“用自己的话讲一讲发现的规律。”并及时给予肯定,让学生在观察、比较、思考、尝试中,实现师生互动、生生互动,激活了学生主动参与获取知识的过程。
整节课教师下放“教学”,只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,既重视学生独立思考的过程,又重视发挥集体的智慧,给学生提供了多向交流的机会。学生在静思、合作、商讨中,轻松、愉快地学到知识,增长本领,从而达到乐学、会学、创造学的境界。
本课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学与练相得益彰。同时教师非常注重总结性的语言,能适时地把学生表达的变化规律的用语,加以提炼并呈现给学生,使学生在全面了解商的变化规律的同时,又培养了学生用数学语言表达数学规律能力。
三、不足之处:
1、“积”、“商”是一对矛盾的统一体,学生极易混淆,建议可先复习乘法、除法的概念及算式各部分名称,做好知识储备,便于学生表述规律。
2、教师还应加强指导学生表述完整的练习,同时要适时引导、及时纠正,比如学生总结第一个规律时,说被除数不变,除数扩大(或缩小)几倍,商就扩大或缩小几倍。
主动教育是一种教育思想,教育策略,教育艺术,教育境界。教师大胆地把舞台和空间让给学生,把自己隐蔽起来,让学生充分发挥其主动性,这样,课堂就绽放出空灵之美。当然,“冰冻三尺非一日之寒”!模式的创新、思维的转变,也都不是一蹴而就的过程。我们也从这节课中看到了自身许多的不足。
创新终归出于实践,期待在以后的实践中与我们的孩子们共同转变、携手同行!正如我校“主动教育”教学理念中提出的“关注学生兴趣,兴趣焕发生命精彩;关注学生习惯,习惯影响学生未来;关注学生质疑,质疑引发智慧觉醒。”
商的变化规律说课稿(汇总22篇)篇十六
尊敬的各位评委老师:
大家好!(鞠躬)我是小学数学组几号考生,今天我说课的题目是《积的变化规律》,下面开始我的说课。
依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。
教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,首先我想谈一谈我对教材的理解。《三位数乘两位数》是人教版四年级上册第四单元《三位数乘两位数》中第二课的内容,学生在学习这节课之前,已经掌握了三位数乘两位数的基本运算法则,这为本节课的学习奠定了良好的认知基础,而本节课的学习也为后边进一步学习乘除法做了铺垫,所以本节课在教材中有着重要的地位和作用。
一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的注意力集中在课堂中。
根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:。
知识与技能目标:能理解并掌握积的变化规律,并能够熟练运用规律进行简单计算。
过程与方法目标:通过观察独立思考,经历小组合作探究,归纳积变化规律的过程,提高简单计算数问题的能力。
情感态度价值观目标:在参与学习的过程中,感受数学思考过程的条理性和魅力,体验成功的喜悦,激发学习数学的兴趣。
根据教学目标,我确定了本节课的重点和难点。重点为掌握乘法里积的变化规律,,而理解积的变化规律的归纳过程为本节课的难点。
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。
为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课。
为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放向学生展示两组算式,6×2=12,6×20=120,6×200=1200;20×4=80,10×4=40,5×4=20六个式子,然后我会学生抛出问题,这两组式子都有什么样的特点,又有呢些规律呢?继而引出本节课课题--积的变化规律。(板书题目)。
多媒体课件展示两组乘法算式有关的内容,更有利于激发学生深厚的学习兴趣和求知欲望,快速的进入学习状态。
(二)自主探究,感受新知。
进入正式的新课讲授环节,我会继续向学生提问,那我们回到刚才这个问题,这两组式子都有什么样的特点呢?然后安排学生进行独立思考,经过学生独立思考不难看出,这两组式子第一组式子中第一个因数不变,第二个因数不断变大,积也在不断变大,在第二组式子中一个因数不变,另一个因数不断变小,积也同样的在不断变小。
我将继续向学生提问仔细观察着两组式子,每一组式子中三个式子之间又有什么样的规律呢?接下来组织同桌两人进行交流,经过同桌交流,同学们基本可以得到第(1)组题中,第2、3题同第1题比,第二个因数分别乘了10、100,同样的第2、3题的积同第1题相比各分别乘了10倍和100倍。
第(2)组题中,第2、3题同第1题比,第一个因数分别除以了2、4,同样的第2、3题的积同第1题相比各分别除以了2倍和4倍。对学生的结论我会给与表扬和肯定。
随后我会继续引出,上边这两组例子,在我们计算乘法和除法的过程中,能给我们带来哪些启示呢,这个规律具不具有普遍性呢?组织学生进行小组讨论验证,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
