教学计划是教师个人发展的重要保障,它能够帮助教师及时调整和改进自身的教学方法。利用以下教学计划范文,可以帮助教师更好地理解和编写自己的教学计划。
解决问题例教学设计(精选22篇)篇一
知识与技能:.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。
过程与方法:在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。
情感、态度与价值观:通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。
1、读一读,思考:
(1)题目中知道了:
(2)“3千米以内7元”的意思是:
(3)“不足1千米按1千米计算”的意思是:
2、自主尝试。
(1)问题中的收费标准是分两段计费的,3km以内是一个收费标准,为一段;超过3km又是一个收费标准,又为一段。
(2)超过3km部分,不足1km要按1km计算,也就是要用“进一法”取整千米数。
3、思考:根据提示自主解答?
(1)、3千米以内的部分应付:
(2)、超过3千米的部分应付:
(3)、总的`应付:
4、列式计算。
1、练习四第6题。
某市自来水公司为鼓励节约用水,采取按月分段计费的方法收取水费。12吨以内的每吨2.5元,超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为17吨,应缴水费多少元?
2、练习四第7题。
3、练习四第8题。
通过探究学习,我的收获是。
解决问题例教学设计(精选22篇)篇二
教学目标:
3、让学生会用自己的语言表达解决问题的大致过程和结果。
4、让学生在活动中获得积极的体验,感受数学与生活的联系。
教学重点:经历转化过程,初步学会用转化的方法来解决简单的实际问题。
教学准备:
教具:课件、小棒若干根。
学具:每人小棒若干根,同桌两人一张练习纸、一支水彩笔。
教学设想:
(一) 初步感知。
2、动手:学生动手摆小花伞,指名一位学生在黑板上摆。
3、交流:(1)说说你摆了几把小花伞,用了几根小棒?你是怎么知道的?
(5)让学生说说自己用的小棒根数是老师的几倍。
4、引出课题:用倍的知识去解决问题。
(二)进一步感知。
1、引入:森林里正在举行动物运动会,一起去看看。
2、 出示: 跳远比。
松鼠:
袋鼠:
猜一猜:袋鼠跳的长度是松鼠的( )倍。
3、出示数据,电脑验证。
1、引导学生收集信息并自主提出问题。
出示:爬行比赛。
蜗牛24只 毛毛虫6只; 乌龟4只。
学生提的问题能口答的直接口答。(如求和的或者比多少的)。
2、引导学生自己解决问题。
3、比较两个问题,说说你有什么发现?
(四)灵活应用 解决问题。
引入:闯关比赛。
1、第一关:估一估。
估一估,左边公鸡的只数是右边的几倍?
图片出示:左边20只公鸡右边5只。
2、第二关:“阳光伙伴”体育运动。
出示图(略)。
要求列式表示参加各项活动的人数之间有倍数关系。
3、第三关:开启智慧大门。
出示智慧大门图。
要求同桌合作用彩色笔涂色,探究不同的涂色方法。
(五)、课堂总结 深化主题。
说说这节课你有什么收获?
备注:本课例转自温州市第五届小学数学优质课评比。
解决问题例教学设计(精选22篇)篇三
1、知识与技能:
学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的的作用,学会用列表的方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。
2、过程与方法:
通过自主探索、动手实践、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而搜集信息,整理信息,发现问题、分析问题、解决问题的能力得以提高,并发展他们的推理能力。
3、情感态度与价值观:
通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
重点:用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。
难点:正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。
课件。
一、故事引入,感受策略。
课前同学们都看了《司马光砸缸救人》的故事,这个故事讲述了司马光遇到了要救落入大水缸里的孩子的问题。救人的办法有很多,如:可以从缸口把孩子拉出来,但是由于在场的都是孩子,人还没有缸高呢,力气就更小了,不可能能把落水的孩子拉出来;再如:也可以去叫大人来救,但是可能时间不允许……这些办法都不能很快地把落水的孩子救出来。在这种特殊情况下司马光通过动脑筋、想办法,终于看到了一块石头,于是想出了“砸缸放水救孩子”的办法救了落水孩子一命。司马光通过自己的观察和思考,在许多办法中选择砸缸救人的最好办法,就是一种大智慧,这样的过程就是应用策略解决救人的问题(板书:策略)。这是生活中的应用策略解决问题,其实在我们的数学学习中也经常遇到问题,也要动脑筋、想办法解决问题,要更好、更快地解决问题就必须采用一些解决数学问题的策略。今天我们就来研究数学中的“解决问题的策略”。
二、合作探索,领悟内涵。
1、创设情境,感知列表整理的方法。
(1)导入语:
师:小朋友们都喜欢逛超市吧,今天有三位小朋友相约来到了超市里,他们准备买同一种笔记本,他们遇到了什么问题呢?我们一起去看一看。
(2)出示情境图,听录音,(录音中增加了“小华用去多少元?”和小军说的话“我用42元买笔记本,可以买多少本?”)要求小华用去多少元?我们要用到哪些条件呢?学生回答后,课件只留下有用信息,提问:你能找到信息中的关键词吗?你能将这些关键词整理写出来吗?学生交流,相互补充逐步简洁成:
小明3本18元。
小华5本?元。
添上表格线,形成一张完整的表格:
小明3本18元。
小华5本?元。
板书:列表整理信息。
(1)独立思考如何解决题中的这个问题。想好后在小组里交流。全班交流。归纳解决这个问题的两种思路:从条件想起,从问题想起。
板书:分析列式解答。
讨论:要求小华用去多少元,可以怎么想?(学生活动)。
师:同学们在解题时,会有两种不同的思路。一种从已知条件想起,想:根据买3本用去18元,可以先求出1本的价钱;也可以从要求的问题想起,想:要求买5本用去多少元,先要求出1本的价钱。
这样一来,你会列式解答了吗?请行动起来(学生活动)。
课件出示:
18÷3=6(元)。
6×5=30(元)。
答:小华用去30元。
师:核对一下,你做对了吗?
(2)师归纳:解决条件较多的问题时,我们可以把有用的信息和问题列表整理,使数量之间的关系更加清晰,从而很快找出解决问题的方法。列表是一种非常有效的解决问题的策略。
(3)下面我们就用列表的策略来帮小军算算42元可以买多少本笔记本?课件出示问题和空表格。
同桌交流,再集体交流,相机完善表格。
小明3本18元。
小军?本42元。
列式解答后,请一名学生说出解题思路。
18÷3=6(元)。
42÷6=7(元)。
答:小军买了7本。
(4)课件同时出示上述两个表格。问:求小华用去多少元和小军能买多少本,在思考过程中有什么相同的地方?有什么不同的地方?(引导学生依据屏幕上的列式回答)。
解决问题例教学设计(精选22篇)篇四
苏教版五年级上册第63—64以及相应的练习。
1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。
2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。
体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。
在学习过程中,能主动反思自己的解题过程提升对策略的认识。
一、导入。
出示草原牛羊成群图。
二、探究策略。
1、初次探究。
小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。
问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?
