教学工作计划是教师与学生、学校和家长之间沟通交流的重要工具,能够增进彼此的理解和合作。教学工作计划范文3:小学语文教学工作计划,注重阅读能力的培养。
最新圆与圆的位置关系的教案(热门17篇)篇一
这课节主要是引导学生进行“回顾与整理”,完成第74-75也“练习与应用”第1-5题。回顾与整理时要组织学生交流本单元的学习体会,交流对小数点位置移动引起小数大小变化的规律的理解。
教学目标。
1、通过回顾与整理以及练习与应用活动,让学生进一步巩固以学过的小数乘除法的计算方法,加深对小数点位置移动引起小数大小变化的规律的理解。
2、培养学生乐于学习,乐于与同伴合作并分享学习成果的良好学习品质。
教学重点。
与难点加深对小数乘除法计算方法,以及数学规律的'认识。
教具多媒体课件。
根据学生学习情况随机板书。
教学过程。
师生双边活动。
改进意见。
一、回顾与整理。
这一单元,你了解了什么规律?学会了哪些计算?
学生小组交流,集体汇报。
二、练习与应用。
1、口算练习。
学生独立口算,集体订正。
2、第2题。
引导学生将后面六栏中的两个因数分别与第一栏进行比较,明确当一个因数不变时,另一个因数乘或除以几,那么积也随着乘或除以几,从而初步体会积的变化规律。
3、用竖式计算。
学生独立计算,师计时,并巡视指导,集体交流,指名说说计算方法。
4、第4题。
让学生根据题目的特点,判断哪几题的商小于1,再通过计算验证开始的判断是否正确。
5、第5题。
让学生说说每道题的改写方法,弄清是乘进率还是除以进率,再决定小数点是向右移动还是向左移动。
三、全课小结。
通过今天的整理与复习,你有哪些收获?你觉得在计。
教学过程。
师生双边活动。
改进意见。
算小数乘、除法时应注意些什么?
学生自由发表意见,全班交流。
四、作业。
完成《学习与探究》。
课后小记:
最新圆与圆的位置关系的教案(热门17篇)篇二
20xx.11.17早上第二节授课班级:初三、1班授课教师:
过程与方法目标:
2.通过例题教学,培养学生灵活运用知识的解决能力。
情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。
利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。
学生看投影并思考问题。
调动学生积极主动参与数学活动中.。
探究新知。
1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。
布置作业。
1、课本第101页7.3a组第2、3题。
2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。
最新圆与圆的位置关系的教案(热门17篇)篇三
2、过程与方法。
(1)当时,圆与圆相离;
(2)当时,圆与圆外切;
(3)当时,圆与圆相交;
(4)当时,圆与圆内切;
(5)当时,圆与圆内含;
3、情态与价值观。
让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想、
问题。
设计意图。
师生活动。
结合学生已有知识以验,启发学生思考,激发学生学习兴趣、
教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流、
引导学生明确两圆的位置关系,并发现判断和解决两圆的位置。
问题。
设计意图。
师生活动。
关系的方法、
学生观察图形并思考,发表自己的解题方法、
3、例3。
你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么?
培养学生“数形结合”的意识、
进一步培养学生解决问题、分析问题的能力、
师:启发学生利用图形的特征,用代数的方法来解决几何问题、
5、从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗?
进一步激发学生探求新知的精神,培养学生。
师:指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的'位置、
师:对于两个圆的方程,我们应当如何判断它们的位置关系呢?
7、阅读例3的两种解法,解决第137页的练习题、
巩固方法,并培养学生解决问题的能力、
师:指导学生完成练习题、
生:阅读教科书的例3,并完成第137页的练习题、
问题。
设计意图。
师生活动。
8、若将两个圆的方程相减,你发现了什么?
得出两个圆的相交弦所在直线的方程、
师:引导并启发学生相交弦所在直线的方程的求法、
生:通过判断、分析,得出相交弦所在直线的方程、
9、两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系的判定呢?
进一步验证相交弦的方程、
师:引导学生验证结论、
生:互相讨论、交流,验证结论、
10、课堂小结:
教师提出下列问题让学生思考:
(3)如何利用两个圆的相交弦来判断它们的位置关系?
