六年级教案是教师在教学中的参考依据,能够帮助教师有条不紊地进行教学活动。请大家仔细研读下面这些教案样本,思考如何将其应用到自己的教学实践中。
小学六年级解比例教案范文(22篇)篇一
教学目标:
使学生学会解比例的方法,进一步理解和掌握比例的基本性质。
教学重点:
使学生掌握解比例的方法,学会解比例。
教学难点:
引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程:
一、导人新课。
上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识,这节课我们要学习解比例。
二、新课。
组织学生看书自学什么叫做解比例呢?(我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的.基本性质来解。)。
1.教学例2。
首先让学生根据数据分析哪两个比可以列成比例式,然后让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。”
或者可以列成这样的式子。
问题:“根据比例的基本性质可以把它变成什么形式?
教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数x的值。提醒解比例也应写“解:”。
教师:从解比例的过程,我们可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
2.教学例3。
解比例。
提问:“这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?”(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。)。
学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边。
问题:“这个方程你们会解吗?”
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。
3.总结解比例的过程。学生自己归纳总结。
提问:“刚才我们学习了解比例,大家回忆一下,解比例要做什么?”
(1)根据比例的基本性质把比例变成方程。
(2)用解方程的方法求解。
问题:“从上面的过程可以看出,在解比例的过程中哪一步是新知识?”(根据比例的基本性质把比例变成方程。)。
4.完成“做一做”的内容。
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习。
四、课堂小结。
说说这节课你学到了什么?怎样解比例。
教学反思:
解比例一课是在学习好比例的基本性质后学习的,教学解比例之前,先复习根据比例的意义和除法中各部分间的关系可以求比例里的未知项。然后告诉学生,还可以根据比例的基本性质来求比例里的未知项。教学前,我认为要求比例里的未知项,学生不但可以根据比例的意义、除法中各部分之间的关系来求,还可以根据分数的基本性质、比的基本性质来求出比例中的未知项,部分学生也能根据刚学的比例的基本性质来求。所以教学时,我设计了多条题目,让学生根据比例式的特点,选择不同的方法来填出比例中的未知项。学生完成的情况非常理想。都能根据题目特点选用不同的方法解决,其中包括依据比例的基本性质来求的。
小学六年级解比例教案范文(22篇)篇二
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)。
每次拿的支数。
10。
5
4
2
1
拿的次数。
总支数。
小学六年级解比例教案范文(22篇)篇三
p53~54、第4~13题,思考题,正、反比例应用题的练习。
进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。
p53第4题,口答并说明理由。
1、做练习十第5题。
2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?
用比例的知识怎样解答呢,请大家自己做一做。
评讲:说一说是怎样想的?
(板书:速度×时间=路程(一定)=反比例=正比例。
提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
3、练习:(略)。
3、练习十第11题。
启发学生用几种方法解答。
4、做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?
(2)把树苗总数看做单位“1”,成活棵数是94%,你还能用比例知识解答吗?
引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?
通过本课的练习,你进一步明确了哪些内容?
第8、9、10题。
第6、7、12题。
小学六年级解比例教案范文(22篇)篇四
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
(2)说明:这道题还可以用比例知识解答。
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。
三、巩固练习。
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结。
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业。
完成练习十三第2~6题的解答。
小学六年级解比例教案范文(22篇)篇五
《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先引导学生回忆已学过的数量关系,通过举例、交流,知识迁移,体会生活中存在着大量的反比例的关系,在此基础上探求新知,最后深化新知。
在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题“反比例”,例题学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究,在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。
这节课是在学生学习正比例的基础上进行教学的。教学时充分相信学生、尊重学生,改变传统的教学模式,学生由被动学习转化为主动学习,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
情感与态度目标:体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
重点:理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
难点:掌握反比例的特征,能够正确判断反比例关系。
小组合作,归纳推理,探究交流。
多媒体课件。
1课时。
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望。
(二)共同探索,总结方法。
1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米)302015105。
底面积(平方厘米)1015203060。
体积(立方厘米)。
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识。
【板书设计】反比例。
高度(厘米)302015105。
底面积(平方厘米)1015203060。
体积(立方厘米)300300300300300。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
高×底面积=水的体积(一定)。
反比例关系式:x×y=k(一定)。
小学六年级解比例教案范文(22篇)篇六
2.使学生能正确判断正、反比例.。
教学重点。
正、反比例的联系和区别.。
教学难点。
能正确判断正、反比例.。
教学过程。
一、复习准备。
判断下面每题中两种量成正比例还是成反比例.。
1.单价一定,数量和总价.。
2.路程一定,速度和时间.。
3.正方形的边长和它的面积.。
4.时间一定,工效和工作总量.。
二、新授教学。
(一)出示课题。
小学六年级解比例教案范文(22篇)篇七
二、小组协作概括“成反比例的量”的意义。
(一)活动??