2、进一步探究。
问:你能把符合要求的长和宽可能性一一列举出来吗?
学生填写第63页的表格。
3、体会列表的特点。
问:反思一下刚才的思考过程,你有什么体会?
板书:有序(有条理)一一列举不遗漏不重复。
让学生再次说说应该怎样有条理地思考。
出示:像这样有条理的把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。
4、进一步引导。
这几种围法中牧民叔叔会喜欢那种呢?为什么呢?
出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。
三、体会策略中的技巧。
出示例题2。
读题后问:“最少订阅1本,最多订阅3本”是什么意思?
小组讨论并集体交流。
3+3+1=7种。
(有一定的规律列举,不重复,不遗漏。)。
四、巩固练习。
问:根据题意你想到了什么?用什么策略解决这个问题?
交流,说出列举思考的过程。
五、交流中总结收获。
这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?
六、课堂练习。
做练习十一的第1—3题。
解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。
解决问题例教学设计(精选22篇)篇五
(1)通过实践活动使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互联系。
(2)使学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
(3)培养学生的合作意识,提高学生的探究能力。
使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的数量关系的过程,会用乘法口诀求商的技能解决实际问题。
应用分析推理将“一个数是另一个数的几倍是多少”的数量关系转化为“一个数里面含有几个另一个数的除法含义。”
教具准备:课件、小棒等
(一)复习
a.抽生回答,并讲一讲思考过程;
b.请学习绘画的6位同学向大家挥挥手,再汇报一下自己的学习成绩,教师向取得优异成绩的同学表示祝贺。
3.二年级(2)班学习弹琴的有4人,学吹号的是学习弹琴的4倍,学吹号的有多少人?
(二)动手操作,探究新知
1.出示第54页例2主题图(动画课件)
师:你们想参加这个游戏活动吗?
2.活动:学生动手摆飞机;(播放音乐)
解决问题例教学设计(精选22篇)篇六
《用除法解决问题》这节课因为学生已经具备先前的知识经验,在熟练利用乘法口诀求商,学习了表内除法(一)中的解决问题等知识,教学本节课相对简单,学生较易理解。
首先,明确教学设计的各个环节,分为温故互查、探求新知、巩固练习、拓展练习、课堂总结几大部分。其次,教学的重难点应该放在区分两类问题上(包含和平均分),并且能运用所学知识解决问题。再次,设计习题时注意层次性,有梯度进行训练。最后,要强调孩子的学习习惯等细节问题。
在组织教学时,围绕购物的事情,创设一个现实的生活情境,把学生的学习活动同现实生活紧密联系起来,激发了学生的好奇心和求知欲望,体验到生活是数学的源泉,了解了数学的价值,增强了应用数学的意识。同时为学生提供了自主探究、主动获取新知识的时间和空间,充分让学生通过看、想、说、算等实践活动,感知新知和旧知的内在联系;从而调动学生的主体意识,培养发现问题、分析问题、解决问题的能力。
但是,这节课在课堂教学过程中仍然存在一些的不足,还有以下几点没有达到预期目标:
1、总结部分,教师在最后总结时过于宽泛,重点不够突出,应该重点强调本课有关表内除法解决问题分为两种类型(包含和平均分),使学生明确本课重难点。
2、教师语言,在本节课中教师的语言还是不够精炼,各个环节的过渡语用得不是很好。
3、小组合作学习有待提高。
解决问题例教学设计(精选22篇)篇七
1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心.
感受“转化”策略的价值,会用“转化”的策略解决问题。
电子课件、实物投影。
预习效果检测分别出示两组图片。
(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。
学生得出:第一个图形:上面半圆向下平移5格。
第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。
教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。
师:你知道你刚才比较时运用了什么策略吗?
教师板书转化,将课题补全(用转化的策略解决问题)。
在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。
这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。
转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。
空间与图形的领域。
1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?
2、检查课本练一练,指名学生口答。
转化成什么图形可以使计算简便?怎样转化?
3、检查练习十四第三题。
4、试一试:1/2+1/4+1/8+1/16。
这道题你是怎样求和的?小组交流。
5、练一练4(课本练习十四1)。
每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。
三、当堂达标:完成补充习题对应的练习并交流反馈。
四、故事启迪,领悟转化的技巧。
数学家爱迪生求灯泡的容积的故事(幻灯片)。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。
爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
听了这个故事,你明白了什么道理?
五、课堂总结:
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。
解决问题例教学设计(精选22篇)篇八
师:你们的春天真美!汪老师眼中的春天是生机勃勃,百花争艳。
1、教学例2。
(1)师在黑板上先摆一朵花。
师:瞧!黑板上现在就开了一朵花!这朵花有几片花瓣呢?
生:5片。
(板书:5)。
师:老师再来摆几朵!
(2)师在第二行摆2朵。
师:看,第二行我摆了几朵花呢?
生:2朵。
师:第二行用了几片花瓣呢?
生:10片。
师:你是怎么想的?
生:摆一朵花用5片花瓣,摆两朵花要用2个5片,就是10片。
师:2个5片是10片。(板书:2个5)。
师:10和5比,10是5的几倍呢?
生:2倍。
师:为什么呢?
生:10里面有2个5,所以10是5的2倍。(2倍,2个)。
师:说得真好!谁再来试一试呢?
(板书:10是5的2倍)。
(请3~4个学生回答)。
(3)学生摆花。
师:如果老师给你们15片花瓣,这样的花你能摆几朵呢?
生:3朵。
师:是吗?我们同桌合作摆一摆。
师:15片花瓣这样的花你们摆了几朵?
生:3朵。
师:没摆之前你们为什么快就知道是3朵呢?
生:3个5片,就是15片。
(板书:3个5)。
师:15和5比,你也能这么说吗?
生:15是5的3倍。
师:你真是聪明,谁还能再来说一说呢?
(请个学生回答)(齐说)。
师:那为什么15是5的3倍呢?
生:因为15里面有3个5,所以15是5的3倍。
(4)练习。
师:全体男同学来回答,28里面有()个4,28是4的()倍。
(5)学生摆花。
师:如果我有20片花瓣摆花,说说这样的花我能摆几朵呢?
