教学工作计划要与教学大纲、教材及学生需求相结合,确保教学目标的实现。参考下面的教学工作计划,可以帮助我们更好地规划和组织教学活动。
数学广角的教案(优秀20篇)篇一
教学内容:
义务教育课程标准实验教科书人教版二年级上册教材第99页的内容。
教材分析:
排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。教材安排生动有趣的活动,让学生通过活动来学习。如在例1中安排了学生用数字卡片摆两位数的情景,在做一做中安排了学生握手的活动。
学情分析:
在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机超过多少电话号码就要升位等等。可采取学生独立思考和合作探究的方式教学。
教学目标:
1、知识与技能:
通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、数学思考:
经历探索简单事物排列与组合规律的过程。初步理解简单事物排列与组合的不同。初步培养学生有顺序地、全面地思考问题的意识。
3、情感与态度:
感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。激发学生学好数学的信心。
教学重点:
经历探索简单事物排列与组合规律的过程。
教学难点:
初步理解简单事物排列与组合的不同。培养学生有顺序地、全面地思考。
教学准备:数字卡片、课件等。
教学过程:
一、激趣导入。
师:小朋友们,今天我们去数学广角参观一次比赛。板书:数学广角》在去的过程中会遇到很多数学问题呢!碰到困难时,我们共同解决,好不好?我们去车站坐车吧。每张车票是2.50元。现在我们有这些面值的钱,可以怎样付钱?你有几种方法?(课件:1元、5角、2角、1角)。
(学情预设:学生可能多种答案,如一张2元一张5角,两张1元两张2角一张1角等)。
这些与顺序无关的,叫组合。板书:组合。
[设计意图]:激趣导入,让学生在实际运用中产生兴趣,在活动中找到启示。
二、展开活动,探索新知。
(一)探索1、2组成的'两位数。
师:你们要上车呀,还要猜出密码才能把门打开,这扇门的密码,是由一个两位数组成的,猜对了就可以打开车门。提醒你们这个两位数是由数字1和2组成的,(生再猜,12和21,)这个两位数与10很接近,你们说是多少?(12)。
(学情预设:学生可能比较快的把数排列出来)。
(二)探索1、2、3能组成几个不同的两位数。
1、用1、2、3三个数字可以组成几个不同的两位数呢?
2、教师激励学生动脑摆一摆:
从数字卡片中任选两张卡片,你能组成什么数?可以与小组同学讨论,并把结果记录下来。(学生拿出卡片,自己动手摆一摆。)。
3、引导学生动脑,找规律去摆,我们比一比谁摆的数多而不重复。
4、学生摆完后,小组交流,组长把成员摆的数记下来,并总结摆数的方法。
5、小组汇报。
6、师生总结:按照一定顺序找的数多而不重复。
7、小结:这些与顺序有关,我们叫排列。板书:排列。
(学情预设:学生可能不能一次把这些两位数排列出来,通过动手并记录找出排列的最佳方法,可能有学生会想到用计算的方法。)。
[设计意图]:让学生在体验中感受,在操作活动中成功,在交流中找到方法,在学习中应用。初步培养学生有顺序地、全面的思考问题的意识。
三、小组合作,巩固发展。
1、握手。
(1)三人做握手的游戏。每两人握一次手,一共握几次。
(2)小组汇报,三人到台上有规律的握手,得出结论。(3次)。
2、衣服搭配。
师:老师这里准备了2件衣服,2件裤子,一共有几种穿法呢?你可以用你自己喜欢的方法来解决这个问题(学生打开书本101页,可以摆一摆,也可以连线,也可以用序号的方法)。
3、比赛场次。
比赛马上就要开始了,如果3位运动员,每两人比一场,一共要进行几场比赛呢?生看书上101页第2题。
[设计意图]:用实践活动培养学生的实践意识和应用意识,同时使学生受到学习的乐趣。并通过不同形式的练习不但联系学生的生活实际,而且巩固了所学的知识。
四、拓展练习。
小朋友们如果我也参加比赛,四个人每两个人进行一场比赛,一共要进行几场呢?
五、课堂小结。
数学广角的教案(优秀20篇)篇二
教学目标:
1、使学生通过观察、实验等活动,找出最简单的事物的排列数和组合数。
2、初步培养学生有顺序地、全面地思考问题的意识。
3、经历探索简单事物排列与组合规律的过程。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教学过程:
一、情景导入。
二、展开活动,探索新知。
(一)探索1、2组成的两位数。
他们三个高高兴兴地去了车站,没想到我们的老朋友早就在车里等他们了。他们好想上车呀,可是车门是关着的,聪聪说:“这是一扇密码门,是由一个两位数组成的,猜对了就可以上车了。”
你们能帮他们猜一猜吗?(生猜)聪聪提醒你们这个两位数是由数字1和2组成的,(生再猜,12和21,)现在怎么猜得这么快呀?聪聪又提醒你们了,这个两位数呀和胡老师的年龄很接近,你们说是多少?(21)。
(二)探索1、2、3能组成几个不同的两位数。
聪聪说:“别急,那就让你们抽签吧,我这里有三张卡片,1、2、3,你们三个人每个人抽两次,组成一个两位数,看谁组成的两位数最大,我就和谁坐。”
师:小朋友,你们听懂聪聪的意思了吗?聪聪是什么意思呀?(生说)。
师:老师有个问题了,用三个数字可以组成几个不同的两位数呢?你们先想一想。
(学生独立思考,可以想,也可以写在本子上。)。
学生汇报。
师:有的人说是3个,有的说是4个,还有的说是6个,意见不统一了,那么有什么好方法能够使摆出的数既不重复又不遗漏呢?你们可以(板书:摆一摆),小组当中一人记录,其他的人寻找方法,记录好了之后交流一下你们组是怎么摆出来的,再选一个汇报员。(小组活动,为每个小组准备一个信封,里面有三张卡片和一张白纸。)。
小组汇报:方法一:我摆出12,然后再颠倒就是21;再摆23,颠倒后是32;再摆13,颠倒后是31,一共可以摆出6个两位数。(12、21、23、32、13、31)。
方法二:我先把数字1放在十位,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位,然后把数字1和3分别放在个位组成21和23;我再把数字3放在十位,然后把数字1和2分别放在个位组成31和32,一共摆出了6个两位数。(12、13、21、23、31、32)。
方法三:我先把数字1放在个位,然后把数字2和3分别放在十位组成21和31;我再把数字2放在个位,然后把数字1和3分别放在十位组成12和32;我再把数字3放在个位,然后把数字1和2分别放在十位组成13和23,一共摆出了6个两位数。(21、31、12、32、13、23)。
每种方法说完后师问:还能摆吗?(再摆就要重复了!提示:不能遗漏也不能重复)。
师小结:排数的`时候按照一定的顺序既不会重复也不会遗漏。我们用3个不同的一位数拼成了几个不同的两位数?(板书:6个)。
可拓展:三只动物抽到卡片后最多能组成21、31、32。
那谁可以和聪聪一起坐呀?小猫很幸运,他抽到了2和3,那么他一定会摆出一个……。
(三)握手。
小动物们谢谢我们帮他们一起解决了这些数学问题,一定要让胡老师表示谢意,好谢谢你们。(老师过去和学生握手。分别找几个人握手,让学生观察,每两个人握一次手。)。
师:老师的问题出来了,每两个人握一次手,三个人一共握几次手呢?你们猜猜看?(生猜)。
师:到底是几次呢。解决这个问题呀,我们可以(板书:表演)一下,四人当中组长监督,其他三个人握一握,看看一共要握几次。
生汇报一共几次,并选一组上来表演。表演完了板书(3次)。
生:画图.