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)。
6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)。
1、课件出示例3,指名读题,学生独立完成。
2、总结归纳出正比例和反比例的相同点和不同点。
三、强化练习发展提高。
1判定两个量是否成反比例,主要看它们的()是否一定。
2全班人数一定,每组的人数和组数。
()和()是相关联的量。
每组的人数×组数=全班人数(一定)。
所以()和()是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结。
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
小学六年级解比例教案范文(22篇)篇八
1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。2、能运用解比例的方法解决实际问题。【教学重点】掌握解比例的方法,学会解比例。【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学重难点。
【教学重点】掌握解比例的方法,学会解比例。
【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程。
一、创设情境。
上节课我们学习了一些比例的意义,谁能说一说。
1、什么叫比例?
表示两个比相等的式子叫比例。
2、比例的基本性质是什么?
在比例里,两个外项的积等于两个内项的积。
3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6︰10和9︰15()。
20︰5和4︰1()。
5︰1和6︰2()。
4、根据比例的基本性质,将下列各比例改写成其他等式。
3:8=15:403×40=8×15。
9/1.6=4.5/0.89×0.8=1.6×4.5。
5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)。
二、引导探索,学习新知。
1、自学:什么是解比例?请看书第35页。
比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、自主学习例2。
出示思考题:
思考:
(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。
也就是()的高度:()的高度=1:10。
还有几个项不知道?不知道的这个项我们把它叫做()项。
小组内讨论解决问题,汇报:。
(1)把未知项设为x。
(2)根据比例的意义列出比例:(x:320=1:10)。
(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。
(4)根据比例的基本性质可以把它变成什么形式?
(5)这变成了原来学过的什么?(方程。)。
(6)让学生自己在练习本上计算完整。课件出示计算过程。
小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。
解比例的步骤是:
(1)、用比例的基本性质把比例改写成方程。
(2)、应用解方程的知识算出未知数。
3、教学例3。
出示例3:
思考:
(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)。
(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
讨论:
(1)解这种分数形式的比例时,要注意什么呢?
(2)在这个比例里,哪些是外项?哪些是内项?
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。
课件出示:做一做,独立完成后订正。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。
三、巩固应用:。
(一)、填空。
1、解比例x:12=2:24第一步24x=12×2是根据()。
2、把0、3:1、2=0、2:0、8可改写成。
()×()=()×()。
3、把4×5=10×2改写成比例是():()=():()。
4、若甲:乙=3:5,甲=30,则乙=()。
5、在比例中,如果两个内项的积上36,其中一个外项是9,
另一个外项是()。
(二)、判断下列的说法是否正确。
1、含有未知数的比例也是方程。()。
2、求比例中的未知项叫解比例。()。
3、解比例的理论依据是比例的基本性质。()。
4、比就是比例,比例也是比。()。
(三)、根据题意,先写出比例,再解比例。
1、8与x的比等于4与32的比。
2、14与最小的质数的比等于21与x的比。
四、课堂总结:
今天你有什么收获?指生说收获。老师小结。
小学六年级解比例教案范文(22篇)篇九
知识目标使学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。
重点使学会解比例的方法,进一步理解和掌握比例的基本性质。
难点体现解比例在生产生活中的广泛应用。
教学过程。
一、旧知铺垫。
1、什么叫做比例?
3、比例有几种表示形式?
