确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。大家想知道怎么样才能写一篇比较优质的方案吗?下面是小编帮大家整理的方案范文,仅供参考,大家一起来看看吧。
常用的抽样方案 抽样方案解读篇一
简单随机抽样(simple random sampling)是把符合要求的每一个个体都作为抽样的对象,通过随机化抽取,每个个体被抽中的机会是相等的。因为每个个体被抽中的机会是均等的,所以能保证研究样本对总体的代表性。举个小例子,假设我们研究需要从中抽取200人作为研究样本,总体为1000,如果采用简单随机抽样的方法来获得研究样本,那么总体中每个人被我们抽中的机率都是1/5。
简单随机抽样的优点是能获得良好代表性的研究样本,操作实施也比较容易理解;其缺点是在抽样范围较大时,需要对总体中每个研究对象进行编号并收集基本信息,工作量太大从而影响研究可行性。另一方面,当某一重要研究因素在人群中分布不均匀时,采用简单随机抽样可能会导致在总体中占比例较少的个体被遗漏,从而导致选择偏倚。分层抽样则可以很好地解决这一问题。
分层抽样(stratified sampling)是从分布不均匀的研究人群中抽取有代表性样本的方法。先按照研究对象的属性(如年龄、性别、病情、病程、临床亚型、职业、教育程度、民族等)将研究人群分为若干层,然后在每层内再开展随机抽样。
一定要注意,分层抽样要求层内变异越小越好,层间变异越大越好,这样可以提高样本的代表性,便于层间进行比较。分层随机抽样不能保证每个个体被抽中的概率相等,有可能处于不同分层之间的个体被抽中概率是不同的。
系统随机抽样也称机械随机抽样或等距随机抽样,即将总体单位按某一标志(如时间)排序,然后按一定间隔来随机抽取样本单位。例如,要从100件产品中抽取10件组成样本,首先将100件产品按某一标志排序,顺序编号为1~100;然后用抽签或查随机数表的方法确定1~10号中入选样本的编号(假定为4号);然后按等距原则依次确定入选样本的产品编号为14、24、34、44、54、64、74、84、94;最后由编号为4、14、24、34、44、54、64、74、84、94的10件产品组成样本。
整群抽样又称聚类抽样,是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群。然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
常用的抽样方案 抽样方案解读篇二
简单抽样
总体内的各个个体被抽到的机会均等,就把这种抽样方法叫做简单随机抽样.
常用的简单随机抽样方法有两种——抽签法和随机数法.
特点:
1.总体个数是有限的.
2.被抽取的样本数n小于总体的个数n.
3.逐个抽取且不放回.
4.每个个体被抽到的概率都相等.
【总结】在简单随机抽样中,个体被抽到的概率与抽样次数无关,每次抽到的可能性均相等.
系统抽样
当总体的个数n较大时,将总体按照一定的顺序排列,采用简单随机抽样抽取第一个样本单元,再按顺序抽取其余的样本单元来得到所需要的样本,这种抽样叫做系统抽样,也叫等轴抽样.
系统抽样的步骤:
假设要从容量为n的总体中抽取容量为n的样本,步骤为:
(1)先将总体的n个个体编号.
例4.某学校有20__名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出抽样过程.
【分析】总体中个体个数达20__,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:
(1)将总体中的个体编号为1,2,3,…,20__;
(3)在第一段1~20中用简单随机抽样确定起始编号,例如抽到5;
(4)将编号为5,25,45,…,1985的个体抽出,得到样本容量为100的样本.
例5.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是().
a.分层抽样 b.简单随机抽样
c.系统抽样 d.以上都不对
【分析】按照一定的规律进行抽取的抽样方法为系统抽样.
例6.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.
【分析】用系统抽样的方法是等距的.42-29=13,故样本中另外一个同学的编号为3+13=16.
例7.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.
【分析】因为1003÷50=20...3,余数为3,为使总体中的个体数能够被50整除,需要剔除3,抽样间隔即为20.
【总结】系统抽样适用于总体中个体数较大且个体差异不明显的情况;若总体不能被所需样本数整除,则需要剔除余数,重新编号,取得整数.
分层抽样
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.
分层抽样适用的条件:总体由差异明显的几部分组成.
例6.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法().
a.抽签法 b.随机数表法
c.系统抽样 d.分层抽样
【分析】总体由差异明显的几部分组成,故应该用分层抽样.
例7.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为().
a.70 b.20
c.48 d.2
【分析】由于学校总数为700所,所以抽样比为
【总结】当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.
