编写教学计划要考虑到学习的连续性和循序渐进的教学原则。以下是一些教学计划的案例,供大家参考和借鉴,希望能为教学工作提供一些帮助。
实际问题与一元一次方程教学设计(优秀18篇)篇一
教后记本节内容是实际问题中的打折销售问题,前面已经学习过销售问题中相关量的数量关系及简单的换算,所以本课内容在知识结构上难度不是很大,但是由于他和实际问题联系密切,学生必须有这方面的生活经验才能达到最好的效果,但是学生年龄小,加上他们缺少生活经验,所以必须在教师的引导下才能更好的去探究。
我们初一数学研究的课题是如何培养学生的自主探究学习的能力,探究性学习不仅是知识的构建与运用、技能的形成与巩固,也包含了生活经验的激活丰富与提升,学习策略的完善,情感的丰富和价值观的形成。在本次教学中我能以学生为主体,以探究为主线,采取合作交流的探究式进行学习,课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、学习方法等得到提高也形成正确的价值观。通过本课的教学,我感到成功的地方有以下几个方面:
比如在引课的时候,通过各种打折甩卖的广告语,引出问题(1)商家把商品打折卖给我们会不会真的赔钱?(2)其中蕴涵着那些数学道理?这样将学生放在具体的问题中,可以激发他们对问题的一种好奇心,也能使学生明确本课的学习方向,以最佳状态投入到学习中去。
在解决问题1中,我也是创设了几个问题情境,比如以黑板擦为例,问5元卖的黑板擦,想知道是赔钱还是赚钱,应该关注什么?而题中缺少什么量?怎样求?如何比较?结果如何?启发学生积极思考,让这些连续的阶段性问题持续的激发学生的学习热情和探究知识的兴趣,促使学习达到最佳境界,对于后面的问题和习题我都采用了同样的处理方式。
本节课的所有题目均由学生自主探究,通过合作独立的写出解题过程。让学生口语表达或板书,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,促进思维能力的发展,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力,而且让学生从数学的角度去分析和总结生活中的问题学会能在不同的角度去探求生活经验从而让学生掌握知识的同时使思想水7和情感态度价值观都得到提高。
在探究的时候,适当掌握时间,能根据学生的探究情况及时引导。从而达到最优的探究效果。
从以上情况我认为在教学中,一定要注重学生积极性的调动。帮助学生装设计恰当的学习活动。让他们发现所学东西的个人意义,营造宽松和谐的学习氛围。教师注重开发生活中蕴含的各种教育因素。使学生感到学习的必要性和趣味性,能更好调动学生投入到自主探究的学习活动中去。当然本课还存在很多的不足,我认为在以下方面。
1、探究的时间还需要考证,时间不易过长,应合理分配。
2、有些题目原计划是有的不在展示台展示。有的学生板书并讲解但展台接触不好改用让学生讲解由于感觉时间不是所以取消。
3、最后学生自己编了一些实际的应用题,计划让学生自己上台去表演,把问题体现出来,但是由于时间的关系,所以本课最精彩的最能掀起高潮的环节没有展示出来。
针对以上的问题,在今后的教学中应该注意以下几个问题:
1、加强课堂教学的驾驭能力,要充分安排时间,有紧有松。
2、多给学生的语言表达的机会,即时表扬和鼓励。
3、多结合生活实际,使学生能置身于问题当中,充分调动学习兴趣。
实际问题与一元一次方程教学设计(优秀18篇)篇二
各位老师你们好!今天我要为大家讲的课题是人教版七年级(上)第三章第四节《实际问题与一元一次方程》的第三课时。首先,我对本节教材进行一些分析:
本节内容在全书及章节的地位是:《实际问题与一元一次方程》是数学教材七年级(上)第三章第三节内容。在此之前,在学生已学习了由实际问题抽象出一元一次方程模型和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。以方程为工具分析问题、解决问题(即建立方程模型)是全章的重点,同时也是难点。本节内容一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高。可以说本节是一元一次方程应用的延伸与拓广。同时也为后继学习二元一次方程组埋下伏笔。
七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。于是我根据学生和中小学教材衔接的特点设计了这节课。
1、知识目标:
(2)根据问题的实际背景进行检验,利用方程进行简单推理判断。
2、能力目标:
在具体的情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析和解决问题的能力。
根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:
难点:正确地建立方程。
实际问题与一元一次方程教学设计(优秀18篇)篇三
知识与技能:能利用方程解决实际问题。
过程与方法:通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。
情感态度与价值观:体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。
重点:建立电话计费问题的方程模型。
难点:建立电话计费问题的方程模型。
1、导入新课。
前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。
2、对问题的初步认识。
问题1:下面表格给出的是两种移动电话的计费方式:
你了解表格中这些数字的含义吗?