生:4朵。
师:你是怎么想的啊?
预测1:
生:因为4个5是20,所以是4朵。
(板书:4个5)。
预测2:
师:还有别的想法吗?
生:因为20是5的4倍,所以是4朵。
师:现在20和5比,求20是5的几倍,你能列算式吗?在草纸上写一写。
(5)教学除法算式。
20÷5=4。
师:我请一位同学说说算式是怎么写的。
师:你们都是这么写的吗?那么20÷5=4表示什么意思呢?
生:20里面有4个5;20是5的4倍!
师:真行!谁能把这两句话完整又流利地说一说!
(3~4个)。
师小结:求20是5的几倍我们可以用除法计算。
师:这里汪老师还要提醒一下,倍不是单位名称,所以4的后面倍不用写。
师:15是5的3倍,你能用算式表示吗?
(写在草稿纸上)。
生:15÷5=3。
师:这个算式又表示什么意思呢?
(2个人)。
师:真不错!看来求10是5的几倍没问题了吧!我们一起来列算式!
(板书:10÷5=2)。
师:同桌说说这个算式表示什么意思。
师:我想听听你们怎么说的,可以吗?
(5)小结。
师:同学们,像这样求一个数是另一个数的几倍的倍数问题,我们通常可以用除法进行计算。下面跟随汪老师走进生活,去找找生活中这样的数学问题,去解决这样的数学问题。
(板书:求一个数是另一个数的几倍)。
3、尝试运用,解决数学问题。
(1)师:春天可是个锻炼身体的好季节。
电脑出示运动图片。
师:瞧!这里可真热闹!小朋友都在干什么呢?
生:拔河,跑步。
师:跑步有几人呢?拔河的有几人?
师:那么拔河的人数是跑步的几倍呢?谁来说一说?
生:4倍。
师:怎么列算式呢?
学生列式:16÷4=4。
师:谁来说说这个算式的意思?
生:16里面有4个4,16是4的4倍。
师:越说越好了!
(2)师:操场的这里也很热闹,你都看见了什么啊?
师:数一数,丢手绢的有几人,唱歌的有几人呢?
师:丢手绢的人数是唱歌的几倍?
师:草稿纸上列出算式。
师:异口同声告诉我算式。
师:这里有两个8,除号前的8表示什么?除号后的8表示什么?
师:解释得很清楚,求丢手绢的人数是唱歌的几倍,列式时就得是丢手绢的人数去除以唱歌的人数。
1、师:我们身边的倍数问题还有很多,看!从他们的对话中你发现了知道了什么?
师:根据这些数学信息你能提一个有关倍数的数学问题吗?
师:听清楚了吗?好,谁愿意再来说一说!
师:在草稿纸上列出算式。
2、统计图中的数学问题。
师:同学们这是什么吗?认识吗?
生:统计图。
师:我也发现了,你们看!
小结:同样一张统计图,但随着同学们知识的增长,发现统计图中还有倍数关系。
3、师:好,下面咱们走出校园到郊外去看看!
师:根据这些数学信息你又能提出些什么的数学问题呢?
师:同学们不仅问题提得好,回答的也不错,所以送你们几个灿烂的笑脸。
4、涂一涂,涂出倍数关系。
师:白色的笑脸有几个?
师:下面拿出准备好的两支水彩笔,在笑脸上涂一涂,涂出倍数关系。
学生涂色。
师:红色的笑脸有几个?绿色的笑脸有几个?他们存在什么倍数关系呢?
1、师:你都学会了哪些知识啊?
生:4倍。
师:这么快怎么知道的啊?
师:请同学们想一想,去年妈妈的岁数是小朋友的几倍呢?
生:7倍。
师:你怎么算出来的呢?
3、师:在美好的春天,听着同学们这么精彩的发言,我感到特别的温暖。希望同学们趁着好季节多出去走走,去发现更多身边的数学问题。
作为一位无私奉献的人民教师,总不可避免地需要编写教学设计,借助教学设计可以提高教学效率和教学质量。那么优秀的教学设计是什么样的呢?以下是小编为大家......
解决问题例教学设计(精选22篇)篇九
教学内容:人教版二年级数学下册《用除法解决问题》.
教学目的:
(一)通过实践运动使门生理解“1个数是另外一个数的`几倍”的含意,领会数目之间的互相联络。
(二)使学生将“求1个数是另外一个数的几倍是多少”的实际问题转化为“求1个数里含有几个另外一个数”的数学题目的进程,初步学会用转化的法子来解决简单的实际问题。
(三)培育门生的合作意识,进步门生的探讨本领。
教学重点:
使学生将“求1个数是另外一个数的几倍是多少”的实际问题转化为“求1个数里含有几个另外一个数”的数学题目的进程,初步学会用转化的法子来解决简单的实际问题。
教学难点:
运用剖析推理将“1个数是另外一个数的几倍是多少”的数目瓜葛转化为“1个数里面含有几个另外一个数的除法含意。”
教具准备:课件、小棒等。
教学过程:
一.温习。
a.抽生回答,并讲一讲思索进程;
b.请学习绘画的六位同学向人招招手,再汇报一下自己的学习成绩,老师向获得优良成绩的同学表示祝贺。
二.探讨新知。
(1).出示第54页例二主题图(动画课件)。
师:你们想参加这个游戏运动吗?
(2).运动:门生脱手摆飞机;(播放音乐)。
(3).汇报效果。
师:依据你摆的飞机,谁能提个题目让人人猜一猜?引出“求1个数里含有几个另外一数的除法含意”
(5).小组讨论。
(6).汇报效果,门生在动脑思索、充沛探讨中找到了“求1个数是另外一个数的几倍是多少”的解题思绪,即“求1个数是另外一个数的几倍”的含意,就是“求1个数里含有几个另外一个数”用除法计算。
(1).课件出示例三情境图。
(2).门生依据画面提出用除法计算的题目;
(3).依据所发问题,小组讨论解决方法;
(4).门生独立列式解答;
(5).抽生讲解题思绪;
四.巩固深化,质疑拓展。
完成第56页实习12的第一题。
五.全课总结:
这节课你有什么收获呢?