师:你们觉得怎么样?
生:画图太麻烦了,可以用符号,三角形,正方形,圆来表示.
生:也可以用序号表示.
生:可以给动物连线.
(四)比较。
生:排数字时把两个数字交换后变成了另一个不同的两位数,而握手的时候两个人交换位置,还是那两个人在握手,只能算一次。
三、练习应用。
1、搭配衣服。
师:老师这里准备了2件衣服,2件裤子,一共有几种穿法呢?你可以用你自己喜欢的方法来解决这个问题(学生打开书本101页,可以摆一摆,也可以连线,也可以用序号的方法)。
2、比赛场次。
比赛马上就要开始了,如果3只动物,每两只比一场,一共要进行几场比赛呢?生看书上101页第2题。
师巡视时,看到学生用三个小圆,当三个人,连成一个三角形,随即提示能不能把圆变成点,这样就是三角形了.就叫学生上来板书.
四、小结。
五、拓展练习。
数学广角的教案(优秀20篇)篇三
教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、会用“抽屉原理”解决简单的实际问题。
3、通过操作发展学生的类推能力,形成比较抽象的数学思维。
教学重点:认识“抽屉原理”。
教学难点:灵活运用“抽屉原理”解决实际问题。
教学方法:小组合作,自主探究。
教学准备:若干根小棒,4个纸杯。
教学过程:
一、创设情境,导入新知。
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。
师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
二、自主学习,初步感知。
(一)出示例1:4枝铅笔,3个文具盒。
1、观察猜测。
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究。
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。
(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。
(3)交流讨论,汇报。可能如下:
第一种:枚举法。
用实物摆一摆,把所有的摆放结果都罗列出来。
第二种:假设法。
如果每个文具盒中只放1枝铅笔,最多放3枝。剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。
第三种:数的分解。
把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。
(4)、比较优化。
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。
3、引导发现。
只要放的铅笔数比盒子的数量多1,不管怎么放,总有一个盒子里至少放进2枝铅笔。
1、学生尝试自已探究。
2、交流探究的结果,可能如下:
1)枚举法。
共有3种情况。在任何一种结果中,总有一个抽屉至少放进3本书。
2)假设法。
把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。
由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。
同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。
9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。
3、观察发现。
学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。
4、介绍原理。
师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。
三、应用原理,解决问题。
完成教材第72页“做一做”第1题。
四、全课总结,回归生活。
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第二课时抽取游戏。
教学目标。
知识与技能目标:进一步掌握抽屉原理,掌握抽屉原理的反向求法。
过程与方法目标:通过各种活动培养学生自己动手动脑去思考的习惯。
情感、态度与价值观目标:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重难点。
1.使学生理解抽取问题中的一些基本原理。
2.找到抽屉原理问题中被分的'物品。
教学过程。
一、创设情境、引入新课:
学生思考、发言。
师:学习了这节课我们就能解决类似的问题了。
二、活动探究、深入了解:
1、学生提出猜想。
2、用预先准备的学具,小组合作交流。4、小组反馈,师相机板书:
3、得出结论:把颜色看作抽屉。
有两种颜色,只要摸出的球比他们的颜色至少多1,就能保证有两个球同色。
(二)研究规律。
师:如果盒子里有蓝、红、黄球各6个,从盒子里摸出两个同色的球,至少要摸出几个球?
分小组讨论后汇报。
再出示做一做第2题,汇报后得出:问题结论只与球的颜色种数也就是抽屉数有关。
小结:确定什么是抽屉什么是物体是解决抽屉问题的关键。
三、巩固训练,促进内化。
1、做一做。
2、解决课前有趣的问题。
3、有红色、白色、黑色的筷子各10根混放在一起,让你闭上眼睛去摸,
(1)你至少要摸出几根才敢保证有两根筷子是同色的?
(2)至少拿几根,才能保证有两双同色的筷子?为什么?
四、全课总结,畅谈收获。
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?
第三课时节约用水。
教学目标。
过程与方法目标:通过活动培养学生搜集和处理信息的能力,使学生感到数学和现实生活的联系。
情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。
教学重难点。
所学知识的综合应用。
教学过程。
一、情景引入,提出问题。
1、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出课题。
2、提出问题:为什么要节约用水呢?
二、问题讨论,明白道理。
1、交流课前搜集的信息,畅谈有关水的认识。
2、课件展示相关资料,了解地球上水资源状况。
3、交流感想,强化体验。
三、参与活动,亲身体验。
师:课前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!
1、小组交流、展示成果。(一分钟大约滴水50毫升)。
2、计算统计,交流感想。
师:根据上面的滴水速度,完成下面的统计表。
一个漏水水龙头漏水情况统计表。
时间1分钟1小时24小时1年。
水量(升)。
一个水龙头一年浪费多少水?(1立方米约重1吨)。
3、评价家庭用水状况,提出节水建议。
4、(课件出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约0.2升。
a、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?
c、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?
(独立分析计算、汇报计算结果,交流想法)。
四、解决问题,提出方案。
分组讨论一下节约用水的措施。
1、学生分组讨论,多媒体演示生活中的节水片段。
2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。
数学广角的教案(优秀20篇)篇四
课本p100页。
1、通过活动让学生感受简单推理的过程,初步获得一些简单推理的经验。
2、培养学生的推理能力。
3、培养学生的合作意识和创新精神。
动物图片、语文、数学、自然等教科书。
故事导入:森林王国要举行运动会,入场时要组织一个花束队,鸡大婶让蓝猫和非非准备一束花,鸡大婶说:“他们拿的分别是红花和蓝花。”蓝猫说:“我拿的不是红花。”鸡大婶说:“请同学们猜一猜,蓝猫和非非分别拿的是什么花?”
今天有许多这样的问题等着同学们去猜,大家要比一比谁最爱动脑筋。
[设计意图]:故事导入新课等于抓住了儿童的天性,激起了他们玩的乐趣和学习的积极性。
(1)出示例2的第一组图让学生注意观察。
让学生猜一猜他们拿的是什么书?