师生活动:教师提问,学生思考,回答。
教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。
问题2:你觉得哪种计费方式更省钱呢?
师生活动:教师提出问题,学生思考回答。根据学生的回答情况,教师适当加以引导:
若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;。
若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。
讨论后安排学生再次思考,可适当讨论。
3、对问题的深入探究。
问题3:通过大家的`讨论,你对电话计费问题有什么新的认识?
师生活动:教师提出问题,学生思考回答。根据学生的回答教师适当加以归纳引导:
若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。
问题4:设一个月内用移动电话主叫为tmin(t是正整数)。当t在不同时间范围内取值时,列表说明按方式一和方式二如何计费。
师生活动:教师提出问题,学生思考并制作表格,教师巡视。
教师请学生填写下面的表格,其他同学适当补充。
观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?
师生活动:教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果。
一般学生能够对“t小于150”“t=150”“t=350”三种情况作出准确的判断,而对于“t大于150且小于350”的情况,教师应辅助学生加以分析。
教师追问:
(2)利用方程求出使两种的方式的计费相等的主叫时间,得出270min这个时间点。
对于“t大于350”时两种计费方式的比较,教师可以更多地让学生去探究方法并表述,在此基础上加以适当地总结。
问题5:综合以上的分析,可以发现:
当?时,选择方式一省钱;当?时,选择方式二省钱。
师生活动:教师提出问题,学生思考并回答。
4、小结。
请学生回顾电话计费问题的探究过程,回答以下问题:
(1)探究解题的过程大致可以包含哪几个步骤?
(2)电话计费问题的核心问题是什么?
(3)在探究过程中用到了哪些方法?你又哪些收获?
5、巩固应用。
利用我们在“电话计费问题”中学会的方法,探究下面的问题。
如何根据复印的页数选择复印的地点使总价比较便宜?
师生活动:教师提出问题,学生思考、解答,小组讨论,学生回答,教师点评。
6、布置作业。
课本习题1,3。
例题:
分类讨论:
总结:
略
实际问题与一元一次方程教学设计(优秀18篇)篇四
教学目标。
知识技能。
通过探索球赛积分与胜负场数之间的数量关系,进一步体会一元一次方程是解决实际问题的数学模型。
数学思考。
2、认识到由实际问题得到的方程的解要符合实际意义。
解决问题。
对于实际问题能够进行观察思考,并转化为数学问题,然后找到解决问题的关键――利用方程模型列出方程,进而解决问题。
情感态度。
增强学生运用数学知识解决实际问题的意识,激发学生学习数学的热情。
重点。
把实际问题转化为数学问题,会用列方程求出问题的解,并会进行推理判断。
难点。
实际问题与一元一次方程教学设计(优秀18篇)篇五
本节公开课内容是一元一次方程的应用(工程与配套问题)。教学目标是会通过列方程解决“配套问题”和“工程问题”。教学的重、难点是能准确分析实际问题中的数量关系和等量关系,掌握列方程解决实际问题的一般步骤,现将本节课的得失总结如下:
1、设计简单而对本节课有启发作用的前置作业让学生提前完成,使学生在上课前对要学的.知识有一个初步的认识。
2、利用列表分析的方法,形象直观地把已知和未知的条件找出来,有利学生分析理解和找等量关系。
1、小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。这样有利发现问题,培养学生勇气、才能和个性,使学生思维更清晰。
2、组外的交流,如果整个组的同学都完成老师布置的任务,则可以作为外援到其他组进行帮教,并利用加分的评价机制进行激励。通过这样的教学环节,既能对后进生进行帮扶,也能引领和鼓舞优生的学习积极性。这节课课堂学习气氛浓厚,讨论热烈,思维完全放开,有见地的结论不断涌现,达到了预期的教学目标。