解决问题例教学设计(精选22篇)篇十
教学内容:教科书第20页例2。
教学目标:
1.加深对解决求一个数的几分之几是多少的问题思路与计算方法的理解,使学生学会解答稍复杂的求一个数的几分之几是多少的问题。
2.发展学生分析推理能力和解决实际问题的能力。
教学过程。
播放公路上往来不断的车辆及噪杂的声音。
师:噪音对人的健康有害,绿化造林可以降低噪音。
出示画面(如教材第20页情境图)请学生说说对图意的理解。
学生提问题,教师板书。(噪音降低了多少?绿化带这边听到的声音是多少分贝?)。
师:我们来解决第一个问题:噪音降低了多少?谁能把问题完整地叙述出来。
出示线段图。
请学生把条件与问题在线段上表示出来(如下图)。
提问:把谁看作单位“1”?然后让学生独立解答。
师:现在我们解决第二个问题。谁能把问题完整地叙述出来?
师:线段图上哪一段表示“现在听到的声音有多少分贝”?
把线段图补充完整。
小组讨论探讨解决方法。
汇报交流方法。
第一种方法:先求出降低了多少分贝?再用原来的分贝数减去降低的分贝数。
列式。
提问:1-1/8表示什么?在线段图上表示出来。
师:比较这两种方法有什么不同?
学生讨论交流。明确两种方法都是把原来声音的80分贝看作单位“1”,都需要求80分贝的几分之几。但是第一种方法是根据已知条件先求出80分贝的1/8是多少,即降低了多少分贝,再求出现在听到的声音的分贝数。第二种方法是根据问题找到现在听到的分贝数占原来声音80分贝的几分之几,再根据分数乘法的意义求出现在听到的声音是多少分贝。
解决问题例教学设计(精选22篇)篇十一
人教版《义务教育课程标准实验教科书·数学》三年级上册“有余数除法”,教学例4,练习十三的第2、6题。
(一)知识与技能。
初步培养学生在具体的生活情境中收集信息,提出问题并解决问题的能力。
(二)、过程与方法。
通过学生的观察、探索等学习活动,使学生经历从生活数学到数学问题的抽象过程,感受知识的现实性。
(三)、情感态度与价值观。
在学习过程中,通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
引导学生结合商和余数在实际情境中的含义正确写出相应的单位名称。
教师:课件。
学生:表格。
一、激趣导入,引出课题。
教师:同学们,我们先来猜做个游戏好不好?
出示课件:想一想,第十六个图形是什么样的?第35个呢?第98个呢?
教师:同学们真厉害,猜得非常准确,其实这就是用有余数的除法解决实际问题。
教师:这节课要学习的内容就是“用有余数的除法解决问题”。
板书课题。
二、尝试问题,自主学习。
(1)显示例4的主题图,让学生观察。
教师:在同学们的体育活动当中也会出现有余数的除法的实际问题,大家请看!
提问:从这幅图中你看到了什么?
你能根据图中的有效信息提出数学问题吗?
生1:有32个同学。
生2:老师要求每6人一组。
生3:可以分几组,还多几人?
(课件同步出现:可以分几组,还多几人?)。
师:你能帮老师解决这个数学问题吗?
师:请同学们用自己的方法算一算,开始吧。
(2)自主学习,尝试解决问题。
教师:小帮手们动作可真快!请两位小帮手给大伙儿说说你的计算方法。
师:哪位同学给大家说说自己的算法?
教师根据学生的口述板书,
如果有的学生没有写出单位,这时提问:
师:这里的商5表示什么意思呢?余数2呢?那单位各是什么呢?(根据商和余数的单位提问:
教师:你们知道这里的商5表示什么意思吗?余数2呢?
生:商表示可以分5组,余数表示还多2人。)。
(3)出示练习十三的第2题。
师:下面这道有关跳强绳的问题怎么解决呢?看谁做得又对又快!
19-8=11(米)11÷2=5(根)……1(米)。
答:可以做5根短跳绳,还剩1米。
教师:同学们,当你的练习本用完后,你一般会怎么处理它呢?
生1:把它扔了。
生2:卖给废品回收站。师:你可真会节约再利用资源。
教师:这些纸是可以重复利用的。
播放课件。
看完后出示:
生1:把这些钱捐给他们。
生2:用这些钱购买学习用品送给他们。
教师:同学们可真有爱心!
出示课件。
教师:这里出现了什么问题?你能解决吗?
教师:第二个问题你能想出不同的方法吗?各小组可以先讨论,再写下各位购买方案。
教师:请同学们拿出表格,将自己认为最好的购买方案进行整理,填写在表格内。开始吧!
学生一边讨论教师一边巡视,学生讨论完填写好表格后,老师提问。
教师:谁愿意来展示自己的解决方法?
学生说完后老师小结,进行思想教育。
教师:废物再利用可以给我们带来这么好的效益,平时的学习生活中大家可得注意回收,这样既可以保护环境,还可以节约能源,让我们来争当环保节能的小公民吧!
四、课外延伸,拓展思维。
师:三年级一班的同学们也利用废物回收,换来了一些班费,组织大家进行了一次旅行,在旅行中他们遇到了一些问题,请看!
出示第6题的情景图。
先让学生观察“丛林探险”情景图。让学生从两名同学的对话以及图中的指示牌,获得数字信息,解决“坐车”和“租船”问题。
师:从图中同学们可以获得哪些信息?
生:丛林探险活动每辆小车坐6人。
生:我们班有44人。
生:激流勇进游戏每条船坐5人。
师:小男孩小女孩提出了什么问题?
生:如果全班都玩“丛林探险”,最多可以坐满几辆车?会有剩余的人吗?
生2:如果都玩“激流勇进”,应该租几条船呢?
师:请同学们自己先自个儿想想,然后在小组内说说自己的方法,并列出算式,说明理由。
(1)坐车问题:44÷6=7(辆)……2(人)。
答:最多可以坐满7辆车,还剩余2人。
提问:剩余这2人怎么安排呢?
生:再坐一辆车。
(2)租船问题:44÷5=8(条)……4(人)。
教师:你对这种租船方法有什么看法吗?
教师:你可真会发现问题。
教师:剩下的4个人不去了吗?怎么办呢?
师:应该租几条船呢?为什么?
教师:你为什么要把8加1呢?
8+1=9(条)。
答:应该租9条船。
教师:你考虑得可真周到!
教师:同学们在外游玩的时候可得注意安全哦!
五、结束课题。
解决问题例教学设计(精选22篇)篇十二
教学目标:
1、结合现实生活中的具体情境,让学生经历发现问题、解决问题的过程,学会用连乘的方法解决问题。
2、使学生学会分析连乘问题的数量关系,运用合理的解题思路解决问题。
3、培养学生多角度观察问题、解决问题的能力,让学生体会解决问题策略的多样化。
4、培养学生认真观察、积极思考、完整准确表达的习惯,初步形成综合运用数学知识解决问题的能力。
教学重点:使学生能正确分析并解决连乘问题。
教学难点:引导学生寻求解决连乘问题的解题思路,并体会找到中间问题的过程。
教学过程。
一、创设情境,复习导入。
师:同学们,我们先来做一个小练习,请大家看屏幕。(课件出示:在超市的一个货架放着各种包装的面包,爸爸买了其中一种面包4袋,一共多少钱?)。
师:读一读,你能解决这个问题吗?