总结
常用的抽样方案 抽样方案解读篇三
概率抽样方法
(1)概率抽样概念
定量市场调查中的概率抽样是指在调查总体样本中的每个单位都具有同等可能性被抽中的机会。在实际应用中,概率抽样方法是最常用的方法之一。
概率抽样包括以下几个方面的优点:
调查者可获得被抽取的不同年龄、不同层次的人们的信息;
能估算出抽样误差;
调查结果可以用来推断总体。例如,在一项使用概率抽样法的调查中,如果有 5 %的被访者给出了某种特定回答,那么,调查者就可以以此百分比再结合抽样误差,推及总体情况。
另一方面,概率抽样也有一些弊病:
在大多数案例中,同样规模的概率抽样的费用要比非概率抽样高;
概率抽样比非概率抽样需要更多时间策划和实施;
必须遵守的抽样计划执行程序会大量增加收集资料的时间。
下面,介绍几种最常采用的概率抽样技术。
(2)简单随机抽样( simple sampling )
简单随机抽样是一种广为使用的概率抽样方法。是最完全的概率抽样。如前面提到的,随机抽样就是总体中每个单位在抽选时有相等的被抽中的机会。
在简单随机抽样条件下,抽样概率公式为:
抽样概率=样本单位数∕总体单位数
例如,如果总体单位数为 10000 ,样本单位数为 400 ,那么抽样概率为 4 %。
简单随机抽样的优点在于,它看起来简单,并且满足概率抽样的一切必要的要求,保证每个总体单位在抽选时都有相等的被抽中的机会。简单随机抽样可以通过电话随机拨号功能完成这个步骤,可以从电脑档案中挑选调查对象。
(3)等距抽样( systematic sampling )
在定量抽样调查中,等距抽样常常代替简单随机抽样。由于该抽样方法简单实用,所以应用普遍。等距抽样得到的样本几乎与简单随机抽样得到的样本是相同的。
等距抽样的基本做法是,将总体中的各单元先按一定的顺序排列、编号,然后决定一个间隔,并在此间隔基础上选择被调查的单位个体。
样本距离可通过下面公式确定:
样本距离 = 总体单位数∕样本单位数
例如,假设你使用本地电话本并确定样本距离为 100 ,那么 100 个中取 1 个组成样本。这个公式保证了整个列表的完整性。
等距抽样方式随意用一个起点,例如,如果你把一本电话本作为抽样框,必须随意取出一个号码决定从该页开始翻阅。假设从第 5 页开始,在该页上再另选一个数决定从该行开始。假定选择从第 3 行开始,这就决定了实际开始的位置。
等距抽样方式相对于简单随机抽样方式最主要的优势就是经济性。等距抽样方式比简单随机抽样更为简单,花的时间更少,并且花费也少。使用等距抽样方式最大的缺陷在于总体单位的排列上。一些总体单位数可能包含隐蔽的形态或者是“不合格样本”,调查者可能疏忽,把它们抽选为样本。
(4)分层抽样( stratified random sampling )
定量调查中的分层抽样是一种卓越的概率抽样方式,在调查中经常被使用。
分层抽样的具体程序是:把总体各单位分成两个或两个以上的相互独立的完全的组(如男性和女性),从两个或两个以上的组中进行简单随机抽样,样本相互独立。
总体各单位按主要标志加以分组,分组的标志与我们关心的总体特征相关。例如,我们正在进行有关啤酒品牌知名度方面的调查,初步判别,在啤酒方面男性的知识与和女性不相同,那么性别应是划分层次的适当标志。如果不以这种方式进行分层抽样,分层抽样就得不到什么效果,花再多时间、精力和物资也是白费。
分层抽样与简单随机抽样相比,我们往往选择分层抽样,因为它有显著的潜在统计效果。也就是说,如果我们从相同的总体中抽取两个样本,一个是分层样本,另一个是简单随机抽样样本,那么相对来说,分层样本的误差更小些。另一方面,如果目标是获得一个确定的抽样误差水平,那么更小的分层样本将达到这一目标。
在调查实践中,为提高分层样本的精确度实际上要付出一些代价。通常,我们现实正确的分层抽样一般有三个步骤:
首先,辩明突出的(重要的)人口统计特征和分类特征,这些特征与所研究的行为相关。例如,研究某种产品的消费率时,按常理认为男性和女性有不同的平均消费比率。为了把性别作为有意义的分层标志,调查者肯定能够拿出资料证明男性与女性的消费水平明显不同。用这种方式可识别出各种不同的显著特征。调查表明,一般来说,识别出 6 个重要的显著特征后,再增加显著特征的辨别对于提高样本代表性就没有多大帮助了。
第二,确定在每个层次上总体的比例(如性别已被确定为一个显著的特征,那么总体中男性占多少比例,女性占多少比例呢?)。利用这个比例,可计算出样本中每组(层)应调查的人数。
最后,调查者必须从每层中抽取独立简单随机样本。
(5)整群抽样( cluster sampling )
以上各种抽样类型全部是按单位抽取的,即按样本单位数,分别一个单位一个单位地抽取。在整群抽样中,样本是一组单位一组单位地抽取。
整群抽样有两个关键步骤:
同质总体被分为相互独立的完全的较小子集。
随机抽选子集构成样本。
如果调查者在抽中的子集中观察全部单位,我们就有了一级整群样本。如果在抽中的子集中再以概率方式抽取部分单位观察,我们就有了二级整群样本。分层和整群抽样都要将总体分为相互独立的完全子集。它们的区别是,分层抽样的样本是从每个子集中抽取,而整群抽样则是抽取部分子集。
地理区域抽样是整群抽样的典型方式。挨门挨户去调查一个特定城市的调查者也许会随机抽选一些区域,较集中地访查一些群体,大量减少访问时间和经费。整群抽样被认为是概率抽样技术,因为它随机抽出群和随机抽出单位。值得注意的是,在整群抽样下,我们假定群中单位与总体一样存在异质性。如果一群中单位的特征非常相似,如果由于共同环境使群内差异小而群与群之间差异大。一般来说,要解决这个问题可以扩大群数,然后从各群中抽取少量单位数,以保证样本的代表性。
非概率抽样方法
(1)非概率抽样的概念
非概率抽样也是市场调查中比较常采用的手段之一,如配额抽样等。非概率抽样是指从总体中非随机地选择特定地要素(单位)。有目的的非随机抽样可能会系统地排除或过分强调总体的某些部分特征。
非概率抽样的缺点恰是概率抽样的优势:
不能估计出抽样误差;
不知道抽中的单位所具有代表性的程度;
非概率抽样的结果不能也不应该推算总体。
在实际操作过程中,非概率抽样经常被市场调研人员使用,其原因与本身固有的优势有关:
非概率抽样比概率抽样费用低。非概率抽样的这一特点对那些精确性要求补不严格的调查有相当大的吸引力。试探性调查就是其中的一例。
