教学计划是学校制定的一项系统性的教学安排,它是教师教学活动的依据和组织。一份合理的教学计划能够提高教师的教学水平和学生的学习效果,以下是一些教学计划范文供参考。
相遇问题教学设计范文(20篇)篇一
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题纳税第8课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2.在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
重点:税额的计算。
难点:税率的理解。
教学准备。
多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、复习。
1.口答算式。
(1)100的5%是多少?(2)50吨的10%是多少?
(3)1000元的8%是多少?(4)50万元的20%是多少?
内容与环节预设个人二度备课课后反思。
2.什么是税率?
二、新授。
1.阅读p98页有关纳税的内容。说说:什么是纳税?
2.税率的认识。
(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。
(2)试说以下税率表示什么。
a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
3.税款计算。
(1)出示例5(课本99页)。
(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。
(3)要求“应缴纳营业税款多少”就是求什么?
(4)让学生独立完成?
4.看课本98页内容。读一读,什么是纳税?什么是税率?
内容与环节预设个人二度备课课后反思。
三、练习。
1.巩固练习:练习二十三第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。
2.依据第5题,学生各自发表意见。
(有关税率的常识:由于不同行业的经营效果有差别,又由于国家为了保护和扶持某些人民群众迫切需要的产品和服务行业等,会减少这些行业的税率,因此消费税和营业税的税率会有很大差别。如例5中说到饭店的营业税率是5%,而审稿费的个人所得税率就是3%。)。
四、小结:今天你有什么收获?
板书。
设计纳税。
应缴税款=应纳税金额×税率个人二度备课:课后反思:
作业布置或设计学习、宣传税法知识。课后反思:
教后整体反思。
相遇问题教学设计范文(20篇)篇二
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题利息第9课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
重点:掌握利息的计算方法。
难点:正确地计算利息,解决利息计算的实际问题。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、导入。
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
内容与环节预设个人二度备课课后反思。
二、新课。
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
本金:存入银行的钱叫做本金.小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读p99页表格,了解同一时期各银行的利率是一定的。
4.利息的计算。
(1)出示利息的计算公式:利息=本金×利率×时间。
(2)计算方法:
按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。
内容与环节预设个人二度备课课后反思。
(3)两年后取款,李奶奶能得到93.6元利息吗?为什么?
(4)学生计算后回答,教师板书:。
1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。
93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。
比较两种方法?
加上她存入本金1000元,到期时她可以实际取回多少元?
5.练习。
1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
2、完成100页做一做。
3、完成练习二十三的第9题。
三、小结:这节课你懂得了什么?
板书。
设计利息。
利息=本金×利率×时间。
1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。
93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。
个人二度备课:课后反思:
作业布置或设计自学103页什么是成数?说说自己对成数的了解。课后反思:
教后整体反思。
相遇问题教学设计范文(20篇)篇三
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题任课教师与班级。
本课(节)课题整理和复习(一)第课时/共课时。
教学目标(含重点、难点)。
及设置依据1.通过复习进一步理解百分数的意义,掌握百分数的写法。
2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
难点:百分数意义的理解。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、基本练习。
1.完成下面表格。
内容与环节预设个人二度备课课后反思。
小数0.16。
分数。
百分数24.5%0.9%。
2.只列式,不计算。
(1)40占50的几分之几?(2)50是40的百分之几?
(3)5比8少百分之几?(4)8比5多百分之几?
二、知识梳理。
1.百分数和分数在意义上有什么不同?百分数写法有什么特点?
2.说一说百分数和小数互化的方法,百分数和分数互化的方法?
3.求一个数是另一个数的百分之几的应用题用什么方法解答?
如:甲数是200,乙数是150。
(1)甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。
(2)乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。
(3)甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。
(4)乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。
三、深化练习:
1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?
2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百。
内容与环节预设个人二度备课课后反思。
分之几?
四、小结:这节课复习了什么?
板书。
设计。
整理和复习(一)个人二度备课:课后反思:
作业布置或设计p104第1、2、3题。
课后反思:
教后整体反思。
相遇问题教学设计范文(20篇)篇四
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
掌握求路程的相遇问题的解题方法。
理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。
一课时 。
1、列式计算 。
(1)李诚从家到学校,每分钟走70米,4分钟抵达,他家离学校有多远? 。
(2)张华从家到学校,每分钟走60米,4分钟抵达,他家离学校有多远?
