教学工作计划是教师为了更好地组织教学内容和实施教育教学活动所制定的具体计划。如果你在制定教学工作计划时感到迷茫,不妨看看以下范文,或许会给你一些灵感。
基本不等式教案(实用16篇)篇一
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标。
(1)经历由几何图形抽象出基本不等式的过程;。
(2)体验数形结合思想。
3、情感、态度和价值观目标。
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;。
(2)体会多角度探索、解决问题。
基本不等式教案(实用16篇)篇二
《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:
知识与技能:
1.感受生活中存在的不等关系,了解不等式的意义。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
基本不等式教案(实用16篇)篇三
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标。
(1)经历由几何图形抽象出基本不等式的过程;
(2)体验数形结合思想。
3、情感、态度和价值观目标。
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;
(2)体会多角度探索、解决问题。
【能力培养】。
培养学生严谨、规范的学习能力,辩证地分析问题的能力,学以致用的能力,分析问题、解决问题的能力。
【教学重点】。
应用数形结合的思想理解不等式,并从不同角度探索不等式的证明过程。
【教学难点】。
【教学方法】。
教师启发引导与学生自主探索相结合。
【教学工具】。
课件辅助教学、实物演示实验。
【教学流程】。
shapemergeformat。
【教学过程设计】。
创设情景,引入新课。
赵爽弦图。
1.探究图形中的不等关系。
将图中的“风车”抽象成如图,在正方形abcd中右个全等的直角三角形。
设直角三角形的两条直角边长为a,b那么正方形的边长为。这样,4个直角三角形的面积的和是2ab,正方形的面积为。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:。
当直角三角形变为等腰直角三角形,即a=b时,正方形efgh缩为一个点,这时有。
2.得到结论:一般的,如果。
3.思考证明:你能给出它的证明吗?
证明:因为。
当
所以,,即。
1)特别的,如果a0,b0,我们用分别代替a、b,可得,通常我们把上式写作:
用分析法证明:
要证(1)。
只要证(2)。
要证(2),只要证a+b-0(3)。
要证(3),只要证(-)(4)。
显然,(4)是成立的。当且仅当a=b时,(4)中的等号成立。
基本不等式教案(实用16篇)篇四
知识与技能:
1.理解两个正数的算术平均数不小于他们之积的2倍的不等式的证明。
2.理解两个正数的算术平均数不小于它们的几何平均数的证明以及几何解释。
过程与方法。
本节的学习是学生对不等式认知的一次飞跃。要善于引导学生从数和形俩方面深入的探究不等式的证明,从而进一步突破难点。基本不等式的证明要注重严密性,每一步都有理论依据,培养学生的逻辑能力。
情感,态度与价值观。
培养学生举一反三地逻辑推理能力,并通过不等式的几何解释,丰富学生数形结合的想象力。引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值中的作用,提升解决问题的能力,体会方法与策略。
教学重点和难点。
重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式的证明过程;
难点:理解“=”成立的充要条件。
三、教学过程:
1.动手操作,几何引入。
如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明,体现了以形证数、形数统一、代数和几何是紧密结合、互不可分的。
探究一:在这张“弦图”中能找出一些相等关系和不等关系吗?
在正方形中有4个全等的直角三角形。设直角三角形两条直角边长为,
那么正方形的边长为.于是,
4个直角三角形的面积之和,
正方形的面积.
由图可知,即.
通过学生动手操作,探索发现:
2.代数证明,得出结论。
根据上述两个几何背景,初步形成不等式结论:
若,则.
若,则.