作业:习题4、2a组:4、7、
最新圆与圆的位置关系的教案(热门17篇)篇四
1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆;能应用圆的知识解释一些日常生活现象。
2、使学生在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。
在观察、操作、画图等活动中感受并发现圆的有关特征,能借助工具画图,能用圆规画指定大小的圆。
教学难点:能应用圆的知识解释一些日常生活现象。
教学准备:多媒体课件,一些圆形物体和圆形纸片,圆规。
学具准备:圆规、学具以及收集的一些圆形物体的图片。
课前谈话:羊吃草的故事(猜谜)。
有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。
先请同学们猜测一个字。再猜两个字的水果名。
师:我们来看一看羊吃草的.范围有多大?
(用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆。)。
一、谈话导入。
1、对于圆,同学们一定不会感到陌生吧,生活中,你们在哪儿见过圆形?
4、有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起去探索圆的奥秘,好吗?(板书课题:圆的认识)。
二、动手尝试,认识圆的特征。
(一)、初步认识圆。
1、说了这么多圆,看了这么多圆,你想不想亲自动手画一个圆?先动脑筋想一想,再用你手头的的。(问题就只工具动手画一画。(学生动手画圆)。
2、引导学生交流所画的圆,并让学生说说是怎样画要停留在借助什么来画的,不要作过深的追问)。
3、比较:看看你所画的圆,和以前学过的平面图形有什么不同?
交流:以前所学的图形都是由线段围成的,而圆是由曲线围成的。
(二)、用圆规画圆。
1、刚才有同学用圆规画出了一个圆,其他同学会画吗?请拿出准备的圆规,在白纸上画一个圆。
交流:谁来说说用圆规是怎样画圆的?或者说在画的过程中要注意些什么?(指名交流,引导学生说出圆规的使用方法。)。
要点:针尖要戳在纸上,另一只脚是笔,两脚随意叉开。
3、全班画一个直径是4厘米的圆:我们把两脚叉开4厘米来画一个圆。(画好的同学拿出剪刀,把画的圆剪下来。)。
(三)、圆各部分名称。
1、圆和其它图形一样也有它各部分的名称,请同学们打开书,把例2的一段话认真地读一读。
2、反馈交流:你知道了关于圆的哪些知识?
(圆心、半径、直径,分别用字母o、r、d表示。)。
根据学生回答,教师在黑板上板书。并要求学生在自己的圆上将个部分标一标、画一画。
3、完成“练一练”第1题。
出示3个圆,分别判断,说说是怎样想的。
(四)、圆心、半径、直径的关系。
1、学到现在,关于圆,该有的知识我们也探讨地查差不多了。那你们觉得还有没有什么值得我们深入地去研究?其实不说别的,就圆心、直径、半径,还藏着许多丰富的规律呢,同学们想不想自己动手研究研究?大家手头都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请大家动手折一折、量一量、比一比、画一画,相信大家一定会有不小的收获。另外,我还有两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在自备本上,到时候一起来交流。第二,实在没啥研究了,老师还为每个小组准备了一份研究提示,到时候打开看看,或许会对大家有所帮助。
学生小组活动。
2、反馈交流:
要点:
(1)、在同一个圆里可以画无数条半径,无数条直径。(强调在同一个圆里)。
(2)、在同一个圆里,半径的长度都相等,直径的长度也都相等。(强调在同一个圆里)。
(3)、同一个圆里半径是直径的一半,r=2/d;直径是半径的2倍,d=2r。
(4)、圆是轴对称图形,有无数条对称轴,这些对称轴就是圆的直径。
还有其他的发现吗?学生可以自由说。
3、完成练习十七第1题。
学生自由填表,反馈交流。
三、应用拓展。
完成“练一练”第2题。
(1)、读题,说说是怎样理解题意的。(注意说清直径是5厘米,圆规两脚叉开即半径应该是2.5厘米)。
(2)、学生画一画,反馈交流。
四、全课总结。
通过大家的探究,我们已经获得了许多关于圆的知识,现在让我们再来看看刚才的画面(课件再次显示)。
这不就是圆的魅力所在吗?