二、探索新知。
1、出示埃菲尔铁挂图。
2、出示例题。
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)。
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)。
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)。
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)。
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)。
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)。
(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)。
(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)。
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)。
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)。
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
2、教学例3。
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)。
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
(5)、=。
总结这节课主要学习了什么内容?
作业布置教材43页5题。
板书设计解比例。
例3、解比例=。
解:2.4=1.5×6。
=×。
小学六年级解比例教案范文(22篇)篇十
在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。
小学六年级解比例教案范文(22篇)篇十一
1.揭示课题。
我们已经学习了正、反比例关系的意义和正、反比例应用题,根据成正、反比例量的关系,可以应用比例的知识解答相应的应用题。这节课,我们练习正、反比例应用题。(板书课题)。
2.基本训练。
小黑板出示练习十第4题,让学生口答并说明理由。结合第(1)题判断说明:在一个乘法表示的式子里(板书:ab=c),如果积一定,另两个量就成反比例;如果一个因数一定,根据乘、除法的关系,另两个量就成正比例。
二、基本题练习。
1.做练习十第5题。
(1)学生读题。
提问:按过去的算术解法,第(1)题要先求什么数量,第(2)题要先求什么数量?用比例的知识怎样解答呢,请大家自己做一做。指名两人板演,其余学生做在练习本上。集体订正。
2.练习小结。
解答正、反比例应用题,都要先判断两种相关联的量成什么比例,找出两种相关联量的对应数值,再列等式解答。解题时,正比例应用题要根据比值一定列等式解答;反比例应用题要根据乘积一定列等式解答。
三、综合练习。
1.做练习十第11题。
让学生默读题目。提问:第一个圆柱的高是第二个圆柱高的还可以怎样说?(第一个圆柱的高和第二个圆柱高的比是4:5,或者第一个圆柱的高看做4份,第二个圆柱的高就是这样的5份)请大家思考两个问题,当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?想一想,你能用几种方法解答,自己在练习本上列出式子。指名学生口答式子,老师板书(包括用分数应用题的方法解答)。让学生根据不同的式子,说说各是怎样想的。说明:按照分数与比之间的联系,有些应用题可以根据数量之间的联系,用分数和比例知识,采用不同的方法解答。
2.做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?(老师板书)这样解答是怎样想的?(把树苗总棵数看做单位1,单位1的94%是470棵,所以列方程解)。
(2)把树苗总数看做单位l,成活棵数是94%,你还能用比例知识解答吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说明列式理由。
四、讲解思考题。
学生默读题目。提问:增加铅以后,铅与锡的比是5:3,有怎样的关系式?根据这样的关系式可以怎样解答呢?请大家课后想一想、做一做。
五、课堂小结。
通过练习,你进一步明确了哪些内容?指出:过去我们学过的先求单一量和先求总数量的应用题,可以用比例知识来解答。解答正、反比例应用题,要先判断成什么比例,找出数量之间对应数值,然后根据比值相等或乘积相等的等量关系,列等式解答。解答应用题,还可以根据数量之间的联系,用不同的方法做。
六、布置作业。
课堂作业:练习十第8、9、10题。
家庭作业:练习十第6、7、12题。
小学六年级解比例教案范文(22篇)篇十二
担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。
小学六年级解比例教案范文(22篇)篇十三
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
能根据正比例的意义,判断两个相关联的量是不是成正比例。
一、课前预习。
预习书19~21页内容。
1、填好书中所有的表格。
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答。
二、展示与交流。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的`比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011。
爸爸的年龄/岁3233。
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
小学六年级解比例教案范文(22篇)篇十四
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
利用反比例的意义,正确判断两种量是否成反比例。
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间。
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
教师板书:零件总数。
每小时加工数×加工时间=零件总数。
3.小结。
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数。
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结。
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
教师板书:xy=k(一定)。
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
完成教材43页做一做。
五、课后作业。
练习七6、7、8、9题。
成反比例的量xy=k(一定)。
每小时加工数×加工时间=零件总数(一定)。
每本页数×装订本数=纸的总页数(一定)。
小学六年级解比例教案范文(22篇)篇十五
1、情感目标:在复习活动中让同学体验数学与生活实际的密切联系,培养同学的数学应用意识,激发同学胜利学习数学和自信心和创新意识,渗透事物间是相互联系的辩证唯物主义观点。
2、能力目标:通过小组合作整理知识框架,提高学习的系统性,培养同学归纳、总结等自我复习能力和团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。
3、知识目标:(1)使同学进一步掌握比和比例的意义、性质,能正确迅速地解比例、化简比和求比值。(2)进一步理解比例尺的意义,能应用比例尺的知识求出平面图的'比例尺以和根据比例尺求图上距离和实际距离。
小学六年级解比例教案范文(22篇)篇十六