请学生说一说自己是怎样想的。
(2)、小组活动。
4人一组,两名同学分别拿语文数和数学书,其中一名同学说:“我拿的不是什么书。”另外两名同学比赛看谁猜得快。交换进行。
(3)、同桌活动。
拿出准备好的动物卡,又一名同学操作,左(右)手拿的是(不是)什么,另一名学生猜,交换进行。
1、找三名同学配合,创设真实情景,根据例题做一做,让学生猜一猜,说一说是怎样想的。
2、小组活动。
a、师:把猜一猜的游戏规则说一说。4人一组轮流进行,每人至少猜一次。
b、进行活动。教师不做任何规定,让学生撇开思维,自己去猜。
c、小组交流,向全班汇报活动过程。
3、观察比较例3和例2有什么不同?学生回答后教师总结。
4、巩固练习:师生一起做游戏。
[设计意图]:通过多种游戏活动,既给了学生充分的时间活动,一起在活动中探索新知。放手让学生随意玩,鼓励他们玩出新意,教师捕捉创新的火花,培养他们的求异思维。
这节课我们上得真愉快,你们在游戏中都学会了什么?
数学广角的教案(优秀20篇)篇五
我执教的内容是人教版小学数学四年级下册第八单元数学广角中的例1。本单元主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。
例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据编者的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。
本节课主要是让学生在解决实际问题的过程中发现规律,抽取出其中的数学模型,找到解决问题的有效方法,经历分析、思考的过程。因此,我这样设计:创设情境从学生身边事,引起学生兴趣;自主探索,构建数学模型;拓展应用,培养应用意识。为此,本课制定了三个教学目标:
1.通过探究发现一条线段上两端要种的植树问题的规律。
2.学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
引导学生从实际问题中探索并总结出棵树与间隔数之间的关系。
把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题。
说教法:在本节课的教学中,我根据教学内容的特点和学生的实际情况,安排了一次动手操作,引导学生积极参与,使学生在小组合作的学习活动中,加深对植树问题棵数与间隔数之间的关系的认识与理解。
学生是数学学习的主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。在教学中,我选取生活中的学生熟悉的事例,在教师的引导中让学生探究,,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。
“数学来源于生活,而又应该为生活服务。”在学生已经发现两端要种的植树问题的规律后,我开放课堂时空,让学生从车站站点、上楼等问题,并通过课件让学生直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。
此外,我还进一步拓展了教学目标,在画图求解的过程中,让学生觉得这样画到100米麻烦,产生另辟蹊径的念头,使学生体验“复杂问题简单化”的解题过程。
说学法:本节课学生主要采用动手操作、合作交流的方法进行学习。
说教学流程:本节课我分四个流程进行教学推进,
一、广告导入,感知“间隔”的含义。
二、引导探究,发现“两端要种”的规律。
1.创设情境,提出问题。
通过在小路植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在思考的过程中发现了三种不同的方法,到底哪一种方法好呢?引导学生通过画图实际种一种去检验。通过模拟种树,使学生体验到一棵一棵种到100米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。
2.简单验证,发现规律。
通过前面的广告、斑马线等图,学生对棵树和段数的关系已有了一定的感性认识,再经过学生实际操作,为学生顺利发现并总结规律打下了基础。
三、通过儿歌的形式归纳规律。
这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。
四、回归生活,应用规律。
多角度的应用练习巩固和拓展学生对植树问题的认识。
反思整个教学过程,我认为这节课有以下几个特点:
一、创设浅显易懂的生活原型,让数学走近生活。
创设与学生的生活环境和知识背景密切相关的,学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。
二、注重学生的自主探索,体验探究之乐。
体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。
三、利用学生资源,加强生生合作。
学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。
四、回归生活,应用规律。
多角度的应用练习巩固和拓展学生对植树问题的认识。
如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我也注重对数形结合意识的渗透。
本节课还有许多的不足之处,能够与在座这么多的老师共同学习、交流,是一次难得的机会,希望在座的老师能多给我提一些宝贵的意见,帮助我成长。
数学广角的教案(优秀20篇)篇六
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
数学广角的教案(优秀20篇)篇七
1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。
2.培养学生有序地、全面地思考问题的意识和习惯。
1.借助操作活动或学生易于理解的事例来帮助学生找出排列数或组合数。
2.利用学生已有的知识让学生逐步建构新的知识。
衣服搭配、摆几位数、求比赛场次等例子在二年级上册都出现过。
3.利用直观图示帮助学生有序地、不重不漏地找出排列数或组合数。
1.例1(简单的组合)。
(1)隐含了分步计数的原理,但这儿不要求用分步计数的方法(乘法)来求组合数。只要能用图示的方法来求出组合数就可以了。
(2)教材上提供了两种图示表示法,引导学生用画简图的方式来表示抽象的数学知识。实际上还有其他的方法,例如每条裙子或裤子分别可以搭配两件上衣(分步时,可以把确定上衣作为第一步,也可以把确定裙子和裤子作为第一步),教学时要充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。
(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示衣服,圆形表示裙子和裤子,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。
(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。
2.“做一做”
通过活动的方式让学生不重不漏地把所有两位数写出来。
3.例2(简单的排列)。
学生已经有了拿三张数字卡片摆两位数的经验,摆三位数可以用类推的方式让学生自己解决。在这儿的重点是引导学生有序地思考,怎样摆才能不重不漏。学生一开始可能是无规律地摆,但经过一定的观察后,会逐渐走向有序。要让学生经历一个从无序到有序、从实际摆卡片到脱离卡片直接写出这些三位数的过程。
4.“做一做”
借助学生喜爱的西游记的故事情境让学生直观地找出排列数。
5.例3(简单的组合,两两组合)。
(1)利用20xx年世界杯足球赛的题材,除了教学组合知识以外,还可以适当进行爱国主义教育。
(2)用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。(原来教材上是有的,但由于版面的原因,送审后删去了。)。
6.练习二十五。
设计丰富的情境让学生练习,巩固排列和组合的知识。
1.要借助于操作活动帮助学生求排列数或组合数。
排列、组合是很抽象的数学知识,要用操作活动把这些抽象的知识直观化、具体化。
2.注意把握教学要求。
在这儿还只是用图示的方式把所有的排列或组合情况罗列出来(即有哪些排列或组合),不是抽象地计算一共有多少种排列数或组合数。要允许学生用自己喜欢的方式去求排列数、组合数。至于排列、组合等名词,排列与组合的区别,分类计数原理、分步计数原理等,都不要求学生掌握。