学生探讨等号取到情况,教师演示几何画板,通过展示图形动画,使学生直观感受不等关系中的相等条件,从而进一步完善不等式结论:
(1)若,则;(2)若,则。
请同学们用代数方法给出这两个不等式的证明。
证法一(作差法):
当时取等号。
(在该过程中,可发现的取值可以是全体实数)。
证法二(分析法):由于,于是。
要证明?,只要证明?,即证?,
即?,该式显然成立,所以,当时取等号。
得出结论,展示课题内容。
若,则(当且仅当时,等号成立)。
若,则(当且仅当时,等号成立)。
深化认识:
称为的几何平均数;称为的算术平均数。
基本不等式教案(实用16篇)篇五
不等式基本性质是八年级下册第一章第二节内容,本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。由此本节重点内容是不等式三条基本性质,难点是不等式第三条基本性质,在不等式两端同时乘以(或除以)同一个负数不等号方向改变学生在这一点应用上很难掌握。
另外,本节课在教材安排上意在通过等式基本性质引入新课教学,在新课教学中用不等式实例进行操作,进而推出不等式基本性质,学生通过观察、质疑、发问易于接受新知,根据新课程标准确定学习目标如下:
掌握不等式基本性质,能熟练运用不等式性质解决简单的不等式问题问题。
2.通过观察、实验、猜想、推理等数学学习活动过程,发展合理的推理和初步论证能力。
1.学生在探索过程中感受成功、建立自信。
2.体验在研究过程中创造的快乐,并学会与人交流合作形成良好的人格品质。
难点:第三条性质的应用。
在这一环节教师一方面不断引导学生积极参与教学过程,为适应学生思维发展水平有序引导学生观察分析,由认识到实践再到认识完成认识上的飞跃,圆满完成教学任务,另一方面,教师根据练习情况设疑引导,重在理解不等式性质应用,展开学生思维。
一般说来,这个年龄段的学生开始有比较强烈的自我和自我发展的意识,对于与自己直观相冲突的现象和“挑战性“的任务很感兴趣,要在教学过程中给学生探究问题这样的做数学机会,学生能够在这些活动中表现自我发展自我从而感到数学学习的重要性及其中的.乐趣。
学生在学习本节内容时,可能会在应用第三条性质时遇到困难,尽可能引导学生多练习多总结最终完成学习过程,达到教学目标。
经过以前的学习我们知道在等式的两端同时加上(或减去)同一个整式依然成立,这是等式的性质那么对于上节课我们所学的不等式又有哪些性质呢?这就是今天我们要共同探讨的问题——不等式基本性质。
不仅对旧知的巩固也激发了学生对新知的兴趣。
教师安排学生自己举出一个具体不等式,根据认识规律有序引导学生在不等式两端同时加上(或减去)同一个数,学生会发现不等号两端经运算比较大小后不等号方向没有发生改变,由此推出不等式第一条性质。
在引出第二条性质时,教师有意引导学生用正数参与两端的乘法(或除法)的运算,同学会发现不等号方向仍然没改变,这时可能会有学生发问:用负数呢?这就引起了学生的好奇心和探究热情,经学生自己动手实验与其他同学讨论得出用负数不等号方向发生了改变,至此就得到不等式的第二三条性质。
在这一环节教师运用了“自主参与”和“交流讨论”的教学方式,通过引导和质疑,突出重点,化解难点,从而完成教学任务,收到良好教学效果。
上节课我们已经列出不等关系。
设至少生长x年才能超过2.4m则有不等关系。
0.03x0.052.4。
现我们根据这节课所学将这个问题彻底解决。(将不等式性质应用全过程在板书出来)。
再在黑板上列出两个例题5x32-2x–13。
在这节课我们知道了不等式三条基本性质,并能熟练应用解决简单的不等式问题。
基本不等式教案(实用16篇)篇六
《不等式的基本性质》它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的`内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1.感受生活中存在的不等关系,了解不等式的意义。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
基本不等式教案(实用16篇)篇七
填空:
教师追问:第三题()里可以填多少个数?第4题呢?
为什么3、4题()里可以填无数个数?
()里填任何数都行吗?哪个数不行?(板书:零除外)。
这里为什么必须“零除外”?
(板书课题:分数基本性质)。
4.深入理解分数基本性质.。
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.。
1.用直线把相等的分数连接起来.。
2.把下列分数按要求分类.。
和相等的分数:
和相等的分数:
3.判断下列各题的对错,并说明理由.。
4.填空并说出理由.。
5.集体练习.。
四、照应课前谈话.。
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.。
这节课你有什么收获?