1.用已经学过的知识试着将第67页“试一试”中的比化成最简整数比。
学生化简后交流反馈,说说方法。师生共同小结方法及注意点:应用比的基本性质把整数比、小数比、分数比化成最简单的整数比时,第一步一般都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。
2.出示练习题:化简下面各比,并求出比值。
比最简单的整数比比值。
9:54。
34∶67。
5.8∶2.9。
200∶150∶26。
讨论:化简比与求比值有什么区别?(求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数)。
3.学生独立完成练习十五第3题,完成后用投影仪集体订正。
4.拓展练习。
(1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()。
(2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
小学六年级解比例教案范文(22篇)篇十七
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
从不同的角度理解比例尺的意义。
教具准备:小黑板、中国地图一张。
学具准备:学生各自准备一张地图、一张方格纸。
教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。
学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。
师:同学们,你们见过这个成语吗?(板书:以――当――)。
生:以一当十。(指名回答)。
师:那这样的话以三当几?以七当几?你是怎么算的?
生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)。
师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?
生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。
师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。
1、师:如果要给我们教室画一个平面图,它应该是什么形状的?
生:长方形。
师:我们以前测量过教室的长、宽各是多少?
(生:长大约8米,宽大约6米。)。
师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)。
(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)。
师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)。
(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)。
师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?
(观点一:都可以,因为这两个图的比都是4:3。
观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)。
师:是啊,这两个平面图,别人一看会知道我们教室的大概形状,但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)。
引导学生汇报:
(1)直接写上“教室面积大约50平方米。”
(2)在图上标出“长8米、宽6米。”
(3)标上“1厘米=1米”。
(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”
(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)。
师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)。
让生自学课本第30页什么是比例尺?
集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。
(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)。
让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。
2、让学生议一议可以怎样理解比例尺所代表的意义。
图上的1厘米表示实际的多少?(注意单位要统一)。
实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?
图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?
图上距离相当于多少份?实际距离相当于多少份?
(一)基本运用(小黑板出示)。
1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。
判断下列几句话中,哪些比是比例尺,哪些不是.
(1)图上宽与图上长的比是1∶2()。
(2)图上宽与实际宽的比1/400是()。
(3)图上面积与实际面积的比是1∶160000()。
(4)实际长与图上长的比是400∶1()。
(5)图上长与实际宽的比是1∶200()。
通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。
2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。
3、深圳到上海的距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。
在这个基本运用的过程中,鼓励学生用多种方法解。
4、生先独立完成课本第30页1至5题,然后集体订正。
(二)拓展延伸。
1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?
2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。
比例尺。
以一当十。
比
学生的图1:100或分数图上距离:实际距离=比例尺。
(贴)1:200或分数前项一般为1。
(强调比例尺的前项一般为1)。
3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。
小学六年级解比例教案范文(22篇)篇十八
教学内容:教材第99~102页例1~例3。
教学要求:
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
教学重点:认识反比例关系的意义。
教学难点:掌握成反比例量的变化规律及其特征。
教学过程:
一、铺垫孕伏:
1.正比例关。
系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)。
二、自主探究:
1.教学例2。
出示例2某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050。
所需的天数。
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论的结果,得出:
(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)。
2.教学例1。
出示例1。
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?请同学们看第101页1~3自然段。说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。
5.教学例3。
三、巩固练习。
用刚才我们说的判断方法来做几道题。
1.做练一练。
指名学生口答,说明理由。(可以写出数量关系式看一看)。
2.下题两种相关联量成不成反比例?为什么?