实践活动掷一掷。
1.组合(两个骰子上的数字之和)。
2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数。)。
3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。)。
二、活动步骤。
(一)示范游戏。
1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)。
2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。
3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。
(二)小组内游戏,探索结论。
通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。
(三)理论验证。
通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。
数学广角的教案(优秀20篇)篇八
抽屉原理。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过“抽屉原理”的灵活应用感受数学的魅力。
1.例1及“做一做”。
例1借助把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔的情境,介绍了一类较简单的“抽屉问题”。为解释这一现象,教材呈现了两种思考方法:“枚举法“与“反证法”或“假设法”。
教学时,教师可适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。
“做一做”中安排了一个“鸽巢问题”,学生可利用例题中的方法迁移类推。
2.例2及“做一做”。
本例介绍了另一种类型的“抽屉问题”,即“把多于个的物体任意分放进个空抽屉(是正整数),那么一定有一个抽屉中放进了至少(+1)个物体。”教材提供了把5本书放进2个抽屉,不管怎么放,总有一个抽屉里至少放3本书的情境。仍用枚举法及假设法探究该问题,并用有余数除法的形式5÷2=2……1表达出假设法的思路,并在此基础上,让学生类推解决“把7本书、9本书放进2个抽屉的问题”。
教学时,引导学生理解假设法最核心的思路是把书尽量多地“平均分”给各个抽屉。
“做一做”中“抽屉数”变成了3,要求学生在例2思考方法的基础上进行迁移类推。
3.例3。
例3是“抽屉原理”的具体应用,也是运用“抽屉原理”进行逆向思维的一个典型例子。
教学时,先引导学生思考这个问题与“抽屉原理”有怎样的联系,可先让学生自由猜测、再验证。逐步将“摸球问题”与“抽屉问题”联系起来,找出这里的“抽屉”是什么,“抽屉”有几个,再应用前面所学的“抽屉原理”进行反向推理。
1.应让学生初步经历“数学证明”的过程。
在小学阶段,虽然并不需要学生对涉及到“抽屉原理”的相关现象给出严格的、形式化的证明,但仍可引导学生用直观的方式进行“就事论事”式的解释。教学时可以鼓励学生借助学具、实物操作或画草图的.方式进行“说理”。通过这样的方式,有助于逐步提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2.应有意识地培养学生的“模型”思想。
“抽屉问题”的变式很多,应用更具灵活性。但能否将这个具体问题和“抽屉问题”联系起来,能否找到问题中的具体情境和“抽屉问题”的“一般化模型”之间的内在关系是影响能否解决该问题的关键。教学时,要引导学生先判断某个问题是否属于用“抽屉原理”可以解决的范畴,如果可以,再思考如何寻找隐藏在其背后的“抽屉问题”的一般模型。
3.要适当把握教学要求。
“抽屉原理”的应用广泛且灵活多变,因此,用“抽屉原理”来解决实际问题时,有时要找到实际问题与“抽屉问题”之间的联系并不容易。因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
五年级数学上册同步单元试卷:第七单元数学广角(4)。
五年级数学上册同步单元试卷:第七单元数学广角(4)。
五年级数学上册同步单元试卷:第七单元数学广角(1)。
五年级数学上册同步单元试卷:第七单元数学广角(1)。
五年级数学上册同步单元试卷:第七单元数学广角(2)。
五年级数学上册同步单元试卷:第七单元数学广角(2)。
五年级数学上册同步单元试卷:第七单元数学广角(3)。
五年级数学上册同步单元试卷:第七单元数学广角(3)。
苏教版六年级数学——第十单元第五课时应用广角。
教学内容:第119页的应用广角,第27~31题,及自我评价。
教学目标:1、使学生在整理与复习的过程中,进一步体会数学知识和方法的内在联系,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题。
2、使学生在整理与复习中,进一步评价和反思自己的学习情况,体验与同学交流和获取知识的乐趣,感受数学的意义和价值,增强学好数学的信心。
1、问:你在生活中发现过哪些数学问题吗?
你能运用所学的数学知识和方法解决这些问题吗?
2、完成第27题。
(1)课前预先布置学生按要求去调查。
(2)课上,让学生分组汇报调查得到的数据。
学生根据数据计算,完成填空。
(3)分析:从这些信息中,你们知道了什么?
用百分数或比表示相关的信息有什么好处?
3、完成第28题。
收集一些用百分数或比表示的信息,在小组里交流。
4、完成第29题。
根据本校一年级的班级数,让学生分成相应的小组,让每个小组调查一个班级的数据。
全班交流,统计分别知道三个应急电话号码的人数,再让学生按要求计算。
5、完成第30题。
(1)每位学生带一张长8厘米,宽4厘米的长方形硬纸板。
读题,思考:剪去的每个正方形的边长应该是几厘米?
(2)学生动手剪一剪、折一折。
找一找:这个纸盒的长、宽、高各是多少?
(3)算一算:
制作这个纸盒用了多少硬纸板?
这个纸盒的容积是多少立方厘米?
6、完成第31题。
学生先独立思考,再全班交流。
二、自我评价。
1、回顾自己本学期学习的表现,对照书上的几个要求,给自己评一评,看看分别能得几颗星。
2、在学习中,你觉得自己在哪些方面特别成功的?有没有什么好的方法和经验同大家交流一下。
数学广角的教案(优秀20篇)篇九
教学目标:
1、通过摆一摆、玩一玩、画一画等实践活动,了解有关两两组合的知识。
2、培养学生初步的观察、分析能力和有序的、全面思考问题意识。
3、培养学生大胆猜想、积极思维的学习品质。
4、通过学习学生能应用排列组合的知识解决生活中的实际问题。
教学重点:经历探索简单事物两两组合规律的过程。
教学难点:能用不同的方法准确地计算出组合数。
教学用具:课件、卡片、铅笔、直尺等。
教学过程:
一、创设情境,激趣导入:
师:小朋友们喜欢什么样的球类运动呢?
(让学生各抒已见。)当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。
二、引导参与:4人小组合作完成。然后汇报,并说理由。
三、共同探究:
师:xxxx年世界杯足球c组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。
师:如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)。
1、让学生大胆说一说、猜一猜。
2、四人小组用学具卡片摆一摆、讨论讨论。
3、学生汇报。
4、汇报时可让学生利用学具卡片在黑板上演示他们求组合数的方法。
5、一小组演示。
6、其他同学认真观看。
7、然后在相互探讨、补充。
8、力求能准确算出比赛场数。
9、方法允许多样。每种方法都放手让学生相互交流、学习。老师适当引导。
10、师生共同动手。
a、用画“正”字数出要踢多少场。
b、把巴西、土耳其、中国、哥斯达黎加四个国家摆成正方形用连线的方法求出场数。
c、把巴西、土耳其、中国、哥斯达黎加四个国家摆在一直线上在用连线的方法求出场数。
11、用课件将上面第二、第三种方法直观演示。
12、让学生把这些抽象的知识直观化、具体化。
13、老师总结。
刚才同学们有的用了把所有的情况逐一罗列出来,有的同学是用图示法求出两两组合数的,用哪一种方法求都可以,只要这种方法是你喜欢的。
课堂练习:
比赛结束了。运动员相互握手告别。问题是:四个人每两人握手一共要握几次手呢?