2、板出联系式:速度×时间=路程。
1、教学准备题。
(1)点击课件中准备题出示题目。
(2)学生理解题意。
(3)找出出发时间、地点、运动方向。
相向而行。
时 间间 。
(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什。
么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课。
件演示填空内容。
(7)请一学生上来利用交流性课间完成表格第三行的填写。
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)。
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、 两人是怎样走向学校的?
b、 4分钟后两人怎样? 。
c、 两人所行的路程与全路程有什么联系?
(4)学生试做。
(5)用电脑课件演示解题思路并讲评。
(6)学生看书、质疑。
(7)小结:我们解例5时用了哪两种方法?
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
(1)xx米 (2)1000米 (3)无法确定。
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
相遇问题教学设计范文(20篇)篇五
本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。
【教学目标】。
1、 在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。
2、 在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。
3、 在合作交流中体验学习的乐趣,培养学习数学的积极情感。
【重点】。
用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。
【难点】。
理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。
【教具】。
多媒体课件,两个能在一条线上自由活动的小人。
【教学过程】。
一、 情境导入,复习旧知。
谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。
ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。
根据这个信息,你能提出什么问题吗?
ppt出示:刘老师家距离人民公园有多远?
你会解决吗?
ppt:60×5=300(米)。
这60表示什么?5呢?300呢?
通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。
今天我们就在这个关系式的基础上来研究点新问题,好不好?
二、 合作探究,构建数学模型。
预设:让学生用语言或者肢体动作来解释这几个词的含义。
把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。
【设计意图】。
此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。
现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。
学生活动,教师巡视。
(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?
预设:出现相遇点在中间和相遇点不在中间两种情况。
【设计意图】。
通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。
3、理解速度和。
老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:
一分钟后他俩分别走了多少?一共走了多少?
两分钟后他俩又走了多少?一共走了多少?
三分钟?四分钟?五分钟呢?
【设计意图】。
通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。
4、画线段图。
你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?
投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?
学生补充和完善自己的线段图。
师出示课件演示画线段图的过程。
5、自主解决问题。
你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。
找2生板书2种方法,点评。
回顾这两种方法,我们是怎么解决相遇问题的?
小结:方法1:路程1+路程2=总路程。
方法2:速度和×相遇时间=总路程。
6、体会线段图的好处。
对比题目文字和线段图,你有什么感觉?
小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。
三、 巩固练习,拓展应用。
1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)。
2、
数学6制4上打样_页面_087。
两队分别从两头同时施工,4个月开通。这条隧道长多少米?(只列式不计算)。
刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?
小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。
四、 总结。
这节课你有什么收获?学会了什么?
相遇问题教学设计范文(20篇)篇六
教学目标:
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:
“求相遇时间问题”的特征和解题方法。
教学难点:
“求相遇时间问题”的特征和解题方法。
教学用具:
多媒体课件一套。
教学过程:
一、激趣引入,复习旧知。
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?
2、口头列式1500/100=15分钟。
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间=路程/速度)。
二、学习新课。
读题分析。
思考:这里的460米是几个人走的?
两人是怎样走的.?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)。
学生尝试练习。
评讲板演,理清解题思路,概括解题方法。
教师板书:60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)。
=460/115。
=4分钟。
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少米?
揭示课题:求相遇时间。
2、试试。
三、变式深化。
1、对比练习。
比一比你能找到两题之间的联系吗?
2、变式应用。
四、小结。
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业。
练一练的第2——5题。
板书设计:
60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)。
=460/115。
=4分钟。
相遇问题教学设计范文(20篇)篇七
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
“求相遇时间问题”的特征和解题方法。
“求相遇时间问题”的特征和解题方法。
多媒体课件一套。
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?
2、口头列式1500/100=15分钟。
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间=路程/速度)。
1、例6教学。
读题分析。
思考:这里的460米是几个人走的?
两人是怎样走的`?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)。
学生尝试练习。
评讲板演,理清解题思路,概括解题方法。
教师板书:60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)=460/115=4分钟。
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少米?
揭示课题:求相遇时间。
2、试试。
1、对比练习。
比一比你能找到两题之间的联系吗?