1、把应用题的等量关系写出来不利于学生的思维发展,可以改成填空的形式。
2、课堂容量不足,应把重点放在找等量关系和列方程上,解方程部分可省略,这样就可以增加题量。
3、如果能把工作量变式为分数,能提升学生对工程问题的理解。
4、提出问题以后,一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。以上都是有待改进地方。
实际问题与一元一次方程教学设计(优秀18篇)篇六
一、成功方面。
1、本节课设计成学案的形式,有利于体现学生的主体地位,让学生充分参与到教学过程中来。
2、本节课的题目设计有利于学生理解商品销售问题中的标价、售价、进价、利润、利润率这些概念的含义及它们之间的关系,并能利用它们之间的关系来解题。
3、我把教材中的探究问题分解成三道题目,有利于学生由浅入深地掌握本节课的重难点。
4、教学方法采用学生先练教师后讲的'模式,有利于培养学生的尝试意识,激发探究热情。
二、不足方面。
1、对学生的学情把握不够好,简单问题强调、重复太多,耽误教学时间,没按预定的教学方案完成任务。
2、在从算术方法解决商品销售问题过渡到用方程方法解决销售问题时,设计不太好,学生不能自觉利用方程知识来解决问题。
3、思想理念放不开,对于探究问题可能有其他解法,实际上有学生也用了算术方法,但我没有给出评价,这样会挫伤学生学习的积极性。
三、努力方向。
加强学习,厚积薄发;钻研教材,教法,一切教学活动的出发点都要把学生放在心上。
实际问题与一元一次方程教学设计(优秀18篇)篇七
本节课是在学生学会了运用等式的基本性质解一元一次方程的基础上学习的,但是在解题过程中,书写理由太费劲,移项的出现使得解一元一次方程有了更简洁的表示方法和解法,但是移项实际上就是等式的性质(在等式的两边同加伙同减同一个代数式,所的结果仍然是等式)的另一种说法,因而移项概念的得出与运用等式的性质解方程是密不可分的,所以我在前置自学中设计了运用等式的性质解一元一次方程的几个题目,并让学生课间做到黑板上,为学生自主探究移项概念做好了铺垫工作;因为这节课的重点是移项法则的应用,因而我又设计了几个巩固移项概念的题组,通过小组合作学习、自主学习等多种方式来解决问题,对移项的概念和法则加深理解和应用;然后自学课本例题,掌握解一元一次方程的基本步骤和算理,并加以巩固应用,让学生体会出解题步骤的简洁性并通过达标测试中的应用问题,使学生进一步体会到解一元一次方程在解决实际问题中的重要性。
我在设计问题时,本想在导入新课时设计一个贴近学生生活的实际问题,最后在学习完解一元一次方程后,让学生运用所学知识解决这个问题,但是考虑到时间问题没有设计,因而对于加强学生学习数学的应用意识做得还不够好。
实际问题与一元一次方程教学设计(优秀18篇)篇八
本周进行了实际问题与一元一次方程教学,球赛积分问题,尽管在课前与学生体会了一下赛事得分问题,但是在上课时学生仍感到茫然,农村孩子几乎与各类体育项目绝缘了,没有什么机会去接触篮球足球,各种规则仅仅就是从电视上了解,知道得不多,我让学生对问题进行讨论时,学生半天理不出头绪,头脑里难以呈现比赛场面,就更别提常用规则了,没办法,我只好先给学生描述了一下,简单介绍规则后,再引导学生结合本题进行了分析,正确建立数学模型,学生之间的探究讨论就没有充分进行。
课后,我反思我的教学,在教学时学生没有体验无法感知问题,作为教师一定要发扬民主,真正做好教学的组织与引导,鼓励学生大胆想象,质疑,并尽可能的提供丰富多彩的学习素材。比如本节课如果先与体育课联系进行提前渗透,就会节省很多的介绍规则时间,讨论会更充分,效率会更高,才能从根本上帮助学生。
我们现在正在进行数学课堂生生互动教学策略的研究,学生的学习内容应该是现实的、有意义、富有挑战性的,这对教师也是一个挑战,如何为学生的互动创造条件,是我们在备课时要提前设想的。
实际问题与一元一次方程教学设计(优秀18篇)篇九
问题3.兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑,已知弟弟每秒跑3m,哥哥每秒跑4m,列出函数关系式,画出函数图象,观察图象回答下列问题:
(1)何时哥哥分追上弟弟?