六、布置作业.。
1.指出下面每组中的两个分数是相等的还是不相等的.。
2.在下面的括号里填上适当的数.。
将本文的word文档下载到电脑,方便收藏和打印。
基本不等式教案(实用16篇)篇八
1、教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分求出解集,这是最容易理解的方法,也是最适用的方法。用“大大取较大、小小取较小、大小小大取中间、大大小小取不了”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力。在教学中我要求学生两者皆用。
2、加强对实际问题中抽象出数量关系的数学建模思想教学,体现课程标准中:对重要的概念和数学思想呈螺旋上升的原则。教学中,一方面加强训练,锻炼学生的自我解题能力。另一方面,通过“纠错”题型的练习和学生的相互学习、剖析逐步提高解题的正确性。
3、把握教学目标,防止在利用一元一次不等式(组)解决实际问题时提出过高的要求,重点加强文字与符号的联系,利用题目中含有不等语言的语句找出不等关系,列出一元一次不等式(组)解答问题,注意与利用方程解实际问题的方法的区别(不等语言),防止学生应用方程解答不等关系的实际问题。
4、本节课课堂容量(安排的例题的题量太多)偏大,而且在思维上也有比较特殊的地方,从而导致学生在课堂上的思考的时间不够,课堂时间比较紧张。因此今后在课时的安排上要尽可能的安排更多的课时,以减少每一节课的课堂容量,给学生更多的思考时间和空间,提高课堂的效果。同时还要重视思考题的作用,因为班上有一部分同学体现出基础比较扎实,而且对数学也比较有兴趣,出一些比较难的思考题,能够让这部分学有余力的同学能有所提高。
5、从课堂的效果来看学生对象客观题这样的题型(如:选择题、填空题)用特殊方法解题的思维还不够,他们总是担心会出问题,特别是选择题缺乏比较和分析的能力,因为选择题是一种比较特殊的题型,它的特殊性在于这类题目的答案是已知的,有的学生在做题的时候根本就不看题目中的四个选择答案,实际的解题过程中对于选择题来讲能把四个答案选项分析清楚对提高解题的速度和准确性是很有好处的。但本节课中出现的解客观题的一些特殊的方法在解与不等式有关的题目时特别的有效,但是如果不等式的问题中出现了分类讨论的情况,特殊的方法就有它的局限性,这时就需要学生能够灵活处理了。问题中出现了分类讨论的题目一般来讲都是比较难的题目,教学上我的处理是在教学的过程中如果出现了这类问题就具体跟学生讲解,在学期末的复习时候再跟学生总结。因此要求学生在使用特殊方法用选不等式教学反思教育。
基本不等式教案(实用16篇)篇九
基本不等式是高中数学中的重要知识点,几乎涉及到数学的各方面。我在学习中也遇到过许多疑问和困惑,但是通过不断思考,我逐渐掌握了学习基本不等式的方法和技巧,同时也获得了一些感悟和体会。
基本不等式是不等式中最基础的一个定理。它的形式简单,但蕴含的数学思想却非常深刻。要理解基本不等式,首先要掌握它的公式和证明方法。在此基础上,我们还需要深入思考基本不等式蕴含的数学思想,探究它与数学的其他部分之间的联系。
学会理解基本不等式之后,我们需要学会如何运用它。基本不等式的运用非常广泛,能够解决各种数学问题。在实际运用中,我们需要注意分析题目的特点,灵活选择对应的基本不等式和解题方法,同时避免盲目套公式、死记硬背。
学习基本不等式需要有一定的技巧和方法。在掌握基本思路和公式的基础上,我们还需要学会如何熟练地应用基本不等式,如何用基本不等式证明其他不等式,如何将基本不等式与常规数学问题结合起来等等。
第五段:总结与感悟。
通过学习基本不等式,我不仅加深了对数学知识的理解,也锻炼了自己的思考能力和解题能力。在练习和思考过程中,我还喜欢用预测结果的方法来检验自己的答案,既能够帮助我发现错误,也能够对自己的自信心起到积极的作用。