2、变式应用。
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业。
练一练的第2——5题。
60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)=460/115=4分钟。
相遇问题教学设计范文(20篇)篇八
(至上学期)。
六年级数学学科教师:高春枝。
学习。
内容分数乘法一步应用题。
学习。
目
标1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
重难。
点及。
突破。
措施教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
课前。
准备。
导学案设计个性化设计。
预
习
学
案1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、由以上练习,你能得出什么结论?
自
主
乐
学
合
作
交
流1、小组合作学习例1。
(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。
(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(3)在分析题意的基础上,独立列式、计算。
2500×=1000(平方米)。
2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数只。
(3)练习四第3题:先找到单位“1”,再独立列式解答。
4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?
检
测
反
馈
课
外
拓
展作业:练习四第4、7、8、9题。
教
学
反
思
审核人:
相遇问题教学设计范文(20篇)篇九
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重难点:
1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。
2、理解相向运动中求相遇时间问题的解决方法。
教学过程:
1、说一说速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
2、创设“结伴出游”的情境。
淘气和笑笑相约出去游玩。
3、引导学生找出有关的数学信息,解决第一个问题。
第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
4、画线段图帮助学生理解第二、第三个问题。
第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。
先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。
今天这节课我们学习了什么?
教学反思:
相遇问题教学设计范文(20篇)篇十
相遇问题是和人们生活、生产息息相关的数学的知识。本课研究两个物体在运动中的速度、时间和路程的数量关系。在这之前,学生已掌握的是关于一个物体运动的情况,了解了速度、时间、路程的相关概念,有一定的生活经验,但欠缺生活经验与所学知识之间的联系。
设计思想:
(1)注重生活资源与课堂资源的整合,为学生创新奠定必要的认知基础。
(2)注重数学素养和信息素养的整合,为学生创新提供另一条思考的路径。
理念:
(1)注重将已有的知识、经验与教师通过书本、网络所提供的资源进行整合,从而实现教学目的。
(1)知识与技能:
了解相遇问题的应用题的基本结构,掌握解题方法。
(2)过程与方法:
经历观察、分析、概括的过程,使学生逐步形成观察、分析、概括的能力。通过自主探索,动手实践,合作交流,培养学生解决实际问题的能力。
(3)情感态度与价值观:
a:激发学生主动参与活动的热情,培养人人参与学习和自觉把数学知识应用实际生活的意识。
b:培养学生在生活中提出数学问题的意识。
重点:了解相遇问题的应用题的基本结构,掌握解题方法。
难点:掌握相遇问题的出发时间、出发地点、运动方向、运动结果的知识要点及相互关系。
(一)创设情境
1、复习旧知,引发联想
画面演示,画外音叙述:
这是一列货车,每小时行50千米,照这样的速度,4小时能行多少千米?
这是一列客车,每小时行60千米,照这样的速度,4小时能行多少千米?
请学生谈谈对这两道题的想法。
2、学生表演,理解概念
刚才,大家对前面的知识掌握的很好,今天,我们就要在速度、时间、路程关系的基础上,研究稍复杂的行程问题(师板书课题)。在学习新课之前,有四个词,请同学们理解一下。可以一人单独思考,用双手演示进行理解,也可以两人配合表演。
屏幕上依次闪动出现:相对、同时、相遇、相距
(1)请学生用动作和语言把这四个词的意思表演出来。注意:相遇与相距的区分。
(2)老师叙述,学生表演。
两个小朋友从甲乙两地同时相对而行,5分钟时,两人相遇了。
提问:问这两位同学,每人走几分钟,再问大家,他们同时走了几分钟。
(二)尝试探索
1、出示例题
2、提出问题
看到例题,你会想到什么问题?
师生对问题进行筛选,重点解决下面几个问题:
(1)他们两1分钟走了多少路?2分钟呢?3分钟呢?
(2)4分钟的时候会出现什么情况?
(3)他们相遇时,小强和小丽所走的路程与他们两家相距多少米有什么关系?(让全班同学闭上眼睛思考)
3、列式讨论
(1)请同学用算式表达自己的思考过程。要能说出每一步的意思。
主要有两种思路:
第一种:65×4+70×4
第二种:(65+70)×4
4、认识速度和
5、质疑
“对这道题还有什么不同的想法或问题吗”
(三)巩固发展
1、基本练习
2、看图说题,列出综合算式。小组讨论,一人说题,其他人列式。
3、游戏
再请两位同学表演,并提问两人相对而行可能出现什么情况?