(1)进行礼仪教育。
(2)四人小组进行实践。
(3)请1-2个小组代表上台演示。
作业设计:
提问:如果是5个运动员每两人握一手,一共要握几次手呢?
我的`问答:
课堂是以学生为主体的,所以学生的主体地位在任何时候都要放在首位,但这一点也是许多教师都犯的一个通病,把课堂看做自己表演的舞台,给学生留的空间很少,这就我自己认为是错误的,你说呢!
数学广角的教案(优秀20篇)篇十
1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
3、进一步体会到数学与日常生活密切相关。
4、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
5、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
分配问题。抽取问题。
正确说明分配的结果。理解抽取问题的基本原理。
2课时。
教学内容:分配。
知识与技能:使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
过程与方法:能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
情感态度与价值观:进一步体会到数学与日常生活密切相关。
教学重点:分配问题。
教学难点:正确说明分配的结果。
教学过程:
一、学例1。
1、活动。
把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
学生思考各种放法。
与同学交流思维的过程和结果。
汇报交流情况。
学生口答说明,教师利用实物木棒:
第一种放法:第二种放法:
第三种放法:第四种放法:
2、问题。
不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?
经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。
3、做一做。
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
尝试分析有几种情况。
说一说你有什么体会。
学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。
二、学例2。
1、本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?
摆一摆,有几种放法。
不难得出,总有一个抽屉至少放进3本。
2、说你的思维过程。
果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
3一共有7本书会怎样呢?9本呢?
学生独立思考,寻找结果。
与同学交流思维过程和结果。汇报结果,全班交流。
4、能用算式表示以上过程吗?你有什么发现?
5÷2=2……1(至少放3本)。
7÷2=3……1(至少放4本)。
9÷2=4……1(至少放5本)。
说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
5、做一做。
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。
三、巩固练习。
完成课文练习十二第2、4题。
四、布置作业。
完成《家庭作业》第20练习。
教学内容:抽取游戏。
教学目标:
知识与技能:使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
情感态度与价值观:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
教学重点:抽取问题。
教学难点:理解抽取问题的基本原理。
教学过程:
一、教学例3。
1、猜一猜。
让学生想一想,猜一猜至少要摸出几个球。
2、实验活动。
一次摸出2个球,有几种情况?
结果:有可能摸出2个同色的球。
一次摸3个球,有几种情况?
结果:一定能摸出2个同色的球。
3、发现规律。
启发:摸出球的个数与颜色种数有什么关系?
学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。
二、做一做。
1、第1题。
独立思考,判断正误。
同学交流,说明理由。
2、第2题。
说一说至少取几个,你怎么知道呢?
如果取4个,能保证取到两个颜色相同的球吗?为什么?
三、巩固练习。
完成课文练习十二第1、3题。
四、布置作业。
完成《家庭作业》第21练习。
数学广角的教案(优秀20篇)篇十一
(一)通过观察、猜测等活动,让学生经历简单的推理过程,理解逻辑推理的含义。初步获得一些简单的推理经验。
(二)能借助连线、列表等方式整理信息,并按一定的方法进行推理。
(三)在简单的推理过程中,培养学生初步的观察、分析、推理和有有条理的进行数学表达的能力。
(四)使学生感受推理在生活中的广泛运用,初步培养学生有顺序的全面的思考问题的意识。
理解逻辑推理的含义,经历简单的推理过程,初步获得一些简单的推理经验。
初步培养学生有序的,全面的思考问题及数学表达的能力。
(一)激情导入。
游戏:猜猜我的年龄?
来猜一猜吧!哦,有这么多答案,看来大家没办法确定老师的年龄,给你一个提示:36、37这两数中有一个是老师的年龄。
有两种可能,老师再给你一个信息,我今年不是36岁,现在答案一样,说说你是怎么猜的。
像这样根据一些信息提示,得出一些结论,这样的方法叫推理!
(一)初级挑战。
生活中的推理;
(二)中级挑战。
教师利用课件呈现例1,出示例题1。
师:同学们,我们认真阅读,然后告诉老师,从题目中你发现了哪些信息?
生:有三本书,语文、数学、道德与法治。
生:有三个小朋友,分别是:小红、小丽、小刚。
生:他们三人各拿一本。
师:下面三人各拿一本,这个信息是什么意思呢?
生:他们三人拿的书都不相同。
师:下面我们来看看三个小朋友都说了什么话?
生:小红说:我拿的是语文书。小丽说:我拿的不是数学书。
师:题目中要让我们求什么?〔问题:小丽拿的是什么书?小刚呢?〕。
师:很好,那他们到底拿的是什么书呢?
1、选择自己喜欢的方法来完成学习单。
2、完成后,和同桌说说你是怎么想的。
学生活动,汇报。
学生自主学习完成,教师巡视。
学生汇报:
生1:小红拿的是语文书,那小丽和小刚拿的就是数学与道德与法治,小丽又说她拿的不是数学书,她肯定拿的就是道德与法治了,剩下的小刚拿的就是数学书了。
生2:用连线的方法。
我把人名和书名写成两行,然后根据小红拿的是语文书,所以小红就与语文书连在一起了,剩下的小丽和小刚就只能连数学和道德与法治了,小丽又说,她拿的不是数学书,那小丽肯定拿了道德与法治了,再连上线,最后小刚拿的就是数学书了,再连上线。
师:孩子们,再来回顾解决问题的过程,找完数学信息后,部分同学选择了用连线法跟表格的方式来进行整理,这样做可以让我们把信息整理得更加地〔清楚、简洁〕。
先从哪个条件开始呢?
最后因为小红拿的是语文书,小丽拿的是道德与法治书,所以小刚拿的就是数学书。最后我们推出结论。
刚才同学们很厉害,表现这么棒,柯南送给大家一首儿歌,一起念念。
掌握了推理技巧和方法,我们一起练练手:
1、试一试。
生:用连线法,把三只狗的名称和重量分别写成两行,因为笑笑是最轻的,所以笑笑和5千克连在一起,乐乐比欢欢重,乐乐就与9千克连在一起,剩下的欢欢就与7千克连在一起。师:同学们,说的真好!
2、猜一猜。
师:从题目中,我们知道了哪些信息呢?
生:信封里有一个圆,一个三角形,一个长方形,他们分别是三种颜色中的一个。
师:哪个图形,我们最能先判断出来,为什么?