经过学生小组讨论不难得出在乘法计算当中,一个因数不变,另一个因数乘以几,积也乘以几,同样的,一个因数如果除以几,0除外,那积也需要除以几,继而引出,这就是本节课所要学习的积的变化规律。
以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。
(三)巩固练习,强化知识。
我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。
(四)课堂小结。
我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。
(五)布置作业。
针对学生的年龄特点,我会让学生在课下仔细观察自己家中有哪些利用平行四边形而创造的物品并记录下来,在下节课将一起来交流、讨论。
(六)说板书设计。
一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。
以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)。
商的变化规律说课稿(汇总22篇)篇十七
我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。
一、教材分析。
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
二、教学目标、重点难点。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
教学重难点:通过观察、比较、探讨发现商的变化规律。
三、教法学法。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
四、教学设计。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
文档为doc格式。
商的变化规律说课稿(汇总22篇)篇十八
教学内容:积的变化规律(人教课标版《数学》四年级上册第58页例四,59页练习九)。
教学目标:
1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
教学过程:
一、创设情景,提出问题。
师:谁来帮忙解答第一个问题?
生:6╳2=12(元)。
师:你能说说在这道乘法算式中,6和2是什么?12又是什么?
生:6和2是乘法中的两个因数,12是积。
师:说得好!第二个问题呢?
生:6╳40=240(元)。
师:接着说第三个问题?
生:6╳200=1200(元)。
师:和他们想法一样的请举举手。(同学们纷纷举起手来)。
师:仔细观察、比较这组算式,你能发现什么?
6╳2=12(元)。
6╳40=240(元)。
6╳200=1200(元)。
生1:有一个因数都是6。
生2:对,一个因数相同,另一个因数不同,积也不同。
师:观察得真仔细!一个因数相同可以说一个因数不变,那另一个因数呢?
生3:另一个因数变了,积也变了。
生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。
师:你是从上往下观察的,还可以怎样看?
生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。
师:当一个因数不变时,另一个因数和积是怎样变化的?积的变化有没有规律呢?是什么规律呢?这节课我们来研究这个问题。
二.自主探究,发现规律。
生:(2)式与(1)比,一个因数不变,另一个因数2括大20倍是40,积12扩大20倍是240。
师:2括大20倍是40,也就是另一个因数乘2,积呢?
生:一个因数不变,另一个因数乘2,积也乘2。
师:说得很清楚。再把(3)式和(1)式比看?
生:一个因数不变,另一个因数乘100,积也乘100。
师:大家比的结果和他一样吗?
生(全体):是。
师:谁来说说通过刚才的两次比较,你们又发现了什么?
生:一个因数不变,另一个因数变化,积也变化。
师:怎样变化的?能说得具体些吗?
生1:一个因数不变,另一个因数乘一个数,积也乘相同的数。
生2:一个因数不变,另一个因数乘几,积也乘几。
生2:(2)式与(3)比,一个因数不变,另一个因数除以5,积也除以5。
生3:(1)式与(3)比,一个因数不变,另一个因数除以100,积也除以100。
生4:老师,我发现一个因数不变,另一个因数除以几,积也除以几。
生:我们可以自己找一些乘法算式的例子用刚才的比较方法研究,看看积的变化是不是具有相同的特点。(其他同学向他投去敬佩的目光)。
生1:把60乘9等于540,另一个因数8不变。
师:你猜猜看,积会怎样?
生1:积也会乘9,等于4320。
师:那你们横着算,540乘8是等于4320吗?
生2:也是4320。
师:祝贺你们猜对了。再来试一次。
生3:我把60不变,另一个因数乘30,猜积也乘30。
师:你们横着算一算。
生4:对,也是14400。
生5:你们都举的是乘几的变化,我来出个别的,60除以12等于5,8不变,积也除以12,是40,横着算,5乘8的确等于40。
师:你的研究意识真强。除次以外,还可以有多少种变化.。
生:无数种。
师:下面,你们同座位之间也这样相互出一道乘法算式作标准,自己将其中一个因数不变,,另一个因数变化观察积的变化情况。,好吗?计算比较大的数时,可以用计算器帮忙,开始!