(学生认真的观察思考,要求一共多少钱所需要的条件。学生会发现不能求出问题,因为不知道1袋面包的价钱)。
师:就是说,要求一共的钱数,需要知道哪两个条件?
(在学生回答后教师课件出示:)。
师:知道这两个条件,就能求出总钱数。那你们刚才说哪个条件不知道?(学生回答后)。
师:我们就补充上这个条件。(课件出示完整题目:每袋面包12元,爸爸买了4袋,一共需要多少元钱?)。
师:现在能解决了吗?该怎么列式计算?(学生独立完成,全班反馈订正)。
(课件出示题目2:开学初,老师给咱班50个同学每人发5个作业本。)。
师:读一读,你能解决这道题吗?(学生会发现这道题没有问题,思考后回答)。
师:你能根据这两个条件,提出合适的问题吗?
课件出示:
(根据学生的补充,教师课件出示完整题目:老师给咱班50个同学每人发5个作业本,老师需要准备多少个作业本?)。
师:请同学们口头解答,同桌互相交流一下。(指名学生口答,课件出示算式)。
师小结:同学们,你们可真了不起,刚才的练习我们知道了要解决一个问题,要有两个条件;还知道了,如果告诉我们两个条件,可以提出问题,这是我们解决问题时所需要的重要本领。这节课我们继续学习“解决问题”。(板书课题:解决问题)。
设计意图:在课的开始,设计两道不完整的题目,一道是缺少条件,一道是没有问题,让学生补充条件、提问题。通过这一学习过程,帮助学生巩固乘法问题的数量关系,同时复习“要求几个几是多少用乘法计算”。通过分析法和综合法引导学生去思考问题,为学生分析、解决两步计算的乘法问题奠定了基础。
二、主体探究新知。
1、创设情境,引出问题。
课件出示课本例1情境图(图略)。
师:大家看,这是同学们在参加广播操比赛。仔细观察,图中告诉了我们哪些信息?(学生根据图说出题中的信息)。
师:通过刚才大家的交流,我们知道了题中告诉我们“每个方阵有8排,每排有10人,3个方阵”三个条件,提出了一个问题“一共有多少人?”。
设计意图:在这一教学环节,让学生经历一个从情境中收集信息、整理信息并且完整地用文字表述问题的过程。指导学生学会认真读题,仔细审题,明确题目中的条件和所求问题,理解题意。
师:认真分析题目中的条件和问题,你能解决这些问题吗?老师相信大家都会解决这个问题。先不忙着列算式,先说一说在分析和解决这个问题时,你是怎么想的?先自己想一想,说一说,然后在小组互相交流。(教师巡视,收集学生是如何分析的信息)。
师:哪个组派代表来说说你们小组是怎么分析的?(根据学生的回答,教师引导)。
师:大家的思路都非常的清晰,那老师要问问你们,为什么要先求1个方阵的人数?用哪两个条件就可以求出这个问题,为什么用这两个条件就能求出1个方阵的人数?3个方阵呢?(学生先自己思考,然后同组交流,集体反馈。教师可根据学生的回答,借助于点子图帮助学生理解为什么先求1个方阵的人数,求一个方阵人数为什么用乘法,怎样求3个方阵的人数。思路图整理如下)。
师:我们一起回忆刚才从要求的问题开始怎样一步一步找到解题思路的。(师生一起说)要求——总人数,就要知道——每个方阵的人数和方阵数。每个方阵的人数不知道就要先求它,用题中的——每个方阵有8排、每排有10人,就能求出每个方阵的人数,根据求出的——每个方阵的人数和有3个方阵,就可以求出总人数。请各自再试着说一说我们刚才是怎么分析的,然后同桌之间互相交流一下。(学生再次的整理思路,熟悉思维过程)。
师:根据刚才我们说的思路,怎样列算式?(学生独立列式解答,反馈后教师板书算式)。
设计意图:通过追问帮助学生理清思路、弄清楚题目中的数量关系。学生一般会有两种方法:一是想要求什么,必须知道什么条件,不知道的条件就是先求的;二是根据题中两个有关系的条件,想到可以求出什么,求出的这个问题,可能就是解决最终问题必需的条件。这两种思考方法其实就是解决问题时常用的分析法和综合法。在这里只给学生渗透这样的思维方式,不明确提出来。通过潜移默化的意识渗透和日积月累的思维训练,让学生逐渐具备独立分析、解决问题的能力,实现“授之以渔”的目的。
师:大家想一想,还有没有别的思路?(教师引导学生理解另外一种思路)。
师:可以看着点子图,和小组同学商量一下。(小组讨论,反馈小组意见,师生共同总结思路)。
师:我们一起来梳理一下,刚才这种解题思路。(师生共同叙述)。
师:根据这种思路这样列算式?用这种方法解决问题时,哪个地方要特别注意?(第一步的单位名称)。
解决问题例教学设计(精选22篇)篇十三
让学生在具体情境中学会解决问题,发展学生的数感。在解决问题的过程中,培养学生解决问题策略的多样性,提高学生解决问题的能力。
让学生在解决问题“能穿几串”中理解几十里面有几个十。
一、创设情境,导入新课。
大家玩过串珠游戏吗?
出示例7。
这里有些珠子,你会穿吗?板书课题。
二、互动新授。
出示题目的要求:有58个珠子,10个穿一串,能穿几串?
从题目中你知道了什么?要解决的问题是什么?
个别汇报。
要想知道能穿几串,该怎样解答?
a、画图。圈一圈。
b、数的组成。58里面有5个十和8个一。
验证。1串是10个,5串就是50个,剩下的8个,正好是58个。
2、想一想:如果是5个珠子穿一串,能穿几串?
三、巩固梳理,拓展应用。
1、完成第46页的做一做。
2、完成第47页第1~4题。
四、课堂小结。
板书设计:
春季,教学。
解决问题例教学设计(精选22篇)篇十四
教学内容:
二年级下册第一单元例2、练习一2、3、5题。
教学目标:
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。
2、培养学生认真观察等良好的学习习惯,通过看、说、读、想、算的方法初步培养学生发现问题、提出问题、解决问题的能力。
3、通过学习,使学生认识到小括号的作用。
4、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教学重点:使学生知道可以用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。教学难点:从不同的角度发现并提出问题以及不同的方法解决问题。
教学准备:课件。
教学过程:
一、情景导入,激发兴趣。
1、谈话:同学们,上一节课我们用了什么方法来解决问题?