(2)何时弟弟跑在哥哥前面?
(3)何时哥哥跑在弟弟前面?
(4)谁先跑过20m?谁先跑过100m?
你是怎样求解的?与同伴交流。
问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.
让学生体会数形结合的魅力所在。理解函数和不等式的联系。
精讲点拨。
在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。
提高学生应用数学知识解决实际问题的能力。
达标检测。
展示检测内容。
积极完成导学案上的检测内容,相互点评。
反馈学生学习效果。
知识与收获。
引导学生归纳探究内容。
学生回顾总结学习收获,交流学习心得。
学会归纳与总结。
布置作业。
教材p51.习题2.6知识技能1;问题解决2,3.
板书设计。
实际问题与一元一次方程教学设计(优秀18篇)篇十
2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的`形式.
3.会检验一对数值是不是某个二元一次方程组的解.
(二)能力训练点
培养学生分析问题、解决问题的能力和计算能力.
(三)德育渗透点
培养学生严格认真的学习态度.
(四)美育渗透点
1.教学方法:讨论法、练习法、尝试指导法.
(-)重点
(二)难点
了解二元一次方程组的解的含义.
(三)疑点及解决办法
一课时.
电脑或投影仪、自制胶片.
实际问题与一元一次方程教学设计(优秀18篇)篇十一
1、会根据实际问题中的数量关系列方程解决问题。
培养学生的数学建模能力,以及分析问题解、决问题的能力。
1、通过问题的解决,培养学生解决问题的能力。
2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。
重点。
根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。
难点弄清题意,用列方程解决实际问题。
学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。
教学。
环节问题设计师生活动备注情境创设。
讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。
创设问题情境,引起学生学习的兴趣。
学生动手解方程。
自主探究。
问题一:
一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
问题二:
问题三:
整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。
实际问题与一元一次方程教学设计(优秀18篇)篇十二
重点难点。
难点:探究实际问题与一元一次方程的关系。
一、复习:
1.9-3y=5y+5。
2、
二、新授。
分析:这里可以把总工作量看做1。思考。
人均效率(一个人做1小时完成的工作量)为。
由x人先做4小时,完成的工作量为。再增加2人和前一部分人一起做8小时,完成的工作量为。
这项工作分两段完成,两段完成的工作量之和为。
解:设先安排x人工作4小时。
根据两段工作量之和应是总工作量,得。
去分母,得4x+8(x+2)=-1701。
去括号,得4x+8x+16=40。
移项及合并同类项,得。
12x=24。
系数化为1,得x=-243.
所以-3x=729。
9x=-2187.
答:这三个数是-243,729,-2187。
例4根据下面的两种移动电话计费方式表,考虑下列问题。
方式一方式二。
月租费30元/月0。
本地通话费0.30元/月0.40元/分。
(1)一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?
(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗?
解:(1)。
方式一方式二。
200分90元80元。
350分135元140元。
0.4t=30+0.3t。
移项,得0.4t-0.3t=30。
合并同类项,得0.1t=30。
系数化为1,得t=300。
由上可知,如果一个月内通话300分,那么两种计费方式相同。
思考:你知道怎样选择计费方式更省钱吗?
解后反思:对于有表格实际问题,首先读清表格提供的信息,再根据问题找等量关系,设未知数,列方程,解方程,以求出问题的解。也就是把实际问题转化为数学问题。
三、巩固练习:94页9、10。
四、达标测试:《名校》55页1.2.3.
五、课堂小结:
(1)这节课我有哪些收获?
(2)我应该注意什么问题?
六、作业:课本第94页第9题学生作业,教师巡视帮助需要帮助的学生。在学生解答后的讲评中围绕两个问题:
(1)每一步的依据分别是什么?
(2)求方程的解就是把方程化成什么形式?