总之,学习基本不等式需要花费很多的时间和精力,但是它所蕴含的数学思想和解决实际问题的能力却是难以替代的。我相信,通过不断学习和思考,我们都能够领悟出更多的数学智慧和启示,迎接数学挑战的到来。
基本不等式教案(实用16篇)篇十
本节课,教师能较好的分析把握教学内容,教学设计新颖合理,教学组织合理有效,较好的达成了教学目标,教学效果良好。本节课有如下主要亮点:
第一,教学线索清晰。教学中以基本不等式的获得和应用为明线,以数学思想方法的渗透和体会为暗线。在本节课的学习和教学中,明暗线索交相呼应,学生不断的在知识学习的过程中体会数学思想方法的作用,甚至能在例题教学中尝试让学生运用思想方法策略性的思考和学习,学生在知识学习的同时更有对数学认识上的提升,这就使得学生的学习过程自然流畅。
第二,注重知识的本质认识和理解。本节课,就基本不等式这一核心知识而言,教师通过对教学材料的有效处理,为学生呈现了多角度认识知识的机会,特别是设计了基本不等式和重要不等式关系的认识和思考环节,使得学生认识到本节课的两个不等式的和谐、一致。这样的设计促进了学生对基本不等式的本质的认识,利于学生理清本节课的核心知识,而教师在轻松自然间不着痕迹的很好的突出了教学重点,同时也为广大教师提供了一些如何认识基本不等式的新视角。
第三,注重学生参与的实质性、坚持知识获得的生成性。整堂课,教师始终做到学生知识的获得来自于实质的数学活动和生成的深刻性。在本节课,我们可以从学生的情感参与、行为参与、认知参与三个维度观察到,通过学生参与真实意义的数学活动,保证了学生生成的自然合理,并将生成成为知识获得的前提,这样的学习是科学有效的。
当然本节课也还存在一些不足:
整堂课表现出缺少引导学生适时对学习进行反思,这样就失去了一些能让学生体会或可能形成学习策略的机会。尽管教师在核心知识的教学中已经较重视知识的本质认识和理解,但在教学过程中的某些时刻还是表现稍有急躁,没有将知识获得的过程持续完美。从整体上看,整节课的探究水平还是显得稍低尚处于引导探究层次。究其原因,是传统讲授式教学习惯在不经意间的反映。
文档为doc格式。
基本不等式教案(实用16篇)篇十一
根据新课标的要求,本节的重点是应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程,难点是用基本不等式求最值。本节课是基本不等式的第一课时。
在新课讲解方面,我仔细研读教材,发现本节课主要是让学生明白如何用基本不等式求最值。如何用好基本不等式,需要学生理解六字方针:一正二定三等。这是比较抽象的内容。尤其是“定”的相关变化比较灵活,不可能在一节课解决。因为我把这部分内容放到第二节课。本节课主要让学生掌握“正”“等”的意义。
我设计从例一入手,第一小题就能说明“积定和最小”,第二小题说明“和定积最大”。通过这道例题的讲解,让学生理解“一正二定三等”。然后再利用这六字方针就最值。这是再讲解例二,让学生熟悉用基本不等式解题的步骤。然后让学生自己解题。
巩固练习中设计了判断题,让学生理解六字方针的内涵。还从“和定”、“积定”两方面设计了相关练习,让学生逐步熟悉基本不等式求最值的方法。
课堂实施的过程中以学生为主体。包括课前预习,例题放手让学生做,还有练习让学生上台板书等环节,都让学生主动思考,并在发现问题的过程中展示典型错误,及时纠错,达到良好的效果。
不足之处是:复习引入的例子过难,有点不太符合文科学生的实际。且复习时花的时间太多,重复问题过多,讲解琐碎;例题分析时不够深入,由于担心时间不够,有些问题总是欲言又止。练习题讲解时间匆促,没有解释透彻。
基本不等式教案(实用16篇)篇十二
本节课我采用从生活中假设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间、生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而示得,口欲言而示能”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。