生:绿色的是圆形,因为绿色露出来的是半圆,下面肯定也是半圆,
师:发现的非常好!那红色和蓝色能不能判断?生:不能。
师:下面请听老师一个提示:〔出示课件:蓝色说:我不是三角形。〕现在请同学们用喜欢的方法写下来。
师:下面我们一起来看看到底是不是这样的。〔教师点击课件把信封拿掉,显示结果〕。
师:小朋友真棒!太厉害了!同学们现在跟老师一起说一说,绿色的是圆形,剩下三角形和长方形,蓝色的不是三角形,所以红色的是三角形。最后蓝色的一定是长方形。
(三)终级挑战。
读题后,同桌两人利用学习单里的卡片摆一摆,验证你的想法,写下数字密码。
并指名一位同学上台演示,说说你的推理过程。
恭喜同学们,闯关成功。
(四)小游戏。
(五)课堂总结。
师:同学们,开心吗?通过这节课的学习,你有哪些收获呢?是呀,我们个个都成为了小侦探。推理是一个非常重要的数学思想方法,希望同学们在今后的学习中,能善于观察,勤于思考,用推理解决更多的问题。
数学广角的教案(优秀20篇)篇十二
义务教育课程标准实验教科书三(下)p109例2及练习二十四第3.4.题。
教学目的:
1.让学生通过观察、猜测、操作、验证等活动,初步体会等量代换的数学思想。
2.培养学生有序地、全面地思考问题的意识和合作学习的习惯。
利用天平或跷跷板的原理,使学生在解决实际问题的过程中初步体会等量代换的思想,为以后学习简单的代数知识做准备。
使学生学会运用等量代换这一数学思想方法来解决一些简单的实际问题或数学问题。
教具、学具:卡片学具、课件。
教学设计说明:
课的的开始通过“春游”这一学生感兴趣的情景引入,以此吸引学生的注意,并让学生自主地提出问题,培养学生发现问题的意识。老师引导学生发现问题后,让学生观察思考,有条理地猜猜结果。由于这一课的教学内容较为抽象难懂,所以教学时留给学生动手操作、合作学习的机会。通过这样的教学,使学生亲身体验、探究等量代换的数学方法。最后,在教学例题的基础上,设计相关的练习,培养学生类比推移能力和逆向思维能力。教学时,要多关注“后进生”的指导,培养他们有序地、全面地思考问题的意识和合作学习的习惯。
数学广角的教案(优秀20篇)篇十三
教学目标:
1、使学生借助具体内容,初步体会集合的数学思想方法。
2、运用集合的思想方法解决一些简单的数学问题或实际问题。
3、使学生在学习活动中获得成功的体验,提高学生学习数学的兴趣。
教学重、难点:
1、初步体会集合的思想方法。
2、运用集合图来表示事物。
教具准备:展示题。
教学过程:
一、激趣引入。
师:同学们喜欢参加什么课外兴趣小组?
1、师根据学生回答逐步引导出学生对自己的兴趣既喜欢又喜欢或者只喜欢。
师:刚才和同学们聊了你们喜欢的兴趣小组,今天我们在数学广角中继续研究这方面的问题。(板书:数学广角)。
二、互动探究。
1、出示例题。
三(1)班参加语文、数学课外小组的学生名单。
语文杨明李芳刘红陈东王爱华张伟丁旭赵军。
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东。
师:同学们从例题当中得到了那些信息?
师:参加语文和数学兴趣小组的一共有多少人?
1、教师根据学生的回答相机板书人数。
17人、16人、15人、14人……。
师:这么简单的一个问题为什么会出现好几个答案?
师:我们一起来演示了看看你能发现什么。
2、教师请学生把名字条放到相应的小组里。出现了多余的三个,怎么办?用什么好办法能解决这个问题?请学生讨论思考并动手试一试。
语文小组数学小组。
杨明、李芳、刘红。
3、师生一起互动解决问题后,把得到的信息板书在黑板上。
4、介绍韦恩图。
5、教师手指韦恩图每个部分让生说出这个部分表示的意思并相机板书。
喜欢语文。
喜欢数学。
只喜欢语文。
只喜欢数学。
既喜欢语文又喜欢数学。
6、根据这些板书信息尝试列式。
7、学生汇报列式教师相机板书。
8+9-3=14(人)。
5+3+6=14(人)。
……。
8、同学们现在知道参加两个兴趣小组的共多少人了吗?
9、学生选择自己喜欢的计算方法相互说算理。
10、回看学生最初汇报的语文和数学兴趣小组的人数并评价。
11、对比韦恩图和统计表请学生评价。
三(1)班参加语文、数学课外小组的学生名单。
语文杨明李芳刘红陈东王爱华张伟丁旭赵军。
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东。
语文小组数学小组。
教师小结:原来的统计表只能看出喜欢语文和喜欢数学的同学。
而韦恩图不仅能看出喜欢语文和喜欢数学的同学还能看出只喜欢语文和只喜欢数学以及既喜欢语文又喜欢数学的同学。
三、运用知识解决问题。
1、完成书上110页练习二十四第一题和第二题。
四、总结。
师:今天上了这节课你有什么收获?
五、课外延伸。
师:听说过学以致用这个词语吗?就是说学了知识要把它运用到解决周围的问题当中,今天朱老师就给大家一个学以致用的机会。
作业:运用韦恩图的知识调查本班同学喜欢的两个体育运动项目交给老师以备运动会的时候用。
板书设计:
三(1)班参加语文、数学课外小组的学生名单。
语文杨明李芳刘红陈东王爱华张伟丁旭赵军。
数学杨明李芳刘红王志明于丽周晓陶伟卢强朱小东。
语文小组数学小组。
数学广角的教案(优秀20篇)篇十四
教学目标:
1、在具体情境中,使学生感受集合的思想,感知集合图的产生过程。
2、能借助直观图,利用几何的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。
3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。
重点难点:
1、让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。
2、对重叠部分的理解。
一、创设情景,激趣导入。
师:老师先给大家出一道脑筋急转弯:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。
二、探究体验,经历过程。
1、(出示课本p104页例1)。
学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)。
2、在图中我们可以知道哪些信息?
那参加活动的一共有多少人呢?(小组讨论)学生回答,再全班反馈。
8、我们可以用图表示出来吗?
9、那你们能在这两个圈里找到既参加跳绳又参加踢毽的同学名字吗?
10、同学们,你们还能想出其它的办法,让别人一看到图就能马上找出参加了两个活动重复的名单呢?11我们还可以把这两个圈合在一起。
12、提问学生红色圈,蓝色圈,中间的各代表是什么呢?
基础练习。
巩固练习。
3、拓展练习。
这两天一共进了多少的货?5+5-3=7(种)。
答这两天一共进了7种货。小结。
这节课你学到了什么?