一般来讲,非概率抽样实施起来要比概率抽样用的时间少。
由于非概率抽样具有上述的不足,因此,如果合理运用非概率抽样,它能产生极具代表性得合理的抽样结果,是我们经常思考并试图解决的一个重要问题。在实际应用过程中,非概率抽样的结果不能计算其抽样误差,这意味着评估非概率抽样的总体质量有很大的困难,因为我们清楚地知道它们不满足概率抽样所必需的标准,但问题是它们脱离标准有多远?调查设计者事先必须对非概率抽样进行评估,评估应该建立在对非概率抽样方法论仔细评价的基础上。评估需要注意的是,使用的抽样方法是否能够覆盖目标总体的各个部分?或者样本是否无目的地倾向于一些特殊群体?这些都是友邦顾问调查人员在调查设计与抽样评估时必须仔细考虑的问题。
在实际工作中,我们经常使用的非概率抽样方法包括四类:方便抽样、判断抽样、配额抽样和滚雪球抽样。
方便抽样( convenience sampling )
方便抽样是根据调查者的方便性,以无目标、随意的方式进行的抽样调查活动。例如,常见的无限制的街头拦访和随意的入户访问就是方便抽样的常见形式。在某些调查测试中,方便抽样会取得快速有效的结果。在进行探索性调研时,即缺乏经验而又急需真实数据的近似值时,这种方法也很实用。
判断抽样( judgment sampling )
判断抽样适用于调查员或者调查专家基于选择标准或者条件抽取典型样本的情况。一般商业机构进行的市场或产品测试调查基本上都属于判断抽样的范围。在进行探索性调研时,如抽取深度访谈样本的情况下,就可以采用这种方法。
配额抽样( quota sampling )
配额抽样是根据一定标志对总体分层或分类后,从各层或各类中主观地选取一定比例的调查单位的方法。所谓“配额”是指对划分出的总体各类型都分配给一定的数量而组成调查样本。因而,配额抽样较之判断抽样加强了对样本结构与总体结构在“量”的方面的质量控制,能够保证样本有较高的代表性。配额抽样类似于随机抽样中的分层抽样。不过,有两点重要的区别:首先,配额抽样的被调查者不是按随机原则抽出来的,而分层抽样必须遵守随机原则。其次,在分层抽样中,用于分类的标志,应联系研究目标来选择,而配额抽样无此要求。
滚雪球抽样( snowball sampling )
滚雪球抽样是指先对随机选择的一些被调查者实施访问,然后再请他们推荐属于研究目标总体特征的调查对象。这种方法用于低发生率或少见的总体中进行抽样,因为要找到这些少见的个体,代价是很大的,使得调查人员因为费用的原因不得不使用类似滚雪球这样的抽样技巧。
滚雪球抽样调查的优点是调查费用大大减少,然而这种成本的节约是以调查质量的降低为代价的。整个样本很可能出现偏差,因为那些个体的名单来源于那些最初调查过的人,而他们之间可能十分相似,因此,样本可能不能很好地代表整个总体。另外,如果被调查者不愿意提供人员来接受调查,那么这种方法就会受阻。
常用的抽样方案 抽样方案解读篇四
简单随机抽样
一般,设一个总体含有n个个体,从中逐个不放回地抽取n个个体作为样本(n≤n),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。
直接抽选法。例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。
抽签法又称“抓阄法”。它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。这就是抽签法,与直接抽样法类似。
另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。下面是随机数字表:
当然,随机抽样也有不足之处,它只适用于总体单位数量有限的情况,否则编号工作繁重;对于复杂的总体,样本的代表性难以保证;不能利用总体的已知信息等。在市场调研范围有限,或调查对象情况不明,难以分类,或总体单位之间特性差异程度小时采用此法效果较好。
抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便。如果标号的签搅拌得不均匀,会导致抽样不公平。而随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。
2分层抽样
分层抽样又称分类抽样或类型抽样,是先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本。一般地,在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本。
分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的。当总体是由差异明显的几部分组成时,往往选择分层抽样的方法。其特点是将科学分组法与抽样法结合在一起,每个个体被抽到的概率都相等n/m。分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
下面,是一个实例应用:
某公司要估计某地家用电器的潜在用户。这种商品的消费同居民收入水平相关,因而以家庭年收入为分层基础。假定某地居民为1,000,000户,已确定样本数为1,000户,家庭年收入分10,000元以下,10,000——30,000元;30,000——60,000元,60,000元以上四层,其中收入在10,000元以下家庭户为180,000户,收入在10,000——30,000元家庭户为350,000户,收入在30,000——60,000元家庭户为3000,000户,收入在60,000元以下家庭户为170,000户,应进行如下抽样,如图:
分层抽样与简单随机抽样相比,往往选择分层抽样,因为它有显著的潜在统计效果。也就是说,如果从相同的总体中抽取两个样本,一个是分层样本,另一个是简单随机抽样样本,那么相对来说,分层样本的误差更小些。另一方面,如果目标是获得一个确定的抽样误差水平,那么更小的分层样本将达到这一目标。
总体中赖以进行分层的变量为分层变量,理想的分层变量是调查中要加以测量的变量或与其高度相关的变量。分层的原则是增加层内的同质性和层间的异质性。常见的分层变量有性别、年龄、教育、职业等。分层随机抽样在实际抽样调查中广泛使用,在同样样本容量的情况下,它比纯随机抽样的精度高,此外管理方便,费用少,效度高。