学生说,老师板贴:看、说、读、想、算。这节课我们继续用这些方法来解决问题。
2、课件出示游乐园面包房图,
师:看,这是面包房,图中的小朋友们在做什么?
[设计意图]:从学生喜欢的事物引入,把学生的注意力吸引到画面上来,激发学生学习的兴趣。
二、合作交流,探索新知。
1、指导学生再观察画面,你从图中知道什么数学信息?
2、你能提出什么数学问题?学生自由发言,提出问题。
教师适当启发引导:还剩多少个面包?
[设计意图]:首先让学生观察情境图中蕴含的信息,从中找出与数学有关的信息,初步感受数学信息之间的一些联系,从中发现一些数学问题。
3、小组交流讨论。
(1)应该怎样计算:还剩多少个面包?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班中交流解决问题的方法。
方法一、54―8=46(个)46―22=24(个)。
方法二、54―22=32,32―8=24(个)。
方法三、8+22=30(个)或22+8=30(个)54―30=24(个)(让学生说说每一步计算的理由)。
5、比较三种方法的异同。明确三种方法的结果都是求:还剩多少个面包?,在解决问题的思路上不同。
6、把两个小算式你能写成一个算式吗?学生尝试列综合算式。(1)54-8-22=24(个)或54-22-8=24(个)。
(2)能不能列成54-8+22?小组里讨论、交流:你是怎么想的?
7、老师今天给大家介绍一个新朋友“小括号”:如果想改变运算顺序,先算后面的,再算前面的,可以在先算的算式外面填上小括号。小括号的作用可大了,可以改变运算顺序,小朋友们只要看见它,就要先算它里面的算式。把(2)中的算式“54-8+22”变成“54-(8+22)”,就可以了。这样我们就可以先算8+22,然后再算54-30。
8、指导学生读:54-(8+22)读作:54减8与22的和。
9、小结。(小括号能改变运算顺序:先算括号里面的数)。
[设计意图]:使学生在观察事情的发生、发展过程中明确条件,提出问题后明确数量之间的内在联系,找到解决问题的策略之后,需要用一定的运算进行表达并计算出结果,最终自主解决问题,并明确小括号的作用。
三、巩固练习。
1、教科书第6页练习一的第2题。
(2)分析题目,找出题目的已知条件和问题。读一读,说一说关键词。
(3)想一想,第一步要先求什么?第二步要再求什么?
(4)列式计算:94―34=60(个)60―29=31(个)。
或34+29=63(个)94―63=31(个)。
让学生列出综合算式,要他们正确的使用小括号。列好后要求学生说出每一步表示的意义。(用喜欢的方法计算,能用小括号就更好啦)。
94―34―29=31(个)或94―(34+29)=31(个)。
2、教科书第7页练习一的第3题。
羊圈里原来有58只羊。第一次跑走了6只,第二次跑走了7只,现在羊圈里面有几只?
让学生自己分析题目的已知条件和问题,用喜欢的方法计算,最好能用上小括号,并汇报。
58―6―7=45(只)或58―(6+7)=45(只)。
3、新型电脑公司有87台电脑,上午卖出24台,下午卖出26台,还剩下多少台?(用两种方法解答,用上小括号)。
(1)学生读题,分析题目的已知条件和问题。
(2)学生独立做题,老师巡视。(要求运用小括号进行计算)。
(3)学生汇报。87―24―26=37(台)或87―(24+26)=37(台)。
4、完成练习一第5题。先指导观察,明确条件和问题,指导读一读,找出关键词,然后思考并列式计算。
[设计意图]:让学生在交流、实践中掌握知识。明确小括号的作用是改变运算顺序,有小括号的一定要先算小括号里面的数,并学会运用小括号。
四、课堂总结。
通过今天这节课你有什么收获?
解决问题例教学设计(精选22篇)篇十五
教学目标:
1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的“转化”意识,提高学好数学的信心.
教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。
教学难点:会用“转化”的策略解决问题。
教学准备:电子课件、实物投影。
预习作业:
教学过程:
预习效果检测分别出示两组图片。
(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。
学生得出:第一个图形:上面半圆向下平移5格。
第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。
教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。
师:你知道你刚才比较时运用了什么策略吗?
教师板书转化,将课题补全(用转化的策略解决问题)。
在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。
这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。
转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。
空间与图形的领域。
1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?
2、检查课本练一练,指名学生口答。
转化成什么图形可以使计算简便?怎样转化?
3、检查练习十四第三题。
4、试一试:1/2+1/4+1/8+1/16。
这道题你是怎样求和的?小组交流。
5、练一练4(课本练习十四1)。
每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。
三、当堂达标:完成补充习题对应的练习并交流反馈。
四、故事启迪,领悟转化的技巧。
数学家爱迪生求灯泡的容积的故事(幻灯片)。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。
爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
听了这个故事,你明白了什么道理?
五、课堂总结:
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。
解决问题例教学设计(精选22篇)篇十六
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的`正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板。
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】。
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)。
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】。
二、揭示课题、探索新知。
1、小黑板出示例5。
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1)学生自己解答。
(2)交流解答方法,并说说自己想法。
算式是:12.8÷8×10。
=1.6×10。
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)。
(也可以先求出用水量的倍数关系再求总价。)。
10÷8×12.8。
=1.25×12.8。
=16(元)。
文档为doc格式。
解决问题例教学设计(精选22篇)篇十七
教学目标:
知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。
过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。
情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。
教学重点:学会解决含有两个未知数的问题。
教学难点:分析数量关系。
教学准备:多媒体课件。
教学模式:多媒体教学。
教学过程:
一.准备题。
1.想一想,填一填。
(1).学校科技组有女同学人,男同学人数是女同学的3倍。
男同学有人;
男女同学共有()人;
男同学比女同学多()人。
(2).校园里栽了棵柳树,栽的松树是柳树的2.5倍。
松树栽了()棵;
柳树比松树少栽()棵。
2.解下面的方程。
二.引入新课。
多媒体出示图片:破坏生态环境的后果,引发学生感想。
出示植树造林图片,感受大自然的美。
三.探究新知。
1.观察主题图。
你从中知道了哪些信息?说说看。(师板书条件)。
想一想:可以提出什么数学问题?(师补充板书)。
2.引导学生分析问题,解决问题。
(1).学生自由读题,理解题意。
(2).引导学生画线段图,分析数量关系。
种树面积:
种草面积:共12.5亩。
提问:题中有两个未知数,怎么办?怎样设未知数?