一根铁丝,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做练习十二第1题。
四、课堂小结。
五、课堂作业。
练习十二第2~4题。
小学六年级解比例教案范文(22篇)篇十九
教学内容:
教材第106、107页例1,例2。
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:
认识正、反比例应用题的特点。
教学难点:
掌握用比例知识解答应用题的解题思路。
教学过程:
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
(2)说明:这道题还可以用比例知识解答。
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的.等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。
三、巩固练习。
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结。
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业。
完成练习十三第2~6题的解答。
小学六年级解比例教案范文(22篇)篇二十
《反比例》是人教版小学数学义务教育课程标准实验教材第四单元的内容,本节课是在教学了正比例的基础上进行教学的,是小学阶段比例初步知识教学中的重要内容。
二、说教学目标。
以《新课改标准》为依据,综合小学数学教材编排意图。我确定了以下教学目标:
1、通过感知生活中的事例,使学生认识理解并掌握反比例的意义,能够初步的判断两种相关联的量是否成反比例。
2、让学生掌握判断两种相关联的量成不成反比例的方法。培养学生的判断推理能力和逻辑思维能力。
3、在教学中渗透辨证唯物主义观点。
三、说教学重难点。
我在教学时就充分相信学生、尊重学生,把学生由被动听转化为主动学,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观能动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。如:通过直观图示,让学生充分感知、比较、归纳、概括总结出反比例的意义,从而使学生的思维以形象思维过度到抽象思维,采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。
四、说教学设计。
在教学过程的设计上,分为四步:
a)根据班级学生的实际情况对课程资源重新整合和利用,我从创设观察图形的变化中“找规律”引入,目的是为了引导学生找出变化的量和不变的量抽象出关系式,通过对表格的填写、作图象数形结合让学生感到这种变化关系跟正比例关系不同,哪是什么关系呢?调动学生参与学习的积极性,提高了学生比较、分析和综合的能力。
b)通过对“找规律”、“游长城”“分果汁”等不同的生活情境的分析比较,引导学生在关系式、表格、图象、三种不同的表现形中观察在观察中思考,在思考中探索,自主发现其中的规律,并逐渐领会反比例的意义,培养学生的观察能力和思维能力,增强学生的主动性和自觉性,为获取新知奠定基础。
c)引导学生观察比较归纳小结得出反比例的意义后引导学生讨论情境(一)中不成反比例量的原因,加深对新知的理解和消化。
五、说作业设计。
作业是“练一练”第1、2题。
作业的设计不仅巩固了所学的知识,还训练学生应用知识解决实际问题的能力。
小学六年级解比例教案范文(22篇)篇二十一
教材分析:
本单元内容是在学生已经学过比的意义、比的化简与比的应用的基础上学习的。《反比例》内容是前面学习“变化的量”,“正比例”等比例知识的深化,是以后学习函数的基础,起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。反比例关系是数学中比较重要的数量关系,而学生理解反比例的含义往往比较困难。为此,教材密切联系学生已有的生活经验和学习经验,创设了三个情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成反比例的量以及反比例在生活中的广泛存在。
学情分析:
学生已经学习了“变化的量”和“正比例”的有关知识,对比例知识有了初步的了解,因此,在教学时依据教材特点,从学生的实际生活经验和知识水平出发,采用“小组合作交流”的教学方法,让尽可能多的学生主动参与到学习过程中,通过独立思考,合作交流,让学生在原有正比例知识经验的基础上,积极主动去建构新知,最大限度充分发挥学生主观能动性,通过学生观察、思考、感知、交流、比较、归纳等数学教学活动,探究新知,体验到成功的愉悦。
设计理念及意图。
《数学课程标准》明确指出:“自主探索与合作交流是学生学习数学的重要方式”。因此,在教学时充分相信学生,放手让学生在合作交流的基础上,主动探究,自己去发现。为此,教学时先复习一些基本的数量关系,使知识间发生迁移,在此基础上探求新知,最后深化新知。
教学目标:
1、知识与能力:
(1)、结合丰富的实例,认识反比例。
(2)、能根据反比例的意义,初步判断两个相关联的.量是不是成反比例,并能解决生活中的实际问题。
2、方法与途径:
在互动、探究的合作交流活动中,培养学生观察、思考、比较、归纳概括的能力。
3、情感与评价:
使学生在自主探索合作交流中体验成功的愉悦,感受反比例关系在生活中的广泛应用。
教学重点:
理解反比例的意义,掌握判断两种量是否成反比例的方法。
教学难点:
一、复习铺垫,引入课题﹙出示课件﹚。
1、复习:判断下面各题中两种量是否成正比例。
﹙1﹚、文具盒的单价一定,买文具盒的个数和总价。
﹙2﹚、一堆货物一定,运出的和剩下的。
﹙3﹚、汽车行驶的路程一定,行驶的速度和时间。
2、谈话引入:
汽车行驶的路程一定,速度和时间这两种相关联的量不成正比例,那么它成不成比例呢?又会成什么比例?这就是今天要解决的问题。﹙出示课题:反比例﹚今天老师就和同学们一道共同探讨反比例的变化规律。
二、教师引导,自主探索。
﹙一﹚初步感知理解两个变化关系的不同。﹙出示情境﹝1﹞﹚。
1、教师引导学生观察分析加法表。
你们发现了什么?(1)图中表示的是谁与谁之间的关系?