3系统抽样
系统抽样也称为等距抽样、机械抽样、sys抽样,它是首先将总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式。是纯随机抽样的变种。在系统抽样中,先将总体从1~n相继编号,并计算抽样距离k=n/n。式中n为总体单位总数,n为样本容量。然后在1~k中抽一随机数k1,作为样本的第一个单位,接着取k1+k,k1+2k……,直至抽够n个单位为止。
根据总体单位排列方法,系统抽样的单位排列可分为三类:按有关标志排队、按无关标志排队以及介于按有关标志排队和按无关标志排队之间的按自然状态排列。按照具体实施等距抽样的作法,系统抽样可分为:直线系统抽样、对称系统抽样和循环系统抽样三种。
在定量抽样调查中,系统抽样常常代替简单随机抽样。由于该抽样方法简单实用,所以应用普遍。系统抽样得到的样本几乎与简单随机抽样得到的样本是相同的。
下面看一个例子,某产品的口味测试,需要运用等距抽样的方法从某校营销专业90名学生中抽选9名进行测试,如下图:
系统抽样方式也不是完美的,它相对于简单随机抽样方式最主要的优势就是经济性。系统抽样方式比简单随机抽样更为简单,花的时间更少,并且花费也少。使用系统抽样方式最大的缺陷在于总体单位的排列上。一些总体单位数可能包含隐蔽的形态或者是“不合格样本”,调查者可能疏忽,把它们抽选为样本。由此可见,只要抽样者对总体结构有一定了解时,充分利用已有信息对总体单位进行排队后再抽样,则可提高抽样效率。
4整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。
应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
整群抽样优点是实施方便、节省经费;整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。
例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。
整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大;分层抽样的样本时从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。
以上几种抽样方法的误差程度排序从大到小一般是:整群抽样、简单随机抽样、系统抽样、分层抽样。
5配额抽样
配额抽样也称“定额抽样”,是指调查人员将调查总体样本按一定标志分类或分层,确定各类(层)单位的样本数额,在配额内任意抽选样本的抽样方式。
例如一在一项关于某品牌洗发水的消费者座谈会的研究抽样中,研究对象为18—40岁的女性。已确定样本量为24人。研究者选择“经济收入”和“发型”为控制特征;并要求高低收入者各占50%,烫、直发型各占50%。根据上述要求一个配额抽样的控制表便可设计出来。如下表:
配额抽样和分层随机抽样相比较,既有相似之处,也有很大区别。配额抽样和分层随机抽样有相似的地方,都是事先对总体中所有单位按其属性、特征分类,这些属性、特征我们称之为“控制特性。”例如市场调查中消费者的性别、年龄、收入、职业、文化程度等等。然后,按各个控制特性,分配样本数额。但它与分层抽样又有区别,分层抽样是按随机原则在层内抽选样本,而配额抽样则是由调查人员在配额内主观判断选定样本。实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。
小结
数学抽样在生活中发挥着重要的作用,在我国,抽样法已被广泛应用于生产技术及社会生活各个领域。目前,国家统计调查制度中所包括的统计指标,依靠抽样方法取得的资料已达到三分之一左右。在城乡住户调查、农产品调查、价格统计、市场调查等领域,应用抽样调查已取得很好的成果,在人口统计、社会统计、交通统计、商业统计等领域,抽样调查也正在发挥越来越重要的作用。随着我国社会主义市场经济的发展,抽样调查的应用范围将逐渐扩大,所发挥的作用也将越来越大。
常用的抽样方案 抽样方案解读篇五
01 非概率抽样(non-probability sampling)
又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。
其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。当研究者对总体具有较好的了解时可以采用此方法,或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。
常用的非概率抽样方法有以下四类:
▷ 方便抽样(convenience sampling)
指根据调查者的方便选取的样本,以无目标、随意的方式进行。例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。
优点:适用于总体中每个个体都是“同质”的,最方便、最省钱;可以在探索性研究中使用,另外还可用于小组座谈会、预测问卷等方面的样本选取工作。
缺点:抽样偏差较大,不适用于要做总体推断的任何民意项目,对描述性或因果性研究最好不要采用方便抽样。
▷ 判断抽样(judgment sampling)
指由专家判断而有目的地抽取他认为“有代表性的样本”。例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行;也有家庭研究专家选取某类家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样本时,可以使用这种方法。
优点:适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。
缺点:该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。
▷ 配额抽样(quota sampling)
指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。