五、布置作业。
最新圆与圆的位置关系的教案(热门17篇)篇五
尊敬的各位评委,亲爱的各位同行,大家好!今天我的说课内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。
一、教材分析。
教材的地位和作用。
圆在平面几何中占有重要地位,它被安排在初中数学第二十四章,属于一个提高阶段。而直线和圆的位置关系又是本章的一个中心内容。从知识体系上看:它有着承上启下的作用,既是对点与圆的位置关系的延续与提高,又是后面学习切线的性质和判定、圆和圆的位置关系及高中继续学习几何知识的基础。从数学思想方法层面上看:它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。
二、学情分析。
在此之前学生已经学习了点和圆的位置关系,对圆有了一定的感性和理性认识,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之九年级学生好奇心强,活泼好动,注意力易分散,认知水平大都停留在表面现象,对亲身体验的事物容易激发求知的渴望,因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。
三、教学目标:
根据学生已有的认知基础及本课的教材的地位、作用,结合数学课程标准我将确定如下的教学目标:
(2)通过观察、实验、合作交流等数学活动使学生了解探索问题的一般方法;
陪养学生观察、分析和概括的能力;
(4)体会事物间的相互渗透,感受数学思维的严谨性,并在合作学习中体验成功的喜悦。
教学的重难点:
最新圆与圆的位置关系的教案(热门17篇)篇六
1、圆的定义:
到定点的距离等于定长的点的集合。
在圆内、在圆上、在圆外(由点和圆心的距离与圆的半径大小来确定)。
3、弦、直径、孤、弓形、半圆、同心圆、等圆、等孤等概念。
等弧一定要强调要在同圆或等圆中;半圆不包括直径。
4、过三点的圆(三角形的外心)。
经过三角形三个顶点的圆叫三角形外接圆;外接圆的圆心叫三角形的外心;三角形的外心是三条边中垂线的交点,到三个顶点距离相等;直角三角形外心在斜边上、锐角三角心外心在三角形内、钝角三角形外心在三角形外。
5、垂径定理及其推论:
定理及推论1:直线过圆心、垂直弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧这五要素中用其中两个要素做条件就能推导出其它三个要素都成立。若用过圆心、平分弦做条件时要强调被平分的弦不是直径。
推论2:平行弦所夹的弧相等。
6、圆心角、弦、弦心距、弧的关系:
圆心角、弧、弦、弦心距之间的相等关系必须要在同圆或等圆中才能成立;
弧的度数就等于它所对圆心角的度数。
7、圆周角定理及推论:
圆周角的定义:顶点在圆上,角的两边都与圆相交。
圆周角的定理:圆周角等于同弧所对圆心角的一半。
推论1、在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等,它所对的弧也相等。
推论2:直径和半圆所对的'圆周角等于90度,90度的圆周角所对的弦是直径,所对的弧是半圆。
推论3、三角形一边的中线等于这一边的一半时,这个三角形是直角三角形。
8、圆内接四边形:
定义:四个顶点都在圆上的四边形。
定理:圆内接四边形对角互补。
推论:圆内接四边形的外角等于它的内对角。
相交、相切、相离(由公共点个数或圆心到直线距离和圆的半径大小来确定)。
10、切线的判定和性质:
定义:与圆只有一个公共点的直线。
判定定理:经过半径的外端且垂直于半径的直线是圆的切线。
性质定理:经过切点的半径必垂直于切线。
推论1:经过切点且垂直于切线的直线必经过圆心。
推论2:经过圆心且垂直于切线的直线必经过切点。
11、三角形内切圆:
定义:与三角形三边都相切的圆叫三角形内切圆、内切圆的圆心叫三角形内心。内心是三角形三条角平分线的交点,到三角形三边距离相等。
12、切线长定理:
定理:圆外一点到圆的两条切线的长相等,这个点与圆心的连线要平分两条切线的夹角。
(圆内切四边形对边相加相等)。
13、弦切角:
定义:一条边是圆的切线,顶点是切点,另一条边与圆相交的角;
定理:弦切角等于它所夹弧对的圆周角。
推论:两个弦切角所夹的弧相等,这两个弦切角相等。
14、和圆有关的比例线段:
相交弦定理及推论、切割线定理及推论。
最新圆与圆的位置关系的教案(热门17篇)篇七
"思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。
在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:
开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。
在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。
在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。
一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:
1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。
2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。
3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现"授人以鱼不如授人以渔"。
总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。
最新圆与圆的位置关系的教案(热门17篇)篇八
杨跟上。
一:教材:
人教版九年义务教育九年级数学上册二:学情分析。
初三学生已经具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,能在倾听别人意见的过程中逐渐完善自己的想法,因此本节课设计了探究活动,给学生提供探索与交流的空间,体现知识的形成过程。
三教学目标(知识,技能,情感态度、价值观)。