(1)两人相遇;
(2)行走一段未相遇;
(3)相遇后继续行走。
给两位同学带上不同的头饰。头饰上标有65米、70米字样,分别表示速度。
教师一边叙述,一边出示5分钟时间的牌子。
相遇问题教学设计范文(20篇)篇十一
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重难点:
1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的'问题。
2、理解相向运动中求相遇时间问题的解决方法。
教学过程:
一、复习旧知。
1、说一说速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
二、探索新知。
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
2、创设“结伴出游”的情境。
淘气和笑笑相约出去游玩。
3、引导学生找出有关的数学信息,解决第一个问题。
第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
4、画线段图帮助学生理解第二、第三个问题。
第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。
三、试一试。
先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。
四、练一练。
1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。
2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。
五、知识回顾,全课总结。
今天这节课我们学习了什么?
六、布置作业。
教学反思:
相遇问题教学设计范文(20篇)篇十二
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
“求相遇时间问题”的.特征和解题方法。
“求相遇时间问题”的特征和解题方法。
多媒体课件一套。
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?
2、口头列式1500/100=15分钟。
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间=路程/速度)。
1、例6教学。
读题分析。
思考:这里的460米是几个人走的?
两人是怎样走的?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)。
学生尝试练习。
评讲板演,理清解题思路,概括解题方法。
教师板书:60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)=460/115=4分钟。
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少米?
揭示课题:求相遇时间。
2、试试。
1、对比练习。
比一比你能找到两题之间的联系吗?
2、变式应用。
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业。
练一练的第2——5题。
60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)=460/115=4分钟。
相遇问题教学设计范文(20篇)篇十三
本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。
1、 在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。
2、 在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。
3、 在合作交流中体验学习的乐趣,培养学习数学的积极情感。
用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。
理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。
多媒体课件,两个能在一条线上自由活动的小人。
谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。
ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。
根据这个信息,你能提出什么问题吗?
ppt出示:刘老师家距离人民公园有多远?
你会解决吗?
ppt:60×5=300(米)
这60表示什么?5呢?300呢?
通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。
今天我们就在这个关系式的基础上来研究点新问题,好不好?
1、初步感知相遇问题
预设:让学生用语言或者肢体动作来解释这几个词的含义。
把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。
此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。
2、合作演绎相遇问题
现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。
学生活动,教师巡视。
(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?
预设:出现相遇点在中间和相遇点不在中间两种情况。
通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。
3、理解速度和
老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:
一分钟后他俩分别走了多少?一共走了多少?
两分钟后他俩又走了多少?一共走了多少?
三分钟?四分钟?五分钟呢?
通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。
4、画线段图
你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?
投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?
学生补充和完善自己的线段图。
师出示课件演示画线段图的过程。
5、自主解决问题
你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。
找2生板书2种方法,点评。
回顾这两种方法,我们是怎么解决相遇问题的?
小结:方法1:路程1+路程2=总路程
方法2:速度和×相遇时间=总路程
6、体会线段图的好处
对比题目文字和线段图,你有什么感觉?
小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。
1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)
2、
两队分别从两头同时施工,4个月开通。这条隧道长多少米? (只列式不计算)
3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)
刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?
小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。
这节课你有什么收获?学会了什么?