相当于包括两个阶段的加限制的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的,通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。
优点:适用于设计调查者对总体的有关特征具有一定的了解而样本数较多的情况下,实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。
缺点:容易掩盖不可忽略的偏差。
▷ 滚雪球抽样(snowball sampling)
指先随机选择一些被访者并对其实施访问,再请他们提供另外一些属于所研究目标总体的调查对象,根据所形成的线索选择此后的调查对象。
第一批被访者是采用概率抽样得来的,之后的被访者都属于非概率抽样,此类被访者彼此之间较为相似。例如:如在目前中国的小轿车车主等。
优点:可以根据某些样本特征对样本进行控制,适用寻找一些在总体中十分稀少的人物。
缺点:有选择偏差,不能保证代表性。
02 概率抽样(probability sampling)
又称随机抽样,指在总体中排除人的主观因素,给予每一个体一定的抽取机会的抽样。
其特点为,抽取样本具有一定的代表性,可以从调查结果推断总体;操作比较复杂,需要更多的时间,而且往往需要更多的费用。
常用的有以下六种类型:
▷ 简单抽样(simple sampling)
简单随机抽样(simple random sampling)又称纯随机抽样,是概率抽样的最基本形式。它是按等概率原则直接从含有n个元素的总体中随机抽取n个元素组成样本(n>n)。
常用的办法类似于抽签,即把总体的每一个单位都编号,将这些号码写在一张张小纸条上,然后放入一容器(如纸盒、口袋)中,搅拌均匀后,从中任意抽取,直到抽够预定的样本数目。这样,由抽中的号码所代表的元素组成的就是一个简单随机样本。
比如,某系共有学生300人,系学生会打算采用简单随机抽样的办法,从中抽取出60人进行调查。为了保证抽样的科学性,他们先从系办公室得到一份全系学生的名单,然后给名单中的每个学生都编上一个号(从001到300)。抽样框编好后,他们又用300张小纸条分别写上001,002,…,300。他们把这300张写好不同号码的小纸条放在一个盒子里,搅乱后,随便摸出60张小纸条。然后,他们按这60张小纸条上的号码找到总体名单上所对应的60位同学。这60位同学就构成了他们本次的样本。这种方法简便易学。但当总体元素很多时,写号码的工作量就很大,搅拌均匀也不容易,因而此法往往在总体元素较少时使用。
对于总体元素很多的情形,我们则采用随机数表来抽样。本书后就附有一张随机数表,表中的数码和排列都是随机形成的,没有任何规律性(故也称为乱数表)。利用随机数表进行抽样的具体步骤是:
先取得一份总体所有元素的名单(即抽样框);
将总体中所有元素一一按顺序编号;
根据总体规模是几位数来确定从随机数表中选几位数码;
以总体的规模为标准,对随机数表中的数码逐一进行衡量并决定取舍;
根据样本规模的要求选择出足够的数码个数;
依据从随机数表中选出的数码,到抽样框中去找出它所对应的元素。
▷ 系统抽样(systematic random sampling)
将总体中的各单元先按一定顺序排列,并编号,然后按照不一定的规则抽样。其中最常采用的是等距离抽样,即根据总体单位数和样本单位计算出抽样距离(即相同的间隔),然后按相同的距离或间隔抽选样本单位。例如:从1000个电话号码中抽取10个访问号码,间距为100,确定起点(起点<间距)后每100号码抽一访问号码。
系统抽样的具体步骤是:
给总体中的每一个个体按顺序编号,即制定出抽样框。
计算出抽样间距。计算方法是用总体的规模除以样本的规模。假设总体规模为n,样本规模为n,那么抽样间距k就由下列公式求得:
k(抽样间距)=n(总体规模)n(样本规模)
在最前面的k个个体中,采用简单随机抽样的方法抽取一个个体,记下这个个体的编号(假设所抽取的这个个体的编号为a),它称做随机的起点。
在抽样框中,自a开始,每隔k个个体抽取一个个体,即所抽取个体的编号分别为a,a+k,a+2k,…,a+(n-1)k。
将这n个个体合起来,就构成了该总体的一个样本。
优点:兼具操作的简便性和统计推断功能,是目前最为广泛运用的一种抽样方法。如果起点是随机确定的,总体中单元排列是随机的,等距抽样的效果近似简单抽样;与简单抽样相比,在一定条件下,样本的分布较好。
缺点:抽样间隔可能遇到总体中某种未知的周期性,导致“差”的样本;未使用可能有用的抽样框辅助信息抽取样本,可能导致统计效率低。
▷ 分层抽样(stratified random sampling)
是把调查总体分为同质的、互不交叉的层(或类型),然后在各层(或类型)中独立抽取样本。例如:调查零售店时,按照其规模大小或库存额大小分层,然后在每层中按简单随机方法抽取大型零售店若干、中型若干、小型若干;调查城市时,按城市总人口或工业生产额分出超大型城市、中型城市、小型城市等,再抽出具体的各类型城市若干。
优点:适用于层间有较大的异质性,而每层内的个体具有同质性的总体,能提高总体估计的精确度,在样本量相同的情况下,其精度高于简单抽样和系统抽样;能保证“层”的代表性,避免抽到“差”的样本;同时,不同层可以依据情况采用不同的抽样框和抽样方法。
缺点:要求有高质量的、能用于分层的辅助信息;由于需要辅助信息,抽样框的创建需要更多的费用,更为复杂;抽样误差估计比简单抽样和系统抽样更复杂。
在实际运用分层抽样的方法时,研究者需要考虑下列两个方面的问题
(1)分层的标准问题。同一个总体可以按照不同的标准进行分层,或者说,根据不同的标准可以将一个总体分成不同的类别或层次。那么,在实际抽样中究竟应该按什么标准来分层呢?通常采用的原则有:
第一,以所要分析和研究的主要变量或相关的变量作为分层的标准。比如,若要研究居民的消费状况和消费趋向,可以以居民家庭人均收入作为分层标准;又如,要了解社会研究中不同职业的人员对社会经济改革的看法,就可以以人们的职业作为分层的标准。
第二,以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。比如在工厂进行,可以以工作性质作为分层标准,将全厂职工分为干部、工人、技术人员、勤杂人员等几类来进行抽样。