1、知识与技能。
能综合运用以前的数学知识解决与本节有关的实际问题。
3.情感态度与价值观。
(1)通过和点与圆的位置关系的类比,学习直线与圆的位置关系,培养学生类比的思维方法。
(2)培养学生的相互合作精神四:教学重点与难点:
五:教学方法:
启发探究。
六、教学环境及资源准备。
1、教学环境:学校多媒体教室。2.教学资源。
(1).教师多媒体课件,(2)学生准备硬币或其他类似圆的用具。
1、自主学习策略:通过提出问题让学生思考,帮助学生学会探索直线与圆的位置关系关系。
2、合作探究策略:通过学生动手操作与相互交流,激发学生学习兴趣,让学生在轻松愉快的教学气氛下之下掌握直线与圆的位置关系。
3、理论联系实际策略;通过学生综合运用数学知识解决直线与圆的位置关系的实际问题,培养学生利用知识解决实际问题的能力。
教学流程:
一.复习回顾,导入新课。
由点和圆的位置关系设计了两个问题,让学生独立思考,然后回答问题,为下面做准备。
二:合作交流,探求新知。
第一步,学生对直线与圆的公共点个数变化情况的探索。
通过学生动手操作和探索,然后相互交流,并画出图形,得出直线与圆的公共点个数的变化情况。
第二步,师生共同归纳出直线与圆相交、相切等有关概念。
1.设圆o的半径为r,圆心o到直线的距离为d,那么直线与圆在不同的位置关系下,d与r有什么样的数量关系?请你分别画出图形,认真观察和分析图形,类比点和圆的位置关系,看看d和r什么数量关系。
我设计了两个问题,使学生学会通过计算圆心到直线的距离,来判断直线与圆的位置关系。四:巩固提高:
在本节的教学中,我设计了两个练习、一个作业加以巩固,使学生能更好的掌握本节内容。
最新圆与圆的位置关系的教案(热门17篇)篇九
三、目的分析:
1、知识目标:
2、能力目标:
要使学生体会用代数方法处理几何问题的思路和“数形结合”的思想方法。
四、教法分析:
1、教学方法:启发式讲授法、演示法、辅导法。
2、教材处理:
(1)例题1(1)(2)用两种不同的办法求解,让学生自己体会这两种方法。
通过老师引导和让学生自己探索解决,反馈学生的解决情况。
(2)增加一个过一点求圆的切线方程的题型,帮助学生增加对直线与圆的认识。
3、学法指导:本节课的学法是继续指导学生把新问题转化为已有知识解决的化归思想。
4、教具:多媒体电脑、投影仪、自做多媒体。
五、过程分析:
教学。
环节。
教学内容。
设计意图。
新课引入。
1、学生观察日出照片,把观察到的情况用自己的语言说出来,抽象出几何图形,在学生回答的基础上,通过多媒体演示圆与直线的三种位置关系。让学生感受到数学产生于生活,与生活密切相关,并能使学生更好的直观感受直线和圆的三种位置关系。然后引入本节课的课题。
2、在上一章,我们在学习了直线的方程后,研究了点和直线、直线与直线的位置关系,本章我们已经学习了圆的方程,现在我们要研究直线与圆以及圆与圆的位置关系。
1数学产生于生活,与生活密切相关。
2、以实际问题引入有利于激发学生学习数学的兴趣,有利于扩展学生的视野。
新课讲解。
一、知识点拨:
答:把圆心到直线的距离d和半径r比较大小:
最新圆与圆的位置关系的教案(热门17篇)篇十
《点与圆的位置关系》教学反思本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。教师如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中点和圆的位置关系让学生经历了由图形关系联想到数量关系、由数量关系联想到图形关系的过程,是学生真正理解点和圆的位置关系与点到圆心的距离和半径之间关系的等价。
2、经过一个点可以作几个圆?
3、经过两个点可以作几个圆?圆心有什么特点?
4、经过不在同一直线上的三点可以作几个圆?
5、过在同一直线上的三点能作圆吗?如果不能如何证明。
6、经过三角形三个顶点的圆即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。
归纳:点与圆有哪几种位置关系?点与圆的位置关系可以根据什么来判定?通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,提高了课堂效率;同时,通过对这节课的反复推敲设计与反思,我也深切感受到对教材研究的重要性。
最新圆与圆的位置关系的教案(热门17篇)篇十一
一、教学目标:
根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:
(1)知识目标:
a、知道直线和圆相交、相切、相离的定义。
会根据直线和圆相切的定义画出已知圆的切线。
c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
2)能力目标:
让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
3)情感目标:
在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。
二、教材的重点难点。
直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。
三、教学重点和难点。
解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。
在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。
(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。
(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。
(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,
3.直线l与圆o相离=dr。
(上述结论中的符号“=”读作“等价于”)。
式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。
四、教学程序。
[提问]通过观察、演示,你知道直线和圆有几种位置关系?