让学生自己总结出:和不变,一个加数随另一个加数的变化而变化,并且所有和为12的数都在同一条直线上。
2、引导学生观察分析“乘法表”中两个量的变化关系。
(2)图中表示的是谁与谁之间的关系?
3、师生共同小结:
由此可见,对于“加法表”和“乘法表”中的两个变量,都是一个量变化,另一个量也随着变化,但是它们的变化关系是不同的。“加法表”表示的是和一定两个加数之间的关系,而“乘法表”表示的是积一定两个乘数之间的关系。所有和为12的数都在同一条直线上,积为12的数成一条曲线。
﹙二﹚探索理解反比例的意义。
1、出示情境﹝2﹞。
﹙1﹚教师引导学生观察表格,把表格填写完整。王叔叔要去游长城。不同的交通工具所需时间如下。
﹙4﹚小结:速度×时间=路程﹙一定﹚。
2、出示情境。
﹝3﹞﹙小组合作交流﹚。
师:请同学们在小组内互相讨论交流,并围绕这三个问题进行讨论。
﹙1﹚填表:
﹙3﹚分的杯数是怎样随着每杯的果汁量变化的?
﹙4﹚它们的变化规律是什么?用表中的数据说明。
每杯的果汁量×分的杯数=果汁总体积﹙一定﹚。
3、学生合作交流比较情境。
﹝2﹞和情境﹝3﹞的共同点,比较概括反比例的概念。
反比例概念:两种相关联的量,如果一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大)相同的倍数,这两种量相对应的两数的积一定。那么,这两种量叫做成反比例的量,它们之间的关系叫做反比例关系。
学生回答后板书:xy=k(一定)。
4、学生归纳总结判断两个量是不是成反比例的方法:判断两个量是不是成反比例,主要是看这两种相关联量的积是不是一定的,同时,还要看这两个量变化规律。
﹙三﹚练习:讨论“加法表”和“乘法表”中两个量是否成反比例。
三、解决问题。
1、判断下面每题中的两个量是否成反比例?并说明理由。﹙出示课件﹚指名学生口答,要求说出数量关系式判断。
﹙1﹚煤的总量一定,每天的烧煤量和能够烧的天数。
﹙2﹚张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
﹙3﹚生产电视机的总台数一定,每天生产的台数和所用的天数。
﹙4﹚跳高的高度和她的身高。
﹙5﹚苹果的单价一定,购买苹果的数量和总价。
2、找一找生活中还有哪些成反比例的例子?
四、全课总结,深化提高。
这节课,你们有了什么新的收获?把你们的收获告诉大家。
五、布置作业:p261、2、3题。
板书设计:
反比例:两种相关联的量,一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大),积一定。
xy=k(一定)。
小学六年级解比例教案范文(22篇)篇二十二
本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:
1.面向全体,重视学生对基本解题方法的理解。
在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。
2.拓展思维,重视学生对解题策略个性化和多样化的体验。
在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。
3.渗透思想,引导学生实现解题策略的优化。
在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。