启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和。
1.5亩。
教师:借助线段图,会解决这个问题吗?试试看。
(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。
3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。
四.巩固练习。
同学们知道地球的形状吗?
1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。
2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。
五.深化练习。
1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。
让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。
2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。
2.数学小博士。
六.全课总结。
引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。
七.布置作业。
教后反思:
一、教材的处理。
数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。
二、本节课目标完成情况。
在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。
三、课件的应用。
解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。
四、教学中的不足。
1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。
2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。
3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。
总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。
解决问题例教学设计(精选22篇)篇十八
1、使学生初步学会解答求一个数比另一个数多(少)几的应用题。
2、培养学生观察能力,实际操作能力及初步分析和推理能力。
3、通过操作培养学生的动手操作能力。
3、让学生经历自己提出问题、自己解决问题的过程,培养学生的自主探究能力。
4、生活情境的模拟教学,使学生体会到生活数学无处不在,培养学生在生活中发现问题,解决问题的`能力。
多媒体课件。
1、看一看。
师:你看到这副画,想说什么?
生:一和同样多。
师:你怎么知道是同样多?
生1:有5个,也有5个。
生2:和一个一个可以相对的。
师:小朋友都回答的非常好,给你们小组各加一颗五角星。(学生回答对了问题教师要及时给该小组加五角星。)。
2、摆一摆。
请小朋友们拿出你们的学具,第一行摆5个,第二行摆7个。
看着你摆的图,谁能提数学问题。
生1:比少几个?
生2:比多几个?
1、跳绳比赛。
小白兔和小猫在比赛跳绳,我们看看谁能赢?
小白兔比小猫多跳了下?
小猫比小白兔少跳了下?
2、采松果。
两只松鼠在比赛采松果,哪只松鼠采的更多呢?
3、钓鱼比赛。
三只小猫每人拿了一只水桶,一根鱼竿,你猜它们在比赛什么?
对在比赛钓鱼,它们可认真了?我们赶紧去看看!
看着这幅钓鱼图,你能提出哪些问题?小组比赛,哪一组问题提的多,答的好,就能获"星级小组"!
小组讨论汇报情况,教师及时评价鼓励。
现在我们来看看各小组得到了多少五角星,哪一组最少,哪一组最多?
你根据各小组的五角星能提出哪些数学问题?
如:第一组第二组第三组第四组。
生:第一组比第二组少1个;第四组比第三组多个,比第1组多2个……。
p73做一做。
解决问题例教学设计(精选22篇)篇十九
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。
1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。
2、提高学生分析解答应用题的能力,培养探索精神。
分析和掌握把什么量看作单位1及谁是谁的几分之几。
分析和理解两个数量的比校对于学生来说比较难些。
备注。
活动一:创设情境,初步感知题意。
1、教师出示例2的情境图。
2、让学生结合图叙述题意。
活动二:动手画图,分析题意。
1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?
学生动手画线段图,分析。小组交流。
与教师共同再一次感受如何画线段图。(教师板书)。
重点让学生明确谁是单位1。
2、让学生说一说是怎样想的?确定解题的思路。
3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。
4、全班交流,订正。
5、问:这两种解法有什么区别?有什么联系?
活动三:教学例3.
教师出示例3。
1、引导学生读题,理解题意。
2、根据这句话应当把什么看单位1?
3、学生试画出线段图,分析数量关系。
4、学生自己解答。
订正时,让学生说说是怎样分析的?与全班交流。
活动四:巩固练习。
1、完成21页中的做一做。
教师要求学生画线段图。
2、完成练习五中部分练习题。
订正时,让学生说说分析的思路。
活动五:课堂小结。
通过本节课的学习你都有哪些收获?
解决问题例教学设计(精选22篇)篇二十
人教版小学数学教材六年级上册第54页例2及相关练习。
1、能在实例的分析中理解按比分配的实际意义。
2、初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。
3、通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。
理解按比分配的意义,能运用比的意义解决按比分配的实际问题。
自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。
课件。
课件出示:女生与男生的人数比是5:7。
师:“女生和男生的人数比是5:7”,从这句话中,你得到了哪些信息?
【设计意图】一条简单的现实生活信息,不但使学生体会到数学与生活的联系,激发了学生的学习兴趣,而且培养了学生分析问题、解决问题的能力。
(一)自主探索。
1、出示:六(2)班一共有48人,女生与男生的人数比是5:7。
师:根据这两条信息,你能求出什么?男生、女生各有多少人呢?你会算吗?
2、学生独立尝试。
3、同桌交流。
师:与同桌交流一下你的想法和做法,有不同的方法都可以写下来。(教师巡视指导)。
4、汇报:
请不同做法的学生上台板演,交流汇报。
预设(1):48÷(5+7)=4(人);
女生:4×5=20(人);
男生:4×7=28(人)。
师:还有不同的解决方法吗?
预设(2):女生:(人);
男生:(人)。
师:这种方法中,是什么意思?呢?
5、小结:刚才同学们用不同的方法解决了同一个问题,我们再一起来看看(配合课件演示)。
【设计意图】在引导学生探究时,没有直接用书本上的例题,而是用了班级男生、女生人数比这一实际情况。因为是学生非常熟悉的事例,所以学生很乐意去探索、交流、实践。这样的设计不仅降低了学习的难度,而且激发了学生的学习兴趣。
(二)揭示课题。
师:像上题这样,把数量按一定的比来进行分配的方法叫做按比分配。今天我们就一起学习按比分配。(板书课题:按比分配)。
(三)实践尝试。
出示例2:这是某种清洁剂浓缩液的稀释瓶,瓶子上标明的比表示浓缩液和水的体积之比。按照这些比,可以配制出不同浓度的稀释液。
1、阅读与理解。
浓缩液和稀释液指的是什么?(浓缩液是纯清洁剂,稀释液是加水之后的清洁剂。)。
师:你能用刚才的方法解决这一问题吗?(学生独立解题,交流汇报。)。
2、分析与解答。
预设(1):每份是500÷5=100(ml),浓缩液有100×1=100(ml),水有100×4=400(ml)。
师:这里的5表示什么?(把总体积平均分成5份。)。
预设(2):浓缩液有(ml),水有(ml)。
师:表示什么?(浓缩液占总体积的;)。
呢?(水占总体积的。)。
3、回顾与反思。
师:可以用怎样的方法对结果进行验证?