汇报情况略。
师:既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。
生:一个因数不变,另一个因数乘几,积也乘几;一个因数不变,另一个因数除以几,积也除以几。
师:数学讲究简洁美,能把它说得再简单点吗?
生:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
师:说得太棒了!
小精灵:同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?那就跟我走吧!
三、运用规律,解决问题。
1、根据8×50=400,直接写出下面各题的积。
16×50=32×50=8×25=。
……。
师:32×50的积是多少?
生1:等于1600。
师:怎样算的?
生2:以8×50=400为标准,把32×50与它作比较,一个因数50不变,另一个因数乘4,积也乘4等于1600。
生3:还能以16×50=800为标准,把32×50与它作比较,一个因数50不变,另一个因数乘2,积也乘2等于1600。
师:很有数学头脑,运用规律算得可真快。
……。
行()千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的。
时间可行()千米。
生:一辆汽车4小时可以行驶240千米,用60乘4等于240千米。
师:根据什么数量关系来列式计算?
生:速度乘时间等于路程。
师:第二个问题呢?
生:60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。
师:还有其它解法吗?
生:240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。
师:能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种方法?
生:喜欢第2种,只需一步计算。
师:多关注已有信息,灵活运用规律能使解题思路更开阔。
……。
四、全课总结,拓展延伸。
生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
生3;我还学会了研究规律的方法。
……。
师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。
18×30=18×15=。
18×5=54×5=。
……。
商的变化规律说课稿(汇总22篇)篇十九
《商的变化规律》一课属于比较传统的知识,它是在学生学习了笔算乘法、除法的基础上进行教学的。与旧教材相比,教材对本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变商随除数变化的规律和除数不变商随被除数变化的规律,提升了学生自由探究数学问题的空间,因此颇具挑战性。那么老师怎样做到“老课新上”?做到在“主动教育”模式下始终让学生成为课堂教学活动中的小主人,怎样在自主活动中发现问题、探索问题、解决问题以及主动优化,努力实现数学课堂的真正高效?基于以上几点,我们的教学策略定为:扶放结合、引导探索、自主参与、学会学习、培养能力。
在课堂呈现上余老师紧紧地把握住了以下三点:
1、“问题生成单”是主动教育课堂的“魂”。
我校的“主动教育”教学模式的基石是“问题生成单”,我们在设计本节课之处就始终用“问题生成单”作为课堂的主线,经历试教之处的时间不够用、教学环节不够精简、课堂探究不够深入、课堂效率不够高效等问题后,我们对预习生成单进行了再次设计,将教材中简单、静态、结果性的文本,设计成为丰富、生动、过程化的“问题生成单”,让问题生成单成为整堂课的“魂”。在整堂课中,“问题生成单”分三次呈现。
第一次呈现:在开课环节,教师设计了第一层次的旧知复习,用积的变化规律旧知为新知搭桥铺垫,为探讨除法中商的变化规律起到了方法上的迁移。
第二次呈现:教师要求学生根据问题生成单研究当被除数不变时,研讨除数变商会怎样?除数不变,商会随着被除数的变化而发生怎样的变化,起到了为学生分散难点的目的。
第三次呈现:老师要求学生根据第二次的呈现,对被除数、除数都变,商会怎样变进行合理猜想。
一张小小的问题生成单凝聚着老师课前精心解读教材的心血,三次精彩的呈现为学生提供了探究的空间,使学生为完成一定任务而进行设想、预见、磋商、探究、讨论、辩解,思维发生碰撞,构筑了课堂上有活力、有价值的教学资源,成为了主动教育的“魂”,进而促进学生在有限的40分钟课堂里获得了最高效的主动发展。
2、“学生自主探究”成为了主动教育课堂的“根”。
“让过程和方法进课堂”可谓余老师上课的特色。整节课余老师非常注重培养学生在学习过程中对数学问题的探究,体现了学生的主动和教师的主导,师生和谐共荣,极符学生的认知规律、新课程标准和我校主动教育模式要求。课堂上我们看到教师始终把激励学生学习、为学生搭建学习平台作为教学的主线,让小组中的每个学生都在宽松的氛围中,始终处于一种积极求知、好学向上的状态,奠定了学好数学信心的基础;同时重视合作、探究,使得学生愿意与伙伴交流,敢于自由表达自己的想法,在参与中体验到学习的乐趣。
课堂上一次次探究活动真正成为师生互动、生生互动,共同发展的数学活动过程,使学生在课堂上有了自主,有了发扬个性、施展才能的空间,成为了主动教学的“根”。
3、“学生自主构建、归纳、总结、提炼”,成为主动教育课堂新的增长点!