先让学生读题分析规律,然后教师进行引导:
允许学生在讨论后再回答。
在学生弄清题意后,教师引导学生说出规律,设一个未知数,表示其余未知数。
学生独立解方程方程的解是不是应用题的解。
教师强调解决问题的分析思路。
学生读题,分析表格中的信息。
教师根据学生的分析再做补充。
学生思考问题。
〖〗教师根据学生的解答,进行规范分析和解答。
实际问题与一元一次方程教学设计(优秀18篇)篇十三
课程改革的目的之一是促进学习方式的转变,加强学习的主动性和探究性,引导学生从身边的问题研究开始,主动寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流.在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决简单问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.
本节的重点是建立实际问题的方程模型,通过探究活动,可以进一步体验一元一次方程与实际生活的密切关系,加强数学建模思想,培养学生运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比较贴近生活实际,所以在探究过程中正确建立方程是主要难点,突破难点的关键是弄清问题的背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.切实提高学生利用方程解决实际问题的能力.
从“课程标准”看,在前面学段中已有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程.即对于方程的认识已经经历了入门阶段,具有一定的感性认识基础.但学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经历过自己的努力来克服困难的过程中体验如何进行探究活动,而不是代替他们思考,不要过早给出答案,应鼓励探究多种不同的分析问题和解决问题的方法,使探究过程活跃起来,在这样的氛围中可以更好地激发学生积极思考,使其获得更大的收获.
知识与技能:
2.会通过移项、合并同类项解一元一次方程.
1.会将实际问题转化为数学问题,通过列方程解决问题.
2.体会数学应用的价值.
会设未知数,并能利用问题中的相等关系列方程,对于列出的方程能用“移项”等方法来解决手机收费问题,进一步了解用方程解决实际问题的基本过程.
通过学习,使学生更加关注生活,增强用数学的意识,从而激发其学习数学的热情.
难点:将实际问题转化为数学问题,通过列方程解决问题.
采用探究、合作、交流等教学方式完成教学.
采用多种媒体辅助教学.
一、创设情境,导入新课(观看大屏幕)。
二、学习新课,探究新知。
展现问题:
小明的爸爸新买了一部手机,他从电信公司了解到现有两种移动电话计费方式:
他正为选择哪一种方式犹豫呢?你能帮助他做出选择吗?
(一)算一算:
一个月通话200分钟,按两种计费方式各需交费多少元?300分钟呢?
通话时间,全球通,神州行。
[设计意图:这里用表格形式给出答案,便于学生对后面问题的分析.]。
(二)议一议:
(1)累计通话t分钟,用“全球通”收费多少元?
(2)累计通话t分钟,用“神州行”收费多少元?
(3)对于某个通话时间,两种计费方式的收费会一样吗?
(三)解一解:
设累计通话t分钟,两种计费方式的收费会一样.
则:
0.6t=50+0.4t,
移项,得0.6t-0.4t=50,
合并,得0.2t=50,
系数化为1,得t=250.
由上可知,如果一个月通话250分钟,那么两种计费方式的收费相同.
(四)想一想:
怎样选择计费方式更省钱呢?(可分组交流)如果一个月内累计通话时间不足250分钟,那么选择“神州行”收费少;如果一个月内累计通话时间超过250分钟,那么选择“全球通”收费少.
(五)试一试:
根据以上解题过程,你能为小明的爸爸做选择了吗?如果小明的爸爸活动较多,与外界的联系一定不少,手机使用时间肯定多于250分钟,那么,他应该选择“全球通”,否则选择“神州行”.
(六)猜一猜:
假如你爸爸也遇到同样问题,请为你爸爸作出选择?
三、巩固训练,能力提升。
1.方程6x+a=12与3x+1=6的解相同,则a=()。
a.1b.2c.3d.4。
2.某蔬菜生产基地10月份上市青菜x万千克,11月份上市青菜是10月份的4倍还多5万千克,那么两个月份共上市青菜()万千克。
a.3x+3b.4x+4。
c.5x+5d.6x+6。
3.一列火车长为150米,以每秒15米的速度通过600米隧道,从火车进入隧道算起到这列火车完全通过隧道所需时间是()秒。
a.30b.40c.50d.60。
4.有一根竹竿和一条绳子,竹竿比绳子短2米,把绳子对折后比竹竿短1.5米,则竹竿长()米.
a.3b.4c.5d.6。
5.三个数的比是5∶6∶7,它们的和是198,则这三个数分别是()。
a.33、44、55b.44、55、66。
c.55、66、77d.66、77、88。
四、知识回顾,归纳总结。
1.不同层次学生对本节知识认知程度(可谈收获及感受);
2.用一元一次方程分析和解决实际问题的基本过程(师生共同总结)。
五、布置作业,巩固新知。
1.基础作业:教材84页第4题,85页第10题。
2.课外探究:某学校在暑假将带领该校“科技能手”去北京旅游,甲旅行社说:“如果校长买全票,则其余学生可以享受半价优惠”;乙旅行社说:“包括校长在内,全部按全票价6折优惠”;若全票价为40元.