德州市实验小学 刘丽
相遇问题教学设计范文(20篇)篇十四
创设生活情景,是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系。交通与数学中的相遇问题许多同学们在生活中已经遇到过。在课的开始,朱喆老师就是创设了“淘气误把笑笑的作业本带回家了,要是你是淘气该怎么办呢”?这一问题自然地引出要给笑笑送去就遇到了今天学习的知识——相遇问题;而姚闻亚老师更是设计了一个同学们天天都耳闻目见的一段录像场面——凤二小大门口来往行人车辆的运行导入本节课;郭同春老师就用同学们都熟悉的校名:凤一小、三中、师范附小这几个熟悉的地方来设计了一个相遇问题的线段图引入,这些通过联系实际,创设问题情景的导入,让学生看到在我们生活中经常能用到交通与数学中的相遇问题,让学生带着自己的生活经验,走进今天的数学课堂。通过感受生活,让学生明确数学就在身边,培养学生学习数学的兴趣。
注重学习方法的引导新课程的核心理念是“一切为了每一个学生的发展”,从关注“教”到关注“学”,从而进一步关注“人”的发展。这几节课的三位老师教学都体现出师生交往、互动与共同发展的过程。学生是数学学习的主人,要重视学生获取知识的思维过程。相遇问题在以前的教材中就是一个应用题的教学过程,老师出示题目、学生读题、找条件和问题、老师讲解、学生模仿的教学模式,而在这里三位老师把学习的主动权交给学生,让学生主动地的去研究和探索,充分展示学生的创造能力,很好的体现了数学与生活的联系,有利于培养学生从生活中发现数学问题的学意识和分析解决实际问题的能力。这三节课中,所有的知识都是由学生自行解决的,教师只是在关键之处进行启发和点拨,充分体现了学生为主体、教师为主导的教学理念。
“两地”、“同时”、“相向(相对)”、“相遇”是相遇应用题的四要素,是解答相遇应用题的关键,几位老师都清楚地了解这一点,为了使学生能够充分地理解它们的含义,几位老师不约而同地请了两位同学在讲台上演示了两人从两地同时相对出发直到相遇的过程,由这几个词语的理解到数学中的相遇问题,过渡很自然。对于例题的学习,他们也都让学生自己来操作,互相来讨论,并通过课件的演示,让学生尝试自己来解决问题,自己探究出相遇应用题的规律和特征,然后列出算式,是想让学生理解相遇问题当中可能会碰到的几种不同场面,使学生感悟到生活中处处有数学,数学就在我们身边。
板演例题的解题过程时,又一次巧妙的设计利用课件配合学生的讲解思路,加深了学生的理解,让课件又一次起到了画龙点睛的作用。
培养学生创新。练习是课堂教学的重要组成部分,几位老师在设计练习时,对教材作了处理,力求形式多样,条件问题开放,引导学生从不同角度思考问题,留给学生思维的空间,启迪了学生的创新思维。这几节课的练习形式多样:“试一试”、“练一练”、“考考你”、“智力陷阱”等,改变了原来的一题一题的题海战术,对相遇问题有了更深的理解;不一样的题型活跃了学生的思维,提高了学生运用所学知识解决实际问题的能力,从课堂效果看,学生思维非常活跃。满足了他们的求知欲,因材施教,提高学生的创新能力。
相遇问题教学设计范文(20篇)篇十五
教材上直接给出了两人同时相对而行的情境,而我在教学时,根据学生的实际让学生想办法解决王老师怎样才能尽快拿到材料的问题,从而引出相遇问题,这样使学生发现数学、掌握数学和运用数学,提高解决问题的能力。
数学源于生活,用于生活。《数学课程标准》非常强调数学与现实生活的联系。因此,作为学生的组织者――教师,应针对学生的实际情况,创造性地使用教材,使教材本土化,生活化。从学生熟悉的情境出发,调动学生的参与热情。
2.注重培养学生的问题意识。
上述案例中,当出示条件后,让学生根据提供的信息想了解哪些数学问题,这时学生的思维活跃起来,提出了一连串的五个问题。这一教学过程,通过创设情境,把抽象的数学知识转化为生活中的实际问题,激起了学生的探究欲望,使学生感到学数学是为了解决生活中的问题,并不是与己无关的、枯燥无味的,而是生活中所必需的。从而唤起学生的数学思维,将孩子们带进数学天地。
著名科学家爱因斯坦说过:“提出一个问题比解决一个问题更重要。一个人只有发现问题才能提出问题,只有提出问题才有可能解决问题。”问题意识、问题能力是创造能力的基础。因此,数学教学要注重培养学生发现问题、解决问题的能力,从数学情境中发现问题并提出问题,让学生带着浓厚的兴趣去研究、去探索。
3.倡导“自主、合作、探究”的学习方式。
学习方式的转变是这节课的一大特色,如何提升学生在课堂中的学习水平是当前一个重要的课题,学生通过独立思考和小组讨论等合作探究活动,求出了相遇的时间,并了解了在什么情况下用算术解答,什么情况下用方程解答比较简单,通过合作学习,实现了知识上的互补,从而解决了本课的重点问题。学生体验到学习成功的愉悦,同时也促进了自身的发展。