预设:看浓缩液与水的比是不是等于1:4。
小结:体现在问题解决的过程中,要看清楚1:4到底是哪两个量之间的比。
【设计意图】把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。
(一)基本练习。
1、师:打开教材第55页,看第一题。
(1)师:用自己喜欢的方法独立算一算,看谁算得又快又对。
(2)交流:说说你的方法。
2、出示:李伯伯家里的菜地共800平方米,他准备种黄瓜和茄子。
师:请你来设计一下,可以怎么分配?
预设一:1:1。
师:如果按1:1分配,那么种黄瓜和茄子的面积分别是多少平方米?(学生自主计算)。
师:通过计算,发现按1:1分配其实就是我们以前学过的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。
对于其余各种分配方法,都让学生快速算一算再交流。
(二)发展提高。
1、师:增加点难度行不行?我把这一题变一下。
(1)比较:这一题和前几题相比,有什么不同?
(3)学生尝试。
(4)交流算法。
师:你是怎么算的?(展示学生作业)还有同学用其他方法做吗?介绍一下你们的方法。
师:这几位同学的方法有什么共同点?有什么不同点?
(1)比较分析:
师:这一题又有什么不一样?没有直接给出“比”,不能直接按比分配了,那怎么办?
师:我们可以先求出比,再按比进行分配。
(2)学生独立尝试,交流算法。
(三)小结。
师:通过上面两个问题的解答,你觉得在解答按比分配的问题时应注意什么?
师:说得对,在解答这类问题时,我们要认真审题,看清楚是对哪个数量进行分配,是按什么比分配的;如果题目没有直接给出比,我们要先根据题目信息求出比,再按比分配。
【设计意图】创设问题情境,从基本练习到综合性较强的问题,再到没有直接给出比的题目,层层深入,让学生在解决实际问题的过程中感受学习的乐趣和价值,不仅培养了学生独立解题的能力,而且还可以让学生在实践的探索中验证、品尝自己的学习成果,再次感受成功带来的乐趣。
1、师:学到这里,谁能告诉我们,今天这节课我们主要研究了什么?说说你的收获和感受。(指名回答)。
2、课外延伸。
师:比在生活中应用非常广泛,请你课后搜集生活中的实例,编一道按比分配的题目,在下一节课中进行交流学习。
【设计意图】让学生自己抓住“收获”、“感受”来进行课堂总结,可以再次让学生对所学知识进行梳理,培养评价、反思的能力,让学生更加深切地感受到数学的魅力。
解决问题例教学设计(精选22篇)篇二十一
1.生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同方法解决问题。
2.培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3.通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
一、创设情境,激发兴趣。
1.谈话:同学们,元旦快到了,你们高兴吗?(高兴)为了迎接新年的到来,我们学校举行了一次游园活动。小朋友你们想不想参加?(想)好!老师就带小朋友们一起去参加游园活动,我们唱着歌出发好吗?(唱新年快乐歌)。
2.情境图。
谈话:我们来到了游园点,你们看小朋友们在做什么?(在看木偶戏)。
提问:你从这幅图上看懂了什么?获得了什么信息?
学生回答:原来有22人在看戏;又来了13人;走了6人。
二、主动探索,协作交流,领悟解法。
1.同学们,你们看得真仔细,通过这些信息,你能提出什么数学问题?
(1)原来有22人在看戏,又来了13人。一共有多少人在看戏?
(2)原来有22人在看戏,走了6人。还剩多少人?
对于这两个问题,让学生提出后很快就解答。
(3)原来有22人在看戏,走了6人,又来了13人。现在看戏的有多少人?
(4)原来有22人在看戏,又来了13人,又走了6人。现在看戏的有多少人?
对说出(3)(4)两题的学生给予表扬。
提问:你们会解决“现在看戏的有多少人?这个问题吗?
(1)独立思考。
谈话:在四人小组中说说你的想法,你是怎样算的?
(2)让学生在四人小组中充分地交流,说自己的想法,老师参与学生的讨论之中了解情况。
(3)汇报:并说想法。
3.把学生解决问题的方法记录在黑板上。
(1)22+13=35(人)(2)22-6=16(人)。
35-6=29(人)16+13=29(人)。
(3)22+13-6=29(人)(4)22-6+13=29(人)。
让学生明确(1)、(3)的解题思路是一样的,是同一种方法;(2)、(4)的解题思路是一样的,是同一种方法。
4.比较(1)、(3)和(2)、(4)两种方法的联系。
明确两种方法的结果都是求现在看戏的有多少人,在解决问题的思路上略有不同。
5.谈话:小朋友们看木偶戏看得多高兴呀!你们看这边发生了什么事情?(出示练习一的第1题)。
提问:从这幅图上你看懂了什么?
你能把图意说完整吗?
让学生说明图意,明确计算的问题后,独立列式解答,再让几名学生说解。
问题的方法。
谈话:同学们,你们玩得高兴吗?不知不觉到了中午,我们肚子有点饿了。走,老师带你们到面包房买面包去。
(出示面包房图)。
提问:你从这幅图上看到了什么?
你能提出什么数学问题?(还剩多少个?)。
谁能把这个问题说完整?
(原来面包房里有54个面包,先卖了22个,又卖了8个,现在还剩多少个?)。
提问:谁会列式解答。
提问:你会把22+8=30和54-30=24写成一个算式吗?
你们遇到了什么困难?
有办法来解决这个困难吗?
四人小组讨论,汇报。
选择方法,把想的过程说出来。
三、巩固深化,应用拓展。
1.谈话:游园活动快要结束了,你们看小朋友在干什么?(出示练习一的第2题)[他们在收集拉罐筒。]他们真是环保小卫士。
提问:你会把这幅图的图意说完整吗?
让学生自己解答,再说想法。
做练习一的第4题。学生独立完成,再汇报想法。
同桌交流,自编题目,互相解答。
四、归纳。
1.请同学们说一说,这节课有哪些收获?
2.谈话:请同学们做一名有心人,用本课学习的知识去解决我们身边、生活中的实际问题。
解决问题例教学设计(精选22篇)篇二十二
教科书第59页例5以及相关练习题。
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
利用已学的`正比例的意义,通过自己探索掌握解答正比例应用题的方法。
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
小黑板。
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】。
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)。
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】。
二、揭示课题、探索新知。
1、小黑板出示例5。
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1)学生自己解答。
(2)交流解答方法,并说说自己想法。
算式是:12.8÷8×10。
=1.6×10。
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)。
(也可以先求出用水量的倍数关系再求总价。)。
10÷8×12.8。
=1.25×12.8。
=16(元)。