第三,以那些已有明显层次区分的变量作为分层变量。比如在社会研究中,性别、年龄(当然是分段以后,如老、中、青)、文化程度、职业等等,就经常被用作分层的标准;其他如学生按年级、专业、学校类型分层,城市按人口规模分层等等。
(2)分层的比例问题。分层抽样中有按比例和不按比例分层两种方法。按比例分层抽样是指按总体中各种类型或层次的比例来抽取子样本的方法。即在单位多的类型或层次中所抽的子样本就大一些,在单位少的类型或层次中所抽的子样本就小一些。比如,某厂有工人600人,按性别分层则有男工500人,女工100人。总体中两类工人人数的比例为5∶1。因此,若要抽60人作样本,那么,按比例的抽法就是根据上述比例,分别从500名男工中随机抽取50人,而从100名女工中随机抽取10人。这样,样本中男女工人之比与总体中男女工人之比完全相同,均为5∶1。可以说,样本的性别结构是总体中性别结构的一种缩影。
采取按比例分层抽样的方法,可以确保得到一个在某种特征上与总体结构完全一样的样本。但是,在有些情况下,又不宜采用这种方法。例如,有时总体中有的类型或层次的单位数目太少,若以按比例分层的方法抽样,则有的层次在样本中个案太少,不便于了解各个层次的情况,这时往往要采取不按比例抽样的方法。比如上例中,样本中女工人数过少,此时我们可以采取不按比例抽样的方法,在500名男工中抽30人,在100名女工中也抽30人。这样,样本就能较好地反映出男女两类工人的一般状况,我们也能很好地对男女两类工人的情况进行比较和分析。
需要但注意的是,我们采用不按比例分层抽样的方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较,但若要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,即通过调整样本中各层的比例,使数据资料恢复到总体中各层实际的比例结构。比如上例中,若要用30个男工、30个女工的收入资料去推断全厂工人的平均收入时,就需要在男工的收入后乘以5/3,而在女工的收入后乘以1/3,再加总平均,否则就会导致推断的偏误。
▷ 整群抽样(cluster sampling)
是先将调查总体分为群,然后从中抽取群,对被抽中群的全部单元进行调查。例如:入户调查,按地块或居委会抽样,以地块或居委会等有地域边界的群体为第一抽样单位,在选出的地块或居委会实施逐户抽样;市场调查中,最后一级抽样时,从居委会中抽取若干户,然后调查抽中户家中所有18岁以上成年人。
优点:适用于群间差异小、群内各个体差异大、可以依据外观的或地域的差异来划分的群体。
缺点:群内单位有趋同性,其精度比简单抽样为低。
▷ 多级抽样(multistage sampling)
也叫多阶段抽样或阶段抽样,以二级抽样为例,二级抽样就是先将总分组,然后在第一级和第二中分别随机地抽取部分一级单位和部分二级单位。例如:以全国性调查为例,当抽样单元为各级行政单位时,按社会发展水平分层后(或按经济发展水平,或按地理位置分层),从每层中先抽几个地区,再从抽中的地区抽市、县、村,最后再抽至户或个人。
优点:具体整体抽样的简单易行的优点,同时,在样本量相同的情况下又整群抽样的精度高。
缺点:计算复杂。
▷ 抽中概率与规模成比例抽样(pps)
是不等概率中最常用的一种方法,指在总体中参照各单位的规模进行抽样,规模大的被抽取的机会大,总体中每个个体被抽中的概率与该个体的规模成正比的抽样。例如:在进行企业调查时,根据pps抽样方法抽取企业,令规模大的企业被抽取机会大。
优点:使用了辅助信息,可以提高抽样方案的统计效率。
缺点:如果研究指标与规模无直接关系时,不合适采取这种方法。
此外,在抽样方法划分上,还有多阶段抽样和两相抽样等,有兴趣的读者可参阅其他相关书籍。
前面谈到抽样方法的一些基本分类和各自特点,需要注意的是,在实际的运用中,一个调查方案常常不是只局限于使用某一种抽样方式,而根据研究时段的不同采用多种抽样方法的组鸽为实现不同的研究目的,有时甚至在同一时段综合运用几种抽样方法。
例如,设计一个全国城市的入户项目,在抽样上可以分为几个不同的步骤,包括:
在项目正式开始前,可以采用判断抽样法选出某一城市先作试点,在问卷设计初期可以采用任意抽样法选出部分人群进行问卷试访。
采用分层随机抽样法,确定全国要分别在多少个超大型市、多少个大型市、多少个中型市、多少个小型市实施(先分出城市的几个层次,再依据研究需要在各层用pps法选取具体城市)
采用简单抽样法或pps抽样法,确定抽出城市中应抽的地块或居委会;
采用整群抽样法,确定抽出地块或居委会应访问的家庭户;
在项目后期,可以采用判断抽样法选取某城市进行深入研究。
常用的抽样方案 抽样方案解读篇六
一、概述:药品生产中所使用的原辅料、包装材料,进厂时都需要进行检验,但是无论是什么材料,来料的量都不会小,不可能做到全数检验。那么我们就会根据国标、药典或者企业自身的规定,对需要检验的物品进行抽样。
如使用gb/t2828.1-20__选择抽样方案,确定好检验水平,接受质量限(aql),采用正常一次抽样检验,在表2-a中就能查出抽样方案,那么怎么证明我们所选抽样方案是有效的呢?下面针对计数和计点两种方案有效性的确定加以说明。
二、计数抽样方案——二项分布
假定接收质量限aql=2.5,抽样方案是l(500,21);确定方案是否有效,其实就是验证确认下在其置信水平下,不合格品率是否小于等于aql值;借助excel和mintab软件演示下验证和确认的过程。
第一步:计数抽样符合二项分布,利用excel中binomdist函数,可以计算出生产方风险,利用单变量求解,求出使用方风险为10%时,不合格品率(使用方风险质量)。也可以查gb/t2828.1-20__“表6-a正常检验的使用方风险质量”查出使用方风险质量。
三、计点抽样方案——泊松分布
假定接收质量限aql=6.5,抽样方案是l(8,1);确定方案是否有效,其实就是验证确认下在其置信水平下,不合格品数是否小于等于aql值;借助excel和mintab软件演示下验证和确认的过程。
第一步:计点抽样符合泊松分布,利用excel中poisson函数,可以计算出生产方风险,利用单变量求解,求出使用方风险为10%时,不合格品数。也可以查gb/t2828.1-20__“表7-a正常检验的使用方风险质量”查出使用方风险质量。