课堂中余老师紧紧抓住探究三条规律的过程,注重让学生构建思考问题的方法,启发学生有序观察,多角度、多方向去挖掘思路,引导学生参与到发现规律、探究规律、总结规律的过程中。在学生发现商的变化有某种规律的萌动时,余老师鼓励学生:“用自己的话讲一讲发现的规律。”并及时给予肯定,让学生在观察、比较、思考、尝试中,实现师生互动、生生互动,激活了学生主动参与获取知识的过程。
整节课教师下放“教学”,只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,既重视学生独立思考的过程,又重视发挥集体的智慧,给学生提供了多向交流的机会。学生在静思、合作、商讨中,轻松、愉快地学到知识,增长本领,从而达到乐学、会学、创造学的境界。
本课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学与练相得益彰。同时教师非常注重总结性的语言,能适时地把学生表达的变化规律的用语,加以提炼并呈现给学生,使学生在全面了解商的变化规律的同时,又培养了学生用数学语言表达数学规律能力。
1、“积”、“商”是一对矛盾的统一体,学生极易混淆,建议可先复习乘法、除法的概念及算式各部分名称,做好知识储备,便于学生表述规律。
2、教师还应加强指导学生表述完整的练习,同时要适时引导、及时纠正,比如学生总结第一个规律时,说被除数不变,除数扩大(或缩小)几倍,商就扩大或缩小几倍。
主动教育是一种教育思想,教育策略,教育艺术,教育境界。教师大胆地把舞台和空间让给学生,把自己隐蔽起来,让学生充分发挥其主动性,这样,课堂就绽放出空灵之美。当然,“冰冻三尺非一日之寒”!模式的创新、思维的转变,也都不是一蹴而就的过程。我们也从这节课中看到了自身许多的不足。
创新终归出于实践,期待在以后的实践中与我们的孩子们共同转变、携手同行!正如我校“主动教育”教学理念中提出的“关注学生兴趣,兴趣焕发生命精彩;关注学生习惯,习惯影响学生未来;关注学生质疑,质疑引发智慧觉醒。”
商的变化规律说课稿(汇总22篇)篇二十
2、经历“积的变化规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。
3、感受探索、运用规律的乐趣。
一、从生活中来。
结合这三个算式说说你的发现。
二、探索规律。
1、发现规律。
请同学们拿出学习单一,有两组算式,大家可以选择其中一组研究,也可以两组都完成。
在研究之前请同学读一读学习建议。
我们来听听他们是怎么思考的。
按什么顺序观察的第一个因数,从()到()乘几,第二个因数不变。积也乘几,看来观察得越全面,得到的结论才能越完整。
2、表达规律。
汇报,强调几相同,0除外。把这条规律写在黑板上。那这条重要的规律就是积的变化规律。
3、像刚才那样,我们用大量的不同的例子来概括这个规律的方法,叫做不完全归纳法。
4、应用规律。
1、你能根据8×50﹦400,直接写出下面各题的积。
三、到生活中去。
商的变化规律说课稿(汇总22篇)篇二十一
我教学的内容是人教课标版数学四年级上册第五单元例5“商的变化规律”。
“商的变化规律”在小学数学中占有很重要的地位,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材中利用学生已有的计算技能,通过计算比较,提出问题引导学生思考发现商的变化规律。这部分内容不但可以巩固所学的`计算知识,同时培养了学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好的学习习惯。
本节课的教学目标是:
1、通过观察、比较、探索,使学生发现商随除数(或被除数)的变化而变化的规律。
2、培养学生初步抽象、概括能力。
3、培养学生善于观察、勤于思考、勇于探索的良好习惯。
本节课我根据教学内容的编排特点和儿童的认知发展规律,引导学生用眼观察,比较相关算式的内在联系;动脑去想,抽象出“变与不变”的规律;动口去说,概括出商的变化规律,让学生在多种感官的协同活动中主动获取知识。