新课程倡导主动参与、乐于探究、合作交流的学习方式,让学生在主动探究、合作的学习氛围中获取知识、构建能力,自我养成对待学习的积极的情感态度。这是新一轮课程改革在教学层面上的三大要素,也是在教学方法上所追求的最高境界。因此,好的教学方法就是引导学生自己去发现,主动去探究。课堂上给学生多一点思维的空间和活动的余地,凡学生能独立思考的决不暗示;凡学生能探究得出的决不替代;学生能独立解决的决不示范。给学生多一点表现的机会,多一点体验成功的愉悦,让学生的思维能力和创造能力得到发展。
总之,“海阔凭鱼跃,天高任鸟飞”只要还学生们一片蓝天,给学生一个自主探索、自我调控的时间,学生创新能力就能得到提高。
相遇问题教学设计范文(20篇)篇十六
《相遇问题》这节课的教学目标是使学生会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力,经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信信息和建立模型的能力。教学本节课时,首先创设了“淘气、笑笑同时从家里出发,路途相遇“的情境,让学生结合情境图中的信息,完整地描述数学问题,理解情境中给出的数学信息和所要解决的问题。
其次,鼓励学生尝试独立完成题目。给学生足够的时间和空间去思考,分析和解决问题,比如提示学生要先想办法找出等量关系,再列出方程,由于学生已有列程的解决问题的基础,所以大多数学生都能正确的列出符合题意的'方程。
再次,小组合作交流,在交流时,主要让学生交流解决问题的思路。有的学生是通过画线段图找到等量关系的,要让学生结合线段图说说“相遇时两人行驶的全部路程是多少”从而分析得出“笑笑走的路程+淘气走的路程=840”的数量关系,然后列出方程。
最后,要和学生梳理如何列方程解决问题,第一要根据题意找等量关系,第二根据等量关系列出方程,第三解方程,第四检验结果是否正确,从而提高学生分析问题、解决问题的能力。少部分学生找等量关系有困难,需要加强练习和个别辅导。
相遇问题教学设计范文(20篇)篇十七
行1小时的路程即是问题。
师:讲得太好了,请大家用图表示题意,想想还有其他解法吗?(给学生思考、讨论的时间)。
生:69*2+75*(2+1)。
师:你是怎么想的?
生:我是根据问题想的。这段铁路只有甲乙两车行驶,分别求出甲乙两车行驶。
的路程合起来就是这段铁路的长度。(学生边讲边用手指着图说明自己的思路)。
学生的回答让我大吃一惊,原来学生竟有这样清晰的思路和如此活跃的思维。课后我反思整个教学过程,我认为这节课教学的成功之处有以下两方面:
1、学生思维活跃,解题方法“多样化”:《数学课程标准》的教学建议中指出:
“教师应鼓励学生对同一个问题积极寻求多种不同的思路,而不是以教科书上的或教师事先欲设的答案作为评价的依据”。《数学课程标准》中,将“在解决问题的过程中发展探索与创新精神,体验解决问题策略的多样性”列为发展性目标。我采用了如下的方法实现这一目标,这节课学生一共提出了3种解题方法,我从学生的需要出发及时调整了教案,让每一个想发言的学生都能表达自己的想法,尽管他们有些数学语言的运用还不太准确,但我还是给与了肯定与鼓励。在这种宽松的氛围下,学生有了运用知识解决简单问题的成功体验,增强了学好数学的信心,并产生进一步学好数学的愿望。师生关系也变得和谐、融洽了,课堂气氛活跃了。
2.师生角色的转变:数学教学改革,决不仅仅是教材教法的改革,同时也包括师生关系的变革。在课堂教学当中,要努力改变单纯的教师讲、学生听的“注入式”教学模式,教师应成为学生学习数学的引导者、组织者和合作者,学生成为学习的主人。纵观整个教学过程,我所说的话并不多,除了“你是怎么想的?”“还有其他的方法吗?”“说说看”等激励和引导以外,我没有任何过多的讲解,有学生讲不清楚,我也是用商量的口吻说:“谁愿意帮他讲清楚?”当一次讲不明白,需要再讲一遍时,我也只是用手势指导学生看图,引导学生在自己观察与思考的基础上明白了算理。学生能思考的,教师决不暗示;学生能说出的,教师决不讲解;学生能解决的,教师决不插手。由于我在课堂上为学生提供了施展才华的舞台,因此学生积极思考、大胆发言、极力展示自己的发现,使他们真正成为科学知识的探索者与发现者,而不是简单的被动的接受知识的容器。在整个教学过程中,学生的学习能力、创新能力和探究能力都得到了发展。
相遇问题教学设计范文(20篇)篇十八