下来出示的问题1从学生的生活经验出发,让学生感受生活中数学的存在,不仅激发学生学习兴趣,而且可以让学生直观地体会到在不等关系中存在的一些性质。这一环节上展现给学生一个实物,使学生获得直观感受。
问题2、3的设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。
过问题4让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握、发展学生的辩证思维。
在运用符号评议的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予。这样既调动了学生的学习兴趣,也培养了学生的符号评议表达能力。
练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答音量的时候有点耽误时间。
让学生通过总结反思,一是进一步学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育丰功,用自信蕴育自信,学生以更大的热情投入致以捕捞学习中去。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛活跃。其中不存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。
基本不等式教案(实用16篇)篇十三
本节课,教师能较好的分析把握教学内容,教学设计新颖合理,教学组织合理有效,较好的达成了教学目标,教学效果良好。本节课有如下主要亮点:
第一,教学线索清晰。教学中以基本不等式的获得和应用为明线,以数学思想方法的渗透和体会为暗线。在本节课的学习和教学中,明暗线索交相呼应,学生不断的在知识学习的过程中体会数学思想方法的作用,甚至能在例题教学中尝试让学生运用思想方法策略性的思考和学习,学生在知识学习的同时更有对数学认识上的提升,这就使得学生的学习过程自然流畅。
第二,注重知识的本质认识和理解。本节课,就基本不等式这一核心知识而言,教师通过对教学材料的有效处理,为学生呈现了多角度认识知识的机会,特别是设计了基本不等式和重要不等式关系的认识和思考环节,使得学生认识到本节课的两个不等式的和谐、一致。这样的设计促进了学生对基本不等式的本质的认识,利于学生理清本节课的核心知识,而教师在轻松自然间不着痕迹的很好的突出了教学重点,同时也为广大教师提供了一些如何认识基本不等式的新视角。
第三,注重学生参与的实质性、坚持知识获得的生成性。整堂课,教师始终做到学生知识的获得来自于实质的数学活动和生成的深刻性。在本节课,我们可以从学生的情感参与、行为参与、认知参与三个维度观察到,通过学生参与真实意义的数学活动,保证了学生生成的自然合理,并将生成成为知识获得的前提,这样的学习是科学有效的。
当然本节课也还存在一些不足:
整堂课表现出缺少引导学生适时对学习进行反思,这样就失去了一些能让学生体会或可能形成学习策略的机会。尽管教师在核心知识的教学中已经较重视知识的本质认识和理解,但在教学过程中的某些时刻还是表现稍有急躁,没有将知识获得的过程持续完美。从整体上看,整节课的探究水平还是显得稍低尚处于引导探究层次。究其原因,是传统讲授式教学习惯在不经意间的反映。
基本不等式教案(实用16篇)篇十四
在高三复习中,我结合高考中对《基本不等式》的考试要求以及近几年来对这部分知识点的考察,特设计了本节复习课,首先从知识点和解题方法、要求方面进行复习,然后精讲三个例题,帮助学生形成这类题的解题思路和解法规范,接下来由学生进行练习、分组讨论、上黑板板演,最后师生共同总结,完成本节课的任务。
上完这节课后,我对教学设计和教学过程进行了反思,得到以下几点:
1.课题引入。
在教学案和发给学生的导学案中,首先用问题的形式呈现本节课的知识点和解题方法,学生通过回答问题,掌握本节课所应用的知识点,为后面的解题打下基础。
2.精讲例题。