板书设计:
9+8-3=14(人)语文小组+数学小组-重复人数。
6+5+3=14(人)只参加语文小组+只参加数学小组+两种都参加的人数。
数学广角的教案(优秀20篇)篇十五
教学目标:
1、通过猜一猜活动,培养学生初步的观察、分析及推理能力。
2、初步培养学生有顺序地、全面地思考问题的意识。
3、通过活动使学生感受简单推理的过程,初步获得一些简单推理的经验。
二、探究新知。
(一)两种物品。
1.老师这里有两张卡片(出示):你能猜出卡片上分别画着什么吗?(生猜很多)。
5.你会猜了吗?老师和学生做一次这个游戏,然后同桌再做,师指导检查。
(二)三种物品。
2.从题目中你知道了什么信息?(师随机板书主要信息)。
3.根据这些信息你能判断他们三人各拿了什么书吗?先想想,再把你的想法告诉同桌。
4.汇报;你是怎么推断出来的?还有不同的想法吗?
5.这个游戏与前面的游戏有什么不同?
6.你们想试一试吗?学生独立练习做书本101面的3、4题,小组交流后全班汇报。
三.应用拓展。
你能用今天学的知识帮帮他们吗?
以上两题先独立思考,在小组交流,最后全班汇报。
数学广角的教案(优秀20篇)篇十六
本单元的教学目标是:。
1.通过生活中的事例,初步体会解决植树问题的思想方法。
2.初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
一、 本单元的分课时目标有哪些?
本单元共有2课时,每个课时的教学目标如下:。
第一课时。
教学内容:植树问题。
义务教育课程标准实验教科书(人教版)四年级下册第117~118页例1及做一做,练习二十第1~3题。
教学目标:。
1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。
2.会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。
3.感悟构建数学模型是解决实际问题的重要方法之一。
第二课时:棋中的数学问题。
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:。
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;。
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;。
3.让学生感受数学在日常生活中的广泛应用。
【内容解读】。
已学过的相关内容。
两步应用题,直线、封闭曲线等有关知识。
本单元的主要内容。
将实际问题抽象出植树问题模型,用植树问题的模型解决一些相关的实际问题。
后继学习的相关内容。
相关应用题。
三、 本单元的例3的教学重点是什么?
关于封闭图形的植树问题。
四、 练习二十第4题的编写意图是什么?该怎样把握题目的教学要求?
练习二十第4题十探讨关于封闭曲线的植树问题,可以让学生自己来完成。学生可以用画线段图的方法来寻找隐藏其中的规律,比如把一个圆圈平均分成4份,可以看到正好有四个间隔点,所以关于封闭曲线的指数的棵树正好是分出的间隔数。
【教学提醒】。
五、 怎样本单元的教学要求?
本单元是让学生通过生活中的简单事例,初步体会解决植树问题的思想方法和他在解决实际问题的应用,教学时,应从实际问题入手,引导学生在解决问题的分析、思考过程,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。但是,也要注意不要対例题进行过多的变式、提高问题的难度,造成教学要求过高。
数学广角的教案(优秀20篇)篇十七
教学内容:三年级下册p108例1及相关练习教学目标:
1、使学生学会借助直观图,利用集合图的思想方法解决简单的实际问题。
2、使学生掌握解决重叠问题的一些基本策略,体验解决问题策略的多样性。
3、培养学生善于观察、善于思考,养成良好的学习习惯。教学重点:体会集合的思想方法。
教学难点:经历集合产生的过程,并用集合图来解决问题。教学过程:
一、导入:同学们好,老师第一次来到你们班,想认识一下大家,谁愿意自己起来介绍一下?(4人介绍,选择1个握手,再找3人握手。)。
上课前完成一个脑筋急转弯,比比看谁的小脑袋瓜子转的最快;六匹马一起拉一辆车走了六里路,每匹马走了几里。
二、创设情境,引入新课。
1.下面请刚才自我介绍的同学起来,握手的也起来。
现在请自我介绍的同学站到我右边,握手的的同学站到我左边。有一个怎么站?生:站在中间。
为什么?因为他参加了两样。出示课题:重叠问题。
那么,这是我选的名单,观察一下,是13人吗?引导学生观察,找出重复部分,问:怎样才能使我们一眼就能看出哪些是参加唱歌的,哪些是参加跳舞的。师:现在我这里有两个圈,一红,一蓝,请同学们以小组的形式,把名字全部填入圈中,四个同学到黑板上来。然后巡视。通过学生的讨论得出韦恩图。介绍韦恩,并出示韦恩图。
3、读韦恩图,谁来说一说每个圈表示的意思。
第一个圈里只参加唱歌的同学,第二个圈里只参加跳舞比赛的同学。重复的部分又是什么意思?(重复部分就是两项比赛都报名的同学。)你说得非常准确,而且回答问题的时候声音很响亮。
4、列式计算。
请用算式表示出来。学生列式,教师巡视。自己想一想为什么可以这么列式?板书,让学生说出想法.我们用不同的方法解决了这个问题,最终算得的结果都是11人。
三、实践应用,拓展新知。
1.你们喜欢动物吗?认识这些动物吗?这些动物有的会飞,有的会游。请把这些动物的序号填入下图中合适的位置!下面让我们来帮帮这群小动物找找它们合适的位置。
鲸鱼猫头鹰天鹅蝴蝶金鱼(1)(2)(3)(4)(5)鲨鱼海鸥老鹰海龟鸽子(6)(7)(8)(9)(10)。
2、数学广角的文具店开业了,咱们去看看(出示110页第2题)谁来当采购员把这两天的进货情况向大家介绍一下。
“这两天一共进了多少种文具呢?”聪明的同学们帮他们计算一下吧。(1)学生独立思考并解决。(2)反馈。(昨天和今天进货的重复部份用圈圈出来)。
四、课堂小结。
今天你有什么收获?