将出现数改为2,得出90.36%置信水平下不合格数下限是0.065029>0.065,不合格数大于方案设定值,因此按照方案应该拒收。
四、小结:对于验证和确认二项分布和泊松分布的原理是一致的,过程中注意区分mintab所使用的选项工具即可。
常用的抽样方案 抽样方案解读篇七
调查系统误差
首先,任何调查所获信息(调查数据)质量都存在误差,而这种误差在评估调查质量时都是必须的,作为调查管理者必须判断这些结果的精度范围。因此,这就需要仔细研究所使用的调研方法可能导致的误差类型。
(1)抽样误差
抽样过程中主要存在着以下两类误差:随机误差和系统误差。有时也称为偏差。调查中通常试图对目标总体中具有代表性的一个侧面进行调查而获得信息。它旨在根据抽取样本的调查结果而推测总体的情况。因此,即使样本选择过程是适当的,调查结果仍不免因偶然性而产生一定的误差(随机误差或随机抽样误差),这种误差是不可避免的,它只能随着抽样规模的增加而减小。通常在样本量设计时,我们可以以一定的置信水平来估计随机抽样的误差。
(2)系统误差
系统误差或偏差是指因调研设计或实施抽样设计中的错误或问题而产生的误差。如果抽样的结果与我们根据被调查对象的真实值所做的估计值总是有一定的偏差(固定的偏高或偏低),则抽样结果便很有可能存在系统误差。系统误差包括除随机抽样之外所有可能产生的误差。因此,有时系统误差又被称为非抽样误差,从系统上影响抽样调研的结果。非抽样误差分为样本设计误差和测量误差。样本设计误差是因样本设计或样本抽选过程而产生的误差。
样本设计误差的产生有多种原因:
抽样框误差
抽样框是指对于某一类人口类型和成员的一个总体清单。样本将从这个总体清单中加以选取。抽样框误差便是因不准确或不完整的抽样框而引起的误差。问题是,从包含抽样误差的抽样框中抽取的样本有时无法正确地代表调研目标的实际情况,这就存在抽样框误差。举个例子,以电话号码薄作为抽样框,在对某地区所有住户进行的某种意向调查时,就存在着抽样框误差。
调研对象范围误差
调研对象范围误差是因为对调研对象范围限定的不准确而引起的误差。例如,我们将某项研究对象限定在 35 岁以上,后来,我们发现不少 35 岁以下的年轻人也应该包含在这个研究之中,即当初的我们的限定范围是不正确的,这样的抽样便产生了误差。
选样误差
即使抽样框的组建与调研对象范围的确定都没有什么问题,抽样误差也有可能发生。抽选误差是因为不完整或不恰当的抽选过程,或者正确的抽选过程未得以恰当的执行而产生的误差。例如,在入户调查时,访问员会因为不同的原因绕开被认为是“不友好的”住户,这样的话便会产生选样误差。特别是在非随机抽样中,选样误差是一个更为严重的问题。
(3)测量误差
测量误差对于抽样调查的准确性来说,比随机误差更具危害性。在许多调查报告中,包括媒介上发布公众意向调查,都会给出一个误差指数。对很多调研报告使用者来说,一般认为这个指数是针对总体误差而言,其实并非如此。这个数字仅代表随机抽样误差,它并不包括样本设计误差,也没有涉及调研结果中的测量误差。
测量误差是指所获得的原始信息(实际价值)与经测量处理的信息之间的差异。在信息处理过程中会因多种因素而产生测量误差。
替代信息误差
是指实际所需的信息与调研者所收集信息之间的差距而产生的误差。这种误差与调研设计的主要问题有关,特别是对一些问题不恰当定义而产生的。
调研员误差
是指因调研员与被调研者之间的相互作用而引起的误差。调研员有时会自觉或不自觉地影响被调研者,使之给出不真实或不准确的回答。
测量工具误差
测量工具误差是指因测量工具或问卷而产生的误差。这种误差是由于所提出的问题或问卷设计中的某些因素而导致回答的偏差或者使回答时容易产生错误。这种类型的错误能够通过细致的问卷修改和在实地调研前进行充分的试调查而加以避免。
数据处理误差
主要是指调研资料或调研数据在向计算机输入过程中所产生的误差。例如,在计算机辅助电话访谈中,访问员可能错误地输入某个问题的答案。这类错误可以通过在数据录入以及调研结果处理过程中严格的质量控制加以避免。
拒访误差
如果我们从某个特定群体中抽选 400 个样本,理想的情况是对这 400 个样本都进行调查。而在实际中,这是很难实现的。在邮寄调研中,回答率一般在 5% 左右,甚至更低。因这种差异而引起的误差被称为“拒访误差”。很明显,回答率越高,拒访误差的影响便越小,因为拒访者在总体中占的比例减小了。
拒访误差在以下三种情况下发生:①在特定时间无法联系到被访者;②虽然得到了默许,但在当时的环境下不能或不愿意接受访谈;③虽然能够联系到被访者,但被访者拒绝接受访问。其中,最后一种情况最为严重。因为,前两种情况都有重新进行调研的可能。现在,拒访率已经达到了前所未有的水平,大约近 40% 。好在大部分人并非在所有情况下都拒绝访问。
回答误差
如果被访问者在某一特定问题的回答中有特定的偏向,则产生回答误差。回答误差的产生有两种基本的形式:有意错误与无意错误。有意错误的产生是因为被调查者故意对所提问题做出不真实回答;无意错误是指回答者希望能够做出真实、准确的回答,但却给出了不正确的答案。这种类型的误差可能是由于问题的格式、内容或其他原因造成的。
定量测量技术
(1)测量概念
市场调查测量是指在定量测量中将按特定的规则将数字或者符号合理分配给被调查的目标(包括人、态度、状态或者事件),将其特征量化的过程。量化概念强调的是:测量的不是被测量者本身,而是被测量者(通常是消费者)的态度、收入、品牌忠诚度以及相关因素等。
测量另一方面的关键是制定和理解规则,它指示被调查者该怎么做。如,“您对咖啡的喜好程度做出评价,非常喜欢为 5 分,不喜欢为 1 分,并按相应的标准分配 2 、 3 、 4 分”。
(2)测量程序
(3)测量标称
测量标称一般包括四种主要技术类型,详见下表。
(4)测量可靠性
测量的可靠性是指测量中可以避免随机误差,从而提供前后一致的数据的程度。随机误差越小,测量的客观性就越强,调查的结果就越可靠。
通常采用如下三种方法评估测量的可靠性;
二次测试法
为了评估测量的可靠性,采用在尽可能相同的条件下使用相同的测量工具进行重复测量,以确定测量的可靠性。
等价测试法