[讨论]一轮红日从海平面升起的照片。
[新授]给出相交、相切、相离的定义。
[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。
最新圆与圆的位置关系的教案(热门17篇)篇十二
本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。
讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。
本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。
重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。
教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。
最新圆与圆的位置关系的教案(热门17篇)篇十三
重点:的性质和判定.因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础.
难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解.
3.教法建议。
本节内容需要一个课时.
(2)在中,以“形”归纳“数”,以“数”判断“形”为主线,开展在组织下,以学生为主体,活动式.
第12页 。
最新圆与圆的位置关系的教案(热门17篇)篇十四
并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时。
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。
新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”,让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关注学生思维的状态与学习互动的状态。
最新圆与圆的位置关系的教案(热门17篇)篇十五
本节课的教学设计本着这样的一个目的,在动眼、动手、动脑中创设轻松、自主的课堂气氛,使学生掌握获得知识的方法,体验学习的快乐。
在整个课堂教学设计中,我做到了四个重视。第一,重视培养学生的创新意识和初步的探索教学内容的能力。具有探索性、开放性,能给学生创设自主探索的机会;第二,重视数学知识与实际应用的紧密联系,能引导学生联系自己的生活经验和已有的知识学习数学,并能把学到的数学知识应用到实践中去;第三,重视发挥学生的主体作用,指导学生从各种数学活动中学习数学,通过自己的动手、动脑实践,不断探索来获得知识并应用知识;第四,重视激发学生学习数学的兴趣,培养喜爱数学的情感,树立学好数学的信心,发扬敢想、敢说、敢争论的精神。
在实际教学过程中,为了让学生清楚感知圆和圆的五种位置关系,让学生分组摆一摆,再进行组间比一比。讨论后逐一归纳出五种位置关系及数学定义。并进行篮球赛标设计,使学生在紧张热烈竞争中巩固了知识。课堂中轻松的'量一量,让学生在验证中直观地认识到两圆的半径、圆心距间的关系。在动眼、动手、动脑中再一次巩固了知识。
纵观整个课堂教学过程,动手与动脑的结合不仅让学生收获颇多,而且教者也回味无穷。使我更加感受到“四个重视”的重要性。但在本节课的教学中还存在着一定的不足。如:时间安排不够合理,前松后紧。虽也能按时完成教学任务,但总觉得有点姗姗开场却草草收尾的意味。在以后的教学中,我将继续努力,让我和学生在课堂中都能时刻享受到知识带来的快乐。
最新圆与圆的位置关系的教案(热门17篇)篇十六
对于今天的课,同行们褒贬不一,我也有自己的想法。
从前讲过多次研究课,都没有及时写出课后反思,今天却例外,因为我感到,在教学多年以后,需要思考的东西却更多了。
一、教师的主导作用和学生主体地位之间的关系。
最近两年一直给普通班的学生授课,其中也有几个数学尖子,可是这个学期,由于毕业升学考试的需要,按照总体成绩排队,这样我的学生就是纯粹的学习落后生了。为了让学生能够在最后的一年里提高对数学的兴趣,树立学习的自信,我放慢进度,给学生创造条件,让他们亲身经历探索的过程,了解数学的真谛,对基本概念、定理等有深入的研究,知道他们从哪里来,怎么来的,又要用到哪里去。有时候为了让学生能够自己去观察、猜想、验证、归纳和总结,一节课不行,我就用两节课。经过一段时间的努力,我惊喜地发现,原来从不及格几乎放弃学习数学的学生,在课堂上流露出自信的微笑,眼中放射出为自己骄傲的光芒。就在期中考试后,有四名学生的成绩达到103分以上,在全年级明列前茅,有两名学生被提高班录取。也正是他们,让我感到做一名教师的分量有多重。这也许就是大家所说的教师的主导作用吧。