数学广角的教案(优秀20篇)篇十八
教材分析:
"鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排鸡兔同笼问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
鸡兔同笼的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。
解决鸡兔同笼问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。假设法有利于培养学生的'逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决鸡兔同笼问题时,学生选用哪种方法均可,不强求用某一种方法。
配合鸡兔同笼问题,教材在做一做和练习中安排了类似的一些习题,比如龟鹤问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用假设法或方程的方法来解决这类问题。
三维目标:
1、知识与技能。
(1)、了解鸡兔同笼问题,感受古代数学问题的趣味性。
(2)、尝试用不同的方法解决鸡兔同笼问题,并使学生体会代数方法的一般性。
2、过程与方法。
解决鸡兔同笼问题可用猜测、列表、假设或方程解等方法。
3、情感、态度与价值观。
(1)、培养学生的逻辑推理能力。
(2)让学生体会到数学问题在日常生活中的应用。
重难点、关键:
1、重难点。
尝试用不同的方法解决鸡兔同笼问题。
2、关键。
在解决问题的过程中培养学生的逻辑推理能力。
数学广角的教案(优秀20篇)篇十九
1、使学生通过观察、实验等活动,找出最简单的事物的排列数和组合数。
2、初步培养学生有顺序地、全面地思考问题的意识。
3、经历探索简单事物排列与组合规律的过程。
4、感受数学与生活的紧密联系,激发学生学好数学的信心。
经历探索简单事物排列与组合规律的过程。
初步理解简单事物排列与组合的不同。
(一)探索1、2组成的两位数。
他们三个高高兴兴地去了车站,没想到我们的老朋友早就在车里等他们了。他们好想上车呀,可是车门是关着的,聪聪说:“这是一扇密码门,是由一个两位数组成的,猜对了就可以上车了。”
你们能帮他们猜一猜吗?(生猜)聪聪提醒你们这个两位数是由数字1和2组成的,(生再猜,12和21,)现在怎么猜得这么快呀?聪聪又提醒你们了,这个两位数呀和胡老师的年龄很接近,你们说是多少?(21)。
(二)探索1、2、3能组成几个不同的两位数。
聪聪说:“别急,那就让你们抽签吧,我这里有三张卡片,1、2、3,你们三个人每个人抽两次,组成一个两位数,看谁组成的两位数最大,我就和谁坐。”
师:小朋友,你们听懂聪聪的意思了吗?聪聪是什么意思呀?(生说)。
师:老师有个问题了,用三个数字可以组成几个不同的两位数呢?你们先想一想。
(学生独立思考,可以想,也可以写在本子上。)。
学生汇报。
师:有的人说是3个,有的说是4个,还有的说是6个,意见不统一了,那么有什么好方法能够使摆出的数既不重复又不遗漏呢?你们可以(板书:摆一摆),小组当中一人记录,其他的人寻找方法,记录好了之后交流一下你们组是怎么摆出来的,再选一个汇报员。(小组活动,为每个小组准备一个信封,里面有三张卡片和一张白纸。)。
小组汇报:我摆出12,然后再颠倒就是21;再摆23,颠倒后是32;再摆13,颠倒后是31,一共可以摆出6个两位数。(12、21、23、32、13、31)。
我先把数字1放在十位,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位,然后把数字1和3分别放在个位组成21和23;我再把数字3放在十位,然后把数字1和2分别放在个位组成31和32,一共摆出了6个两位数。(12、13、21、23、31、32)。
我先把数字1放在个位,然后把数字2和3分别放在十位组成21和31;我再把数字2放在个位,然后把数字1和3分别放在十位组成12和32;我再把数字3放在个位,然后把数字1和2分别放在十位组成13和23,一共摆出了6个两位数。(21、31、12、32、13、23)。
每种方法说完后师问:还能摆吗?(再摆就要重复了!提示:不能遗漏也不能重复)。
可拓展:三只动物抽到卡片后最多能组成21、31、32。
那谁可以和聪聪一起坐呀?小猫很幸运,他抽到了2和3,那么他一定会摆出一个……。
(三)握手。
小动物们谢谢我们帮他们一起解决了这些数学问题,一定要让胡老师表示谢意,好谢谢你们。(老师过去和学生握手。分别找几个人握手,让学生观察,每两个人握一次手。)。
师:老师的问题出来了,每两个人握一次手,三个人一共握几次手呢?你们猜猜看?(生猜)。
师:到底是几次呢。解决这个问题呀,我们可以(板书:表演)一下,四人当中组长监督,其他三个人握一握,看看一共要握几次。
生汇报一共几次,并选一组上来表演。表演完了板书(3次)。
生:画图.
师:你们觉得怎么样?
生:画图太麻烦了,可以用符号,三角形,正方形,圆来表示.
生:也可以用序号表示.
生:可以给动物连线.
(四)比较。
生:排数字时把两个数字交换后变成了另一个不同的两位数,而握手的时候两个人交换位置,还是那两个人在握手,只能算一次。
三、 练习应用。
1、搭配衣服。
师:老师这里准备了2件衣服,2件裤子,一共有几种穿法呢?你可以用你自己喜欢的方法来解决这个问题(学生打开书本101页,可以摆一摆,也可以连线,也可以用序号的方法)。
2、比赛场次。
比赛马上就要开始了,如果3只动物,每两只比一场,一共要进行几场比赛呢?生看书上101页第2题。
师巡视时,看到学生用三个小圆,当三个人,连成一个三角形,随即提示能不能把圆变成点,这样就是三角形了.就叫学生上来板书.
四、 小结。
比赛结束了,我们马上就要离开了,离开之前,你有什么感受吗?你有什么想说的吗?
五、 拓展练习。
数学广角的教案(优秀20篇)篇二十
1、通过日常生活中的最简单的事例,让学生进行分析、推理得出结论,培养学生初步观察、分析与推理的能力。
2、培养学生的观察、操作及归纳推理的能力。
3、培养学生有顺序地、全面思考问题的能力。
培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。
培养学生分析、推理的思维过程及有顺序地、全面思考问题的能力。
一、谈话引入:
师:日常生活中常常通过一个现象或是一句话就能推测出未知的结果,这个过程就是推理,今天我们学习推理。
二、新课:
1、出示例题1:把知道的信息说一说。
有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。小红拿的是语文,小丽拿的不是数学书,请猜一猜小刚拿的是()书,小丽拿的是()书。
2、请学生回答,并说出理由。
师:从三个知道的信息,你能猜出小红拿的'是什么书吗?
师::从小丽说:“我拿的不是数学书”这句话能分析推理出什么?
提问:小丽拿的是什么书?
4、教师小结:通过分析同学说的话,推理得出正确的答案,这种思考问题的方法就叫做简单的推理,推理是依据所给的条件通过分析、推理、判断出正确的答案。
师如果我们只分析小刚说的话,而不看小红说的话,
能得正确的答案吗?
5、小结:在简单推理时,一定要全面地分析,进行判断,才能得到正确答案。5、做一做。
三、练习。
1、游戏——帮小动物找家。
森林里的小鹿、熊猫、小羊、猫和小兔分到了新房子。小鹿说:猫在我的左边。
小羊说:我家的左边是熊猫家,右边是小兔家。
小兔说:右数第3家就是我家。
你能帮他们找到各自的新家吗?说说你是怎样想的?
2、、猜一猜下面小动物各住几号房间。
公鸡、小羊、熊猫、梅花鹿和松鼠去旅游,它们住在宾馆里的1—5号房间,服务员告诉他们:熊猫住的不是1、3、5号,梅花鹿住的号码比熊猫多一倍,小羊住在梅花鹿的右边,公鸡住的离熊猫最近,熊猫住在公鸡的右边。
猜一猜,这几只动物各住几号房间。
四、动笔练习。
思考题:甲、乙、丙三位老师分别教语文、数学和英语。已知:1、每个老师只教一门课。
2、甲上课全用普通话。
3、外语老师是一个学生的哥哥。
4、丙是一位女教师,她比数学老师年轻。
请问三位老师各教什么课?
为了能帮助广大小学生朋友们提高数学成绩和数学思维能力,数学网特地为大家整理了第九单元数学广角推理数学教案,希望能够切实的帮到大家,同时祝大家学业进步!