我们都知道,“相遇问题”是四年级应用题教学当中的一个难点,所以在讲解此部分知识点的时候,我就仔细对本知识点进行了研究,试图找到一条事半功倍的的解决办法。经过一番深思熟虑之后,结合本班学生情况,我决定用两课时把本知识点教给学生,具体方法如下:
第一课时:这节课主要是基础类型的课。课始先带领学生共同复习了“时间、速度和路程”三个量之间的关系,以此为新知做以铺垫。然后重点是引领学生理解重点词语“相遇、同时、相向(相对)”的概念。主要采用的是实际演示法和游戏法让学生对此部分知识中最关键的词语加以理解。等学生对这个基本概念搞清楚之后,第三部我就开始结合学生生活实际例举了一个行程方面的例题,首先是求路程、然后变换题型求时间,再求某一方的速度。在学生解答过程中,我主要是让学生通过观察动画课件,充分发挥自己的想象力让学生自己总结归纳出求每种问题的方法。最后再结合练习题加以巩固。
第二课时:是知识的扩展。我主要是先对课后所涉及的知识延伸了行进行了分析,然后引领学生归纳出:
1、同时,相向,不相遇。
2、不同时,相向、相遇。
3、相背行程类型应用题的解题思路,经过大量练习之后,我再把知识面拓展到工作方面,让学生明白这种类型应用题的解答思路大同小异,基本是一样的。这样一来学生对工作方面求时间、求工作效率、求工作量的问题就迎刃而解了。而且,为了使学生提高练习课的效率我还要求学生只列示不计算。
两节课我都是采用让学生在比较中掌握新知的方法进行教学的,放下权利,让学生自己去探索发现规律,获取新知。在这样的安排下,课上的十分顺畅。
相遇问题教学设计范文(20篇)篇十九
整节课上下来,我认为整个教学环节很流畅,在分点的时候,我让班里同学自己思考、讨论,同学认为分成3个点比较好。在我的引导下同学们还是没有把点分成5个,只好有我说出了5个点的位置。学生的科学素养还要进一步加强。
实验方法是由我通过多媒体直接出示的,但在实验过程中学生有很多没有按方法进行操作,看出学生对实验方法没有完全理解。对低年级学生来说这种出示实验方法还不够有效。我在巡视实验时,有个小朋友告诉我,可以将五串回形针分别挂到磁铁的五个点上,如果掉下来的,说明磁性弱,吸住了掉不下来的,说明磁性强。“他们对自己想法不敢肯定,所以没有起来说,可是从理论上讲,这样的想法也是行得通的,也是可以得出中间弱,两头强这个特性的。
后来下课了我一直在想这个问题,其实孩子们与众不同的想法肯定很多,而我在课上出示实验方法时,为了教学的顺利,并没有问诸如”还有什么不一样的想法吗?“这样的问题,学生回答到了我想要的答案之后,就开始这行下一项的活动了,有时我们为了得到一个答案而忽略学生,忽略学生中高高举起的小手,时间长了,学生可能也就是沉醉于教师的平平淡淡。
也许教师平时一句不经意的话会激发起孩子们主动探究的欲望,诸如”你这个想法真好,就是与众不同。“”相信同学们对于你这样的独特想法肯定会刮目相看。“”真了不起,你这个发现让老师也感到意外!“……看似平常的一句话想必会让孩子们乐上好一阵子。次数多了,孩子们求异的思想会更深一些。有时候,当孩子们中没有出现不同想法的时候,老师可能也要有意识地去帮学生创造机会,抓住一点可以激发的”苗头“,启发并帮助他表述想法,一次,两次,孩子们也就有了相应的方法。《磁铁的两极》是继《磁铁的磁性》后的磁铁单元的第二课。是在学生认识了磁铁的磁性,知道磁铁的两极的磁性最强的基础上进一步研究磁铁,发现磁铁的两极不但磁性最强,还能指示南北方向。探究活动也从原来的观察磁铁与其他物体间的相互作用,引伸到磁铁与磁铁间的相互作用。课文安排了3个观察、实验活动。第一个活动是观察可转动的磁铁,从而发现磁铁的两极能指示南北方向,形成南极、北极的概念。第二个活动则自主开展实验探究进一步研究磁铁两极之间的相互作用,发现其规律。第三个活动是玩磁铁小车的游戏,是运用“同极相斥”的`性质开展的活动。3个活动由浅入深,环环紧扣,活动虽难度不大,但要在40分钟内给学生充足的时间,并让学生反复多次实验,记录多次实验结果,然后在此基础上整理事实,发现规律,得出结论。还是要花点心思的。于是怎样有序、有效地开展探究活动,成了我这节课的主攻目标。
文档为doc格式。
相遇问题教学设计范文(20篇)篇二十
1、理解“相遇问题”的意义,探究发现“相遇问题”的数量关系,掌握解题思路和解答方法,正确解答求路程的实际问题。
2、感受“相遇问题”的解题方法和乘法分配律之间的联系。
3、培养学生的观察、分析、推理、判断能力,以及自主探究和创新精神。
理解“相遇问题”的意义,掌握解题思路和解答方法。
用列表、画图的方法整理题目中的信息,分析数量关系。
课件
一、谈话引入
1、回答下面各题并说出数量关系。
(1)小明每分钟走70米,走了4分钟,一共走了多少米?