而学生也在创设的情境中,围绕中心问题通过观察比较,探究规律,发现规律,表述规律,应用规律,同时也培养了学生的自主发现、抽象概括、语言表达能力以及创新精神。
一开始我选择这一个内容,还以为只学习“商不变的性质”这一条规律,可是经过仔细阅读教材之后,才发现这节课要解决的是商的三条规律,这样一来,这节课的内容就很多,从量上来讲就很足,一堂课要完成这么多的内容,这给我上好这堂课出了一个大难题。于是,思考过后,要同时完成这些内容,那么这节课就只能定位在让学生通过观察、比较、探索,使学生发现商随除数(或被除数)。
的变化而变化的规律,并且能应用这些规律解决一些简单的问题。
教材编排的时候,把被除数不变时,商随除数变化而变化的规律放在最前面,接着是除数不变时,商随着被除数的变化而变化的规律,最后是商不变的性质。因为我们知道被除数不变时,商和除数是成反比例的,这对学生来讲可能较难理解,于是,我把除数不变时,商的变化规律放在第一个,这样在正比例的基础上,再来学习反比例,学生想度来说较容易理解。
在整堂课中,始终围绕着观察算式、得出规律、表述规律和应用规律来进行教学。当然学生在学习这三条规律时,也是一条比一条轻松。第一条规律学生在教师的引导下,顺利的得出,第二条第三条规律就放手让学生学生自己去观察算式,发现规律,表述规律,充分体现了学生的主体性和主动性。
在这里我要感谢那些不厌其烦地一遍又一遍听我试讲,不断帮我改教案、帮我指点的老师,真的感谢你们!另外,在我的课中还有很多不足之处,恳请在场的各位领导和老师批评指正,希望你们能给我多提一些宝贵的建议。
商的变化规律说课稿(汇总22篇)篇二十二
教学内容:人教版小学数学四年级上册第58—59页内容。
教材分析:积的变化规律是学生计算思维能力的一次飞跃,它是学生的思维由单一、松散向灵活、多样化转变的一个突破口。它是在学生熟练掌握两位数乘法口算、笔算基础上进行的,同时又是学生对以前所学乘法计算的一个规律性的总结,它引导学生学会从一般现象中寻找规律,为学生今后学习相关内容提供必要的思维模式。
学情分析:四年级的学生已具有初步的分析和探索能力,本节课在教学安排上充分体现了以学生为主体,去探究新知。
教学目标:
知识与技能:使学生经历积的变化规律的发现过程,尝试用简洁的语言表达积的变化规律。
过程与方法:1、初步获得探究规律的一般方法和经验,发展学生的推理能力。
2、在学习过程中培养学生的探究能力,合作交流能力和归纳总结能力。
情感与态度:在经历探究的过程中,使学生感受到发现数学中的规律是一件十分有趣的事情。
教学准备:课件。
教学过程:
一、迁移旧知,巧导入。
同学们,刚才我们相互了解了,其实,我最想知道的是,你们的计算能力强不强?真的很强吗?我可找到对手了。
2、543+380=()。
1、543+382=()。
3、546+382=()。
师:出示1题,用自己喜欢的方法算,有困难的同学可笔算。
师:大家算的真的挺快啊,这是个小小的热身,比赛开始。
出示2题,这么快啊,快说说你是怎么算的?
预设:
生:我发现543是一样的,382变成380少了2。所以我想,和也少2,就是923。师板书学生的发现。
师:好眼力,通过你的细心观察,发现了规律,还能利用规律,形成了计算的技巧。敢不敢再来一道。
出示3题。学生用刚才发现的规律很快的说出了结果,有困难的学生也会了方法。
师:说说你为什么算的快?
预设:我发现,382没变,546比543多3,所以,和也多3,就是928。
师:你能不能把你的发现,用自己的话说说呢?
预设:如果一个加数不变,另一个加数加几,和就加几,要是另一个加数减几,和就减几。
(设计意图:小小的巧算环节,兼顾着不同学生的需求,会使学生的特殊需要得到满足。将学生的学习兴趣充分调动起来了,由不会巧算到算得很快。同时为探究积的变化规律作了一个很好的铺垫。学生很自然的利用知识的迁移,去探究新知。也暗示了先观察,再发现规律,并运用规律,这一探究的方法。)。
二、引导观察,巧探究。
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
师:先自己算算,再想一想你发现了什么,在小组中交流你的发现,准备汇报。
汇报:先说结果,哪小组愿意上来边指边说你们的发现?