(1)如果学生为3人或7人时,两个旅行社各收费多少?
(2)学生数为多少时,两家旅行社的收费一样?
[设计意图:及时了解学生学习效果,调整教学安排,通过课后探究,独立思考,自我评价学习效果,使得基础知识和基本技能在头脑中留下较深刻的印象。
实际问题与一元一次方程教学设计(优秀18篇)篇十四
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
教学过程。
创设情境,导入课题,展示教学目标。
2.展示学习目标:
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣。
学生自主研学。
指出探究方向,巡回指导学生,答疑解惑。
实际问题与一元一次方程教学设计(优秀18篇)篇十五
技能。
1、能根据具体问题的实际意义,检验根的合理性。
2、会利用试误的方法比较两个代数式的大小关系。
数学。
思考。
能结合实际问题背景发现和提出数学问题。
解决。
问题。
情感。
态度。
1、能根据实际问题中的等量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。
2、学会与人交流,通过实际问题情景的体验,让学生增强学习数学的兴趣。
重点。
难点。
在实际问题背景下,如何选择恰当未知数解决实际问题。
教学流程安排。
活动流程图。
活动内容和目的。
小结。
布置作业。
活动2:在上一个问题解决的基础上,更进一步的利用一元一次方程来解决问题。
小结:由学生去梳理整个一节课的内容和数学学习方法。教师明晰。
布置作业:将本节课的知识延伸到课外。
课前准备。
教具。
学具。
补充材料。
1、电脑.
4、多媒体演示文稿.
1计算器。
解释电器的电功率问题。
教学过程。
问题与情境。
师生活动。
设计意图。
活动1。
出示图片,引入课题。
师:出示一组沈阳市世界园艺博览会的照片,并提出问题。
生:思考、计算并回答。
教师关注:学生是否对于该问题感兴趣,是否可以很积极的参与课堂?
1、从学生身边熟悉的事物着手进行研究,进而引起学生的学习兴趣。
2、引导学生利用小学学过的算术方法对问题进行研究,进而可以和后面将要研究的利用方程解决问题的行为形成对比。
问题2:其他班的学生人数如果低于50人,该如何购票?
师:提出问题。
引导学生利用带入特殊值的方法解决问题。
生:分组思考、讨论。
引导学生学会当人数不确定时利用算术方法解决该问题。
师:提出问题。
同时布置小组合作学习的任务和要求:。
(1)要求活动中一人进行记录,至少三人或三人以上进行计算。
(2)要提醒学生注意自己组内每位同学的意见,学会倾听别人的意见。
(3)生:活动。
教师关注:。
(1)学生是否能够很积极的投入到活动中来,是否可以每个人拿出自己的意见。
(2)研讨时间。
1、增强学生的合作意识。
2、在活动中,注意培养学生的求异思维。
3、提高学生在小组合作中的效率。
4、活动中,即使是基础较差的学生,也会有自己的想法和做法,可以激励学生。
去思考和解决问题,进而使不同的学生在数学上得到不同的发展。
(3)学生是否能够很顺利的寻找到问题中所存在的等量关系。
5、学生从小学的算术方法解决问题过渡到利用一元一次。
方程解决问题,体验了知识从特殊到一般的过程。
6、培养学生利用方程的思想解决问题的习惯。
问题5:你是怎样得出这个结论的?你能验证它吗?