我想,教师的主导作用应当体现在每一节课的课堂教学中,更应该体现在整个教学过程中,所以当我面对这样一批学生的时候,全然不顾大约40位老师的观摩,时间一点点过去了,在学生终于得出结论的时候,下课的时间到了,预设的练习题没有做,于是显得这节课不够完整。
同行们针对这节课的前松后紧,而归结为忽视教师的主导作用,过分强调学生的主体地位,这一点值得我去思考,如何把握这个度,在以后的教学实践中,还应该努力去探索。
二、要加强多媒体辅助教学的实效性。
由于学校的条件有限,使用投影布,就遮住了大部分黑板,而且还要关灯,拉窗帘,感觉像是看电影,也容易让学生感觉困倦、压抑。所以平时用的时候,都是不得以才用。今天有摄像,又有那么多老师听课,这些琐事都不好做了,于是我的课间作的很精细,却让我感觉施展不开,很是别扭。
听过武春兰老师讲过运用几何画板作图形的迭代,很漂亮,可是没有机会去学习,平时也没有特别的研究,基本的演示可以做,更多细节完善的地方就不会了。所以今天的课,我使用了ppt和几何画板的超级链接,在切换的过程中有点浪费时间,也显得衔接的不自然。
到了晚上,我又一次打开几何画板,仔细打开每一个菜单,还真的弄明白了几个问题,看来以后要主动学习更多的知识,只有加强各方面的技能,才能够在教学过程中,灵活运用,真正起到辅助教学的作用。
三、合理设计情境,发挥教学资源的作用。
我选用的日食图片及其形成过程,还有套圈游戏的图片,只是起到了欣赏、直观感受的'作用,当老师们提到,对于探索能力差的学生来说,如果让他们在套圈游戏中寻找圆和圆的位置关系,可能比自己画图、摆图形更节省时间。一个直观,一个抽象,当然直观图形要易于学生掌握。当时在设计的时候,我是想让学生通过两圆相对运动来发现各种位置关系,从而体现运动变化的观点和体会分类的思想,这样对于一批学习落后的学生来说,有助于他们日后思维能力的形成,学会观察,学会思考,能够用辩证的观点对待学习和生活,树立正确的世界观和人生观。所以我感觉我的目的还是达到了,同学们都在积极地思维,都有了自己的想法,尽管不够完美,但毕竟是自己研究的成果,这个过程我认为是最重要的,也体现了课标的要求,让学生亲身经历探索的过程,获得愉悦的体验。
是“绿耕”让我停下教育的脚步,认真反思过去多年来在教育过程中存在的问题,同样还是“绿耕”,给我一个提高的机会,让我站在理论的高度,去展望更好的教育前景。……我想了很多,以后的路还长,需要实践的东西也太多,不断努力吧!
最新圆与圆的位置关系的教案(热门17篇)篇十七
《点与圆的位置关系》是人教版九年级上册第二十四章第二节,这一节分为两个部分(即点与圆的位置关系和外接圆、外心),本节课主要学习了点与圆的三种位置关系。在理解圆的定义的基础上展开了点与圆的位置关系教学,通过圆的定义得到了圆内点到圆心的距离都小于半径,圆上点到圆心的距离都等于半径,圆外点到圆心的距离都大于半径,每一个圆都把平面上的点分成三部分:圆内的点、圆上的点和圆外的点。学生理解透彻,掌握较好。
反思教学方法:
本节课我结合九年级学生的认知特点,从学生已有的生活经验和知识出发,让学生通过自己归纳,、总结,并且主动的研究,从而学会知识。学生先学,先练,老师后讲,后教,促使他们在自主探究的过程中,真正理解和掌握数学知识,数学思想和数学方法,同时获得广泛的数学经验,效果较为理想。
反思目标完成情况:
目标1:学生能够清楚的口述点和圆的位置关系以及相对应的点到圆心的距离和半径的大小关系。
目标2:通过动手探究,知道了不在同一条直线上的三个点可以确定一个圆。但有十个同学因动手作图能力差,最后实在别人的帮助下完成的自学任务,还有三个同学竟然没有作图工具。
目标3:掌握了三角形的外接圆和外心概念,都能准确的找见三角形的外心并作出三角形的外接圆。
每个环节缺少相对应的练习题是这节课最大的失败之处,因为课前考虑到学生的动手探究能力差,耗时,为了完成教学任务,因此没有设置相应的练习题。特别是在“探究1”环节,学生虽对点与圆的位置关系掌握较好,但在一般的习题中,多考查由“点到圆心的距离”推出“点和圆的位置关系”,反推得难度相对于顺推稍高,所以恐学生解决问题存有困难,且解题过程的书写存有问题,在课后辅导中要进行训练。