通过精选的三个例题,和学生一起回顾《基本不等式》的基本解题思路和解题方法,常用的变形方法----配凑法,以及解题的一般步骤,为学生作好解题示范。
3.课堂练习。
在本节课中,我精选了五道往届的高考真题,供学生进行练习,并且提前让学生进行练习,然后在课堂上与同学进行交流、讨论,对于一道题,提出自己的看法,在学生讨论的过程中,教师进行观察,对于学生普遍存在的问题进行现场指导。
4.学生板演。
学生通过讨论,对于问题有了自己的解决方案,每个小组叫一个同学进行板演,提高学生对课堂的参与度,也让同学们有了展示的机会。
5.学生讨论。
在课堂上,给学生留有讨论的时间,增强学生之间的交流,让每个同学都有机会在小组内说出自己的想法,在倾听中学会交流和提高。
6.课堂小结。
学完本节课后,让学生先进行总结,然后教师启发同学们进行补充,既总结所学的知识点,又总结学习过程和所采用的数学思想方法。
在本节课中,由于有些学生提前做的练习比较少,因此课堂练习的时间显得有点紧,有个别同学没有做完布置的五道练习题,还有,由于很多高考题目对于应用条件中的“三相等”考察得不多,可能导致有些学生对这个应用条件不够重视。
讲完本节课,和同教研组的教师进行讨论交流后,对于今后工作的启示,我认为有以下几点:
1.在教学中,让学生多动手多动脑,充分发挥学生学习的主动性和积极性。
2.布置的练习多督促检查,让学生先自己动手,为课堂教学中学生之间的合作交流打下基础。
3.组织学生的小组讨论,激发学生讨论的热情,引导学生与同学合作交流,分享学习过程中的经验教训。
4.高三的复习课可以以先复习相关知识点,再讲解典型例题,然后学生练习,、小组讨论、上黑板板演,最后师生总结的模式进行。
5.在高三复习时,习题可以用往届的高考真题来进行,既提高学生的做题能力,又增强学生对高考题的适应能力,降低高考的神秘感。
6.在进行课堂总结时,既总结所学的知识点,又总结学习过程和所采用的数学思想方法。
总之,在进行高三复习时,既要考虑高考的要求又要结合本校学生的实际,在组织复习的过程中,把两者紧密地结合起来,帮助学生掌握高考常考的知识点和常考的考题类型,有效地提高高三复习的效率。
基本不等式教案(实用16篇)篇十五
基本不等式是中学数学重要的一部分,它可以被用来解决各种各样的数学问题。然而,学习基本不等式是一项艰苦的过程,需要大量的精力和耐心。在此文章中,我将分享我学习基本不等式的心得和体会。
第二段:掌握基础知识的重要性。
在学习基本不等式之前,我们需要了解一些基础的数学知识。这包括了数学基础概念,例如符号和代数式,同时也包括了不等式的概念以及相关的符号。因此,在学习基本不等式之前,我们需要掌握这些基础的数学知识。
第三段:学习的关键在于实践。
实践是学习基本不等式的关键。我们需要通过不断尝试解决一些实际的数学问题,来熟悉基本不等式的使用。试错是一个很好的学习方法,它可以让我们通过错误的分析,在之后的尝试中逐渐改进。因此,我们需要在学习中保持耐心和毅力,通过反复练习来熟练运用基本不等式。
学习基本不等式并不只是简单地背诵定理和公式,更重要的是我们需要理解其背后的原理。了解基本不等式的证明过程,或许可以更好地帮助我们掌握其应用方法。而且,这种理解方式可以让我们更好地推导出适用于特定情形的变形不等式。
第五段:总结。
学习基本不等式是一项需要极大耐心和毅力的任务。掌握基础概念,不断地实践,理解背后的原理是学习基本不等式的关键。当我们成功地掌握了基本不等式后,它将成为我们解决各种数学问题时的强有力的工具。
基本不等式教案(实用16篇)篇十六
数学知识体系是一个前后连贯性很强的知识系统,在空间与图形领域,中小学数学主要体现为由直观几何、实验几何向论证几何逐渐过渡。初中数学教师在教学中要注意与小学教学相衔接,适当复习小学内容,在小学的基础上提高。下面从中小学衔接的角度,对“平行四边形的性质”(新人教版)这节课做了一些反思。
备教材:
备课时,我首先查阅了本届学生小学时学过的教材。发现,小学教材中“平行四边形”的定义用粗体作了明确界定,“对边相等”的特征学生是用度量或折叠的方法得到的。平行四边形的面积是通过割补转化为长方形进行重点学习的。所以学生应该对平行四边形的概念和特征已经有所认识并会求其面积。
“平行四边形”是全章重点内容之一,它是在学生已掌握了平行线的性质、全等三角形和多边形的有关知识的基础上研究的。平行四边形是平面几何的又一典型图形,它既是以前知识的综合应用也是下一步研究各种特殊平行四边形的基础,具有承上启下的作用。矩形、菱形、正方形的性质和判定都是在平行四边形的基础上扩充的,它们的探索方法也都与平行四边形的性质和判定方法一脉相承。梯形的性质、三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的。而“平行四边形的性质”又是本章的第一节,这一节的学习对学平行四边形的判定和其它特殊四边形起着关键的作用。教材中平行四边形的“对边相等”、“对角相等”、“对角线互相平分”三个性质是分两部分说明的,因这节课是采用探索式教学法,预计学生在同一节课中就能够得到这三个性质,所以把三个性质放在一节课中进行处理。
备学生:
为了清楚的了解学生的认知情况,我深入学生中间,调查了学生对平行四边形的掌握程度。发现,将近90%的学生能够说出平行四边形的定义;50%多的学生了解“平行四边形对边平行且相等”这一特征;而对“平行四边形对角相等”和“对角线互相平分”的性质,只有很少一部分学生因超前学习才了解。鉴于学生的认知结构,我把探索平行四边形的性质放在了角和对角线方面。
备教法:
《数学课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。我看了一位老师针对平行四边形上的一节公开课。这位老师可能是为了调动学生的主体性,让学生对“平行四边形”下一个定义。结果,学生把平行四边形的定义和所有判定方法全部说了出来,并说出这样定义的原因。听起来真是婆说婆有理,公说公有理,难以分辨用哪一个做定义更合适。最后老师说习惯上用“两组对边分别平行”来定义。看了这节课后再结合小学教材和学生的认知情况,我认为,小学教材已对“平行四边形”作了明确叙述,在“平行四边形”是如何定义的这一方面再做文章只能又陷入老师给学生解释为什么不能用平行四边形判定(学生并不知道是判定)来定义,而定义本身常常又是一个规定性的东西。因此,我在这个地方采取让学生事先准备好两张完全相同的三角形纸片,然后在课堂上让学生拼出平行四边形并把拼的图形展示在黑板上,在调动学生积极性的同时,既能发现学生对平行四边形的理解情况,也为下面平行四边形性质的证明做好铺垫。
在探索平行四边形性质上,采取自主探索、合作交流的方式,并把探索到的结论和证明过程填写在事先发给的探究报告里,使学生的思维和落实密切联系在一起。让学生体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,感受公理化思想。
恰当的利用多媒体课件。为了让学生对平行四边形的三条性质有更明确的认识,我从旋转的角度准备了形象生动的性质探索课件。
整节课采取探索式证明方法,即采取观察、猜想、直观验证、推理证明、得出性质的方法。向学生渗透化复杂为简单,化新知为旧知的“转化”的数学思想方法。
进入初中以后,随着学生逻辑思维能力和抽象思维能力的加强,不能再仅局限于一些结论的获得,而要注重结论的推导过程,揭示知识的来龙去脉,也就是不仅要知其然还要知其所以然。教材也要求学生要对发现到的结论进行推理论证。
对“平行边形的对边相等”这一性质在小学是通过观察、测量对边的长度进行比较得到的。能否证明这一结论呢?学生在学多边形知识时曾经采取把多边形分割成三角形来研究,所以课堂上当对这一结论进行证明时,学生很快想到把四边形分割成三角形利用全等的知识来解决。但学生在推理时符号语言说的还不太顺畅,推理也还缺乏规范性。所以在学生的叙述下教师进行规范的推理板书,给学生做出示范。