师:提出问题。
生:思考并回答问题。
教师关注:。
学生需要从大小两个方面进行验证,观察。
[1][2]下一页。
学生的思维方向是否全面。
1、让学生体验数学知识从猜想到结论的出现,再到验证的全过程。
2、培养学生的估算意识。
3、让学生使用计算器,可以更好的'使用现代的计算工具。
4、发展学生分类讨论的能力。
活动2。
师:提出问题。解决问题前应先解释一下什么是功率。
生:学生独立思考并解决问题。
教师关注:。
在刚才已经解决的问题得到的数学经验基础上,学生是否能够想到设处未知数解决问题。
1、发展学生利用未知数来表示具体数量的能力。
2、培养学生方程建模的思想。
3、进一步积累数学经验。
问题2:如何说明你的猜想是正确的呢?
教师:提出问题。
生:思考并解决问题。
进一步让学生明白一个结论的出现应该是建立在已经验证是正确的基础上的。
教师:提出问题。
生:分组合作交流。
教师关注:学生是否能够利用上题中感受――猜测――验证这种科。
1、进一步让学生学会分类讨论的方法。
2、这个问题有很高的难度,可以最大限。
计你认为能省钱的选灯方。
案。
学的认知方法来解决问题。
度的对学生的认知发起挑战,能提高学生的学习兴趣,给基础较好的学生提供思维继续深入发展的机会,可以让不同的学生在数学上得到不同的发展。
3、真正呈现出数学来源于生活,要反作用于生活。
小结。
由学生谈体会,与学生分享自己所学的知识和感受,一起进行交流。
教师明晰。
尽可能让学生梳理本节课的知识脉络和数学方法,还可以让学生在情感态度价值观方面谈出自己的体会,将该节课进行画龙点睛。
布置作业。
1、习题2.4----6题、8题。
2、通过网络查询来调查一下沈阳各个旅游景点的买票方式,为我们同学的出游设计最佳的购票方案。
3、作一组调查,看看自己家所使用各类电灯价格和使用寿命,进而替妈妈设计家里最省钱的用灯方案。
将本节课的知识延伸到课外,在应用方程建模思想解决问题的同时,提高学生应用数学的能力,让学生感觉到数学在人们生活中的作用,进而对数学产生更大的兴趣。
教学设计说明。
本节课借助于两个具有实际背景的问题来培养学生列方程解应用问题的能力。
整个学习过程的设置,充分以学生已有的生活经验和数学经验为前提,以培养学生利用方程解决实际问题为目标,以新课程标准为指导思想。在活动一中,重点引导学生由小学的算术方法解决问题转化到利用方程建模的思想解决问题。活动二则在活动一的基础上,引导学生利用刚刚掌握的方法直接列方程解决实际问题,进一步在问题的解决基础上,更深一步提出了最优化选择的问题,这个问题其实更适合应用不等式或线性方程来解决,安排在这里,是使学生除了建立一种利用数学建模的方法解决问题外,还可以为将来研究和学习不等式及线性方程打下基础。
小结中,注重引导学生梳理出本节课的知识脉络,同时让学生感受利用方程建模思想解决问题的思维习惯。
在布置课后作业中,分为两层,首先要求学生利用寻找等量关系列一元一次方程的方法解决实际问题,另外,通过两个课后调研的开放性问题,培养学生应用数学的能力,令学生感受到数学来源于生活,也要反作用于生活。
本文章更多内容:1-2-下一页。
上一页[1][2]。
实际问题与一元一次方程教学设计(优秀18篇)篇十六
3、培养学生根据问题寻找等量关系、根据等量关系列出方程的能力。
教学重点。
2、能验证一个数是否是一个方程的解。
教学难点。
寻找问题中的等量关系,列出方程。
教学过程。
一、情景诱导。
如果设大象的体重为xt,蓝鲸的体重应如何表示呢?怎样解决这个问题呢?(学生思考并回答:25x-1=124,)我们把这个式子给它起个名字,叫一元一次方程,这就是我们今天要学习的一元一次方程(板书课题),那——什么叫做一元一次方程——呢?,请同学们带着这些问题,阅读课本114页-115页练习前的内容,对照课本找出自学提纲里问题的答案。
要求:先完成得请你帮帮没有完成的同学,不会做的同学请教会做的同学。
二、自学指导。
学生自学课本,并完成自学提纲。老师可以先进行板书准备,再到学生中进行巡视指导,掌握学生的学习状况,为展示归纳做准备。
附:自学提纲:1、什么是方程