在同一时间内,使用尽可能类似的两种工具对同一目标进行测量,然后评估其可靠性。
比较测试法
在同一时间内,对测量的同一现象的不同样本进行比较。
抽样概念
抽样是市场调查执行中重要的环节,抽样方法选择的正确与否直接决定着调查数据的可靠程度,同时也就决定了调查的成败。
(1)总体与全域
总体或全域,是指在市场调查中能提供所需信息的个人或者群体的全体。通常,在调查之前分析人员的首要任务是定义同质总体,并常常涉及到与之密切相关的产品和服务目标市场的界定。
举例来说,一个研究人员正在为一种新型非处方感冒药进行产品创意测试。他也许会认为被调查的总体包括每个人,因为每个人都会有患感冒的可能性。但是即便如此,并非每个患者都会选择这种非处方药。在这种情况下,调查过程中的重要任务是确定哪些人是目标主体,这就要看感冒时他们是否选购或使用这种或多种品牌的药。只有那些购买或使用的人们,才应包括在总体内。
为总体下定义是抽样调查中关键的一步,为达到市场研究目的,我们在定义调查“总体”时常常基于已有的和潜在的顾客特征。
(2)抽样与普查
普查这一概念用于描述获取总体中每个成员的信息。市场调研中并不经常用到普查,因为其同质总体一般情况下包括成千上万的个体,这样大规模地进行普查在成本和时间上的耗费都是巨大的,以致于在通常情况下是不可行的。
统计学理论证明:一个相对较小、但精心选择的样本群能准确地反映出被抽查总体的特征,一个样本是总体所有成员的一个子集,从子集获得的有关信息,可以用来估测总体特征,这种方法就是抽样调查。
尽管市场调查中很少用到普查,但是有时它们也适用于某些案例。譬如,在某著名石油公司、麦当劳、中国电信等神秘顾客访问中,由于总体不大,因此采用的是普查的方式。另外,在工业品营销中,一个企业只向少量客户销售极为特殊的产品时,普查也是适当和可行的。
抽样步骤
抽样计划大致需要下列步骤,如下所示。
(1)定义总体(全域)
为了满足市场研究目标,确定可提供信息或与所需信息有关的个体或实体(所具有的特性是十分重要的。抽样总体可以从以下几方面特征进行描述:地域特征、人口统计学的特征、产品或服务使用情况、认知程度等。在调查中,从调查问卷开始部分的过滤性问题,可以看出某个体是否属于总体。在实际应用中,即使有总体和样本清单,但仍有必要使用过滤性问题识别合格的被访问者。
另外,为了确定总体,通常情况下,还需要确定那些应排除在外的被访问者的特征。例如,大部分商业市场调查就因为一些所谓的安全性问题而排除某些个体。通常,调查问卷上的第一个问题就是询问采访对象或其家庭成员是否从事市场调查、广告或生产与调查内容有关产品的工作,如果采访对象指出他们从事其中某项工作,那么就不必要去采访他了,这就是所说的安全性问题,因为这样的采访对象不保险。他们也许是竞争对手或为竞争对手服务的。
(2)选择调查方法
正如调查方法部分所描述的那样,资料收集方式对抽样过程有重要影响。例如,电话采访有一种内在优势,购物中心拦截顾客有着自身的劣势。
(3)选择抽样框
把抽样框定义为被调查总体的数据清单(数据库或者数据仓),从抽样框中可以抽出适合访问的样本单位。众所周知,一些抽样框原来根本是不存在的,因此,在调查的初期还要建立符合需要的抽样框。例如,在一项调查中,调查的总体是那些在近 30 天内打三轮或三轮以上十八洞高尔夫球的人。但是,根本就没有一种计算方法可以完全提供这份名单。在不存在传统意义上的抽样框的情况下,我们需要依据能够产生具有希望特征的样本个体的程序来建立新样本框。
(4)选择抽样方法
制定抽样计划的第四步是选择抽样方法。选择哪种抽样方法取决于研究目的、研究经费、时间限制、欲调查问题的性质等。可供选择的重要抽样方法可以分为两大类: 概率抽样与非概率抽样,每大类中又有许多可供选择的具体方法。
(5)确定样本量
一旦选定抽样方法,下一步就要确定合适的样本量。样本量的确定方法将在样本量确定单元中给出。
(6)制定抽样计划
无论使用概率或非概率抽样,在一个研究项目的资料收集阶段必须指定和明确选择样本单位的操作程序。对于成功的概率抽样的来说,这个程序更为重要,必须详细、清晰。若不能知道合适的选择样本单位的操作程序,则整个抽样程序会陷入困境。
(7)抽样计划的实施
在实施适于操作的抽样计划前,应先对其进行讨论研究。这一步很重要,它包括检查、确定是否要根据拟好的详细程序来实施计划。
样本量确定
确定样本的数量是抽样调查中的重要环节,在充分满足调查内容要求情况下合理的确定样本量不能不说是摆在每个调查公司面前的重要课题,过多的样本量设计只会给客户增加经济负担。
概率抽样的基本原则是:样本量越大,抽样误差就越小,而样本量越大,则成本就越高。根据数理统计规律,样本量增加呈直线递增的情况下(样本量增加一倍,成本也增加一倍),而抽样误差只是样本量相对增长速度的平方根递减。因此,样本量的设计并不是越大越好,通常会受到经济条件的制约。
通常,在概率抽样的情况下,在确定样本量时会遇到如下情况:
预算:预算的多少直接影响着调查样本量的设计,通常某一项调查为满足调查要求必须有一个最低的预算指标。如果低于这个指标的预算,不能满足调查最低精度的话,建议要放弃这项调查任务。
子群分析:在任何样本量确定的过程中,都必须考虑被调查样本的子群数。也就是说,当被调查样本群子群数比较多的时候,样本量就必须相应扩大。如:某一项调查 400 个样本量是基本满足要求的,但如果将这些样本量划分为男和女各占 50 %的话,那么,每个子群只有 200 个样本。如果进一步按年龄组细分的话,假设是两个年龄组,那每一个子群只有 100 个样本,这样的样本量就不能满足最初设计的要求了,因此必须按照子群要求设计样本量则是最合理的。
统计分析:友邦顾问在确定样本量时通常在考虑上述具体情况下,会考虑如下统计方面的因素,即:总体调查标准差;抽样允许的误差和预期置信度。
样本量确定公式:在充分考虑所有统计因素基础上,友邦公司通常采用的简单随机抽样(特别是估计平均值时)的公式为:
n = z 2 σ 2 / e 2
其中, n 为适合的样本量; z 为调查置信度; σ 为总体标准差; e 为抽样误差范围
在解决“比例”方面的调查问题时,采用的抽样公式为:
n = z 2 [p(1-p)] / e 2
其中, n 为适合的样本量; z 为调查置信度; p 为样本的离散程度; e 为抽样误差范围