(2)小芳每分钟走60米,走了4分钟,一共走了多少米?
学生回答并说出数量关系,教师板书:速度×时间=路程
2、导入新课。
(1)课件出示教材第68页例题7情境图。
(2)理解“相遇问题”的意义。
请两名学生到讲台前演示当时的情境。
组织学生进行观察,并思考:他们在出发的时间、地点、方向上有什么特点?
追问:他们的距离有什么变化吗?
(3)导入:这两个同学从两地同时出发,相向而行,最后两人在途中相遇,这就是我们这节课要研究的“相遇问题”。(板书课题)
二、交流共享
1、收集信息。
请同学们再次阅读题目,观察情境图,说说题目中的已知条件和所求的问题分别是什么。
已知条件:小明每分钟走70米;小芳每分钟走60米;经过4分钟两人相遇。
所求问题:他们两家相距多少米?
2、整理信息。
(2)学生自主进行信息整理。
教师巡视,进行个别辅导。
(3)组织全班交流。
学生可能用画图或列表的方法进行整理,教师投影展示学生的线段图或表格,组织进行评议和订正。
画图整理:
70米70米70米70米60米60米60米60米
小明家小芳家
?米
列表整理:
小明从家到学校每分走70米走了4分钟
小芳从家到学校每分走60米走了4分钟
3、分析解题思路。
提问:你能根据整理的结果,分析数量关系并确定先算什么吗?
思路一:小明走的路程加上小芳走的路程就是他们两家相距的路程,可以先分别算出小明和小芳走的路程,再把两个人走的路程相加,就是他们两家相距的路程。
思路二:两人4分钟一共走的路程,就是两家相距的路程,可以先算两人的速度和,再把“速度和×相遇时间”就等于总路程。
4、解决问题。
学生根据以上两种解题思路,用两种不同的方法进行解答。
组织汇报交流。
解法一:70×4+60×4
=280+240
=520(千米)
解法二:(70+60)×4
=130×4
=520(千米)
5、观察比较,感受联系。
提问:两种解法有什么联系?
引导学生从以下几方面进行交流:
(1)两种方法的得数相同,可以用什么符号将它们连起来?
(2)观察等式,你想到了哪个运算律?
(乘法分配律)
6、回顾反思,交流体会。
提问:回顾解决问题的过程,你有什么体会?
交流体会:画图和列表都可以帮助我们理解题意;线段图可以帮助我们找到不同的解题方法;要注意寻找不同解法之间的联系。
三、反馈完善
1、完成教材第69页“试一试”。
这道题是例题7的补充,题中一个向东走,一个向西走,可以理解为是“相背而行”,“相背而行”求总路程的方法和“相遇问题”求总路程的方法相同。
2、完成教材第69页“练一练”。
这道题和例题7相似,进一步巩固画线段图整理信息的策略,加深对“相遇问题”的理解。
3、完成教材第70页“练习十一”第2题。
这道题是“工程”问题,也可以用“相遇问题”的解题思路来思考,“第一队每天开凿12米”可以看作是第一队的速度,“第二队每天开凿15米”就看作是第二队的速度,“经过8天正好凿通”可以看作是相遇时间,“这条隧道长多少米”看作是总路程。
通过本课的学习,你有什么收获?还有哪些疑问?