总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。那么我们该如何写一篇较为完美的总结呢?下面是我给大家整理的总结范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
高三数学常考知识点总结归纳篇一
log.a(mn)=logam+logn
loga(m/n)=logam-logan
logam^n=nlogam(n=r)
logbn=logan/logab(a>0,b>0,n>0 a、b均不等于1)
二、简单几何体的面积与体积
s直棱柱侧=c_h(底面周长乘以高)
s正棱椎侧=1/2_c_h′(底面的周长和斜高的一半)
设正棱台上、下底面的周长分别为c′,c,斜高为h′,s=1/2_(c+c′)_h
s圆柱侧=c_l
s圆台侧=1/2_(c+c′)_l=兀_(r+r′)_l
s圆锥侧=1/2_c_l=兀_r_l
s球=4_兀_r^3
v柱体=s_h
v锥体=(1/3)_s_h
v球=(4/3)_兀_r^3
三、两直线的位置关系及距离公式
(1)数轴上两点间的距离公式|ab|=|x2-x1|
(2) 平面上两点a(x1,y1),(x2,y2)间的距离公式
|ab|=sqr[(x2-x1)^2+(y2-y1)^2]
(3) 点p(x0,y0)到直线l:ax+by+c=0的距离公式 d=|ax0+by0+c|/sqr
(a^2+b^2)
(4) 两平行直线l1:=ax+by+c=0,l2=ax+by+c2=0之间的距离d=|c1-
c2|/sqr(a^2+b^2)
同角三角函数的基本关系及诱导公式
sin(2_k_兀+a)=sin(a)
cos(2_k_兀+a)=cosa
tan(2_兀+a)=tana
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana
sin(2_兀-a)=-sina,cos(2_兀-a)=cosa,tan(2_兀-a)=-tana
sin(兀+a)=-sina
sin(兀-a)=sina
cos(兀+a)=-cosa
cos(兀-a)=-cosa
tan(兀+a)=tana
四、二倍角公式及其变形使用
1、二倍角公式
sin2a=2_sina_cosa
cos2a=(cosa)^2-(sina)^2=2_(cosa)^2-1=1-2_(sina)^2
tan2a=(2_tana)/[1-(tana)^2]
2、二倍角公式的变形
(cosa)^2=(1+cos2a)/2
(sina)^2=(1-cos2a)/2
tan(a/2)=sina/(1+cosa)=(1-cosa)/sina
五、正弦定理和余弦定理
正弦定理:
a/sina=b/sinb=c/sinc
余弦定理:
a^2=b^2+c^2-2bccosa
b^2=a^2+c^2-2accosb
c^2=a^2+b^2-2abcosc
cosa=(b^2+c^2-a^2)/2bc
cosb=(a^2+c^2-b^2)/2ac
cosc=(a^2+b^2-c^2)/2ab
tan(兀-a)=-tana
sin(兀/2+a)=cosa
sin(兀/2-a)=cosa
cos(兀/2+a)=-sina
cos(兀/2-a)=sina
tan(兀/2+a)=-cota
tan(兀/2-a)=cota
(sina)^2+(cosa)^2=1
sina/cosa=tana
两角和与差的余弦公式
cos(a-b)=cosa_cosb+sina_sinb
cos(a-b)=cosa_cosb-sina_sinb
两角和与差的正弦公式
sin(a+b)=sina_cosb+cosa_sinb
sin(a-b)=sina_cosb-cosa_sinb
两角和与差的正切公式
tan(a+b)=(tana+tanb)/(1-tana_tanb)
tan(a-b)=(tana-tanb)/(1+tana_tanb)
<
高三数学常考知识点总结归纳篇二
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中x≠kπ+π/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法
三、函数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法
四、函数的最值的常用求法:
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法
五、函数单调性的常用结论:
1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
2、若f(x)为增(减)函数,则—f(x)为减(增)函数。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
高三数学常考知识点总结归纳篇三
数列
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合
1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法。