预设:1、在第一组中,6是一样的,第二个因数变了,积也不一样。
2:我发现6都是一样的,第二个因数一个比一个后面多一个0。积也多一个0。
3:我发现6不变,第二个因数2乘10得20,积也乘了10。第二个因数乘100,积也乘100.(组内可补充)。
师:在第二组中有没有这样的规律呢?哪组愿意说?
预设:我发现4不变,5乘2的10,积由20乘2得40。5乘4得20,积也乘4得80。
师:能不能把你们的发现用一句话概括呢?
预设:一个因数不变,另一个因数乘几,积也乘几。
师:一个因数不变,另一个因数乘4,积会怎样?
一个因数不变,另一个因数乘4,积乘5,行吗?为什么?
(说明这两个“几”是一样的数。)。
(设计意图:这一环节让学生充分经历了学习的过程,学会了研究问题的一般方法:研究具体问题---归纳发现的规律---解释说明规律。使学生尝到了探究新知的甜头,感受到探究的快乐。)。
师:你们真的太厉害了,其实啊,在这算式中还有规律呢?刚才我们是怎么观察的?(从上往下),如果我们倒着看,你又能发现什么呢?先想想,在于小组同学交流。
请2-3个组汇报。(边指边说)。
预设:1、一个因数不变都是6,另一个因数除以10,积也除以10。
2、一个因数不变,另一个因数除以4,积也除以4.
……。
你能不能也用一句话概括一下你的发现呢。
预设:一个因数不变,另一个因数除以几,积也除以几。
有没有想说的?
(设计意图:既然是猜想,给了学生更加广阔的思维和想象的空间。前面已经探究出一个规律,这里教师就放手了,让学生用刚才掌握的研究过程实现方法的迁移运用。最后疑问的提出,是想看看学生能不能想到0除外的问题。)。
师:孩子们我们数学追求的是准确,简练。你能不能把这两句话合并为一句呢?先独立想,在汇报。
总结规律:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。
这条规律是不是真的试用呢,你能用这个规律写一组算式吗?
要求:同桌合作,左边的同学写一个算式,右边的同学运用规律写一个算式。比一比谁做的快。
汇报,这几组同学说的都是一个因数不变,另一个因数乘几,积也乘几的算式。还可以写怎样的呢?(除以几的)再写一组,同桌交换。
谁和老师合作,你说一个算式,我来写第二个,好吗?
预设:当学生说算式7×9=63我来写了,我想让7不变……。
7×=可以吗?
预设:不可以,因为0不能做除数,学生会发现,在这条规律中应加上(0除外)。
(设计意图:让学生动脑、动口、动手,相互交流,进一步培养学生的合作交流意识。这个设计表面看是对新知的巩固,其实,暗含着对0除外的问题解决。同时让学生体会到对待数学要有严谨的态度。)。
三、巩固拓展,巧运用。
1、师:我们找到了规律,有什么用啊?我们来做组练习吧。(课件出示)。
2、想想?是谁。
4×50=200。
(4×2)×50=200×?
4×(50×3)=200×?
(4×2)×(50×3)=200×?
(设计意图:练习的设计充分体现了层次性、灵活性、启发性、挑战性。通过学生进行不同类型的练习,可以有效的激发学生的学习兴趣,拓展学生的思维空间,是不同的学生得到不同的发展。)。
四、课堂小结:孩子们,短暂的40分钟过得很愉快,你们开心吗?这节课你都记住了什么。
板书设计:
6×2=5×4=。
6×20=10×4=。
6×200=20×4=。
规律:------------------。
课后反思:
本节课充分体现了“让过程和方法进课堂”的新理念。
1.精心选题,巧引入。
俗话说,良好的开端是成功的一半。在课的伊始,利用学生的好胜心里,引导观察,激发学生的欲望,扣住学生的心弦,有利于架起已知与未知的桥梁,发现一些新的结论。
2.合作探究,体快乐。
本节课我引领学生经历科学发现的完整过程,注重学生对比较,猜测,验证,思辨等数学方法的习得,同时让学生在探究过程中获得成功的体验,积累探究经验,从而为学生探究能力的提高提供了全方位的保障。让学生学得开心,真正体验到学习得快乐!
3.学练结合,显梯度。
本节课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学练相得彰显,最后练习的设计既注重了基础知识巩固,又注重了不同层次学生的需求。
整节课的设计,把自主、合作、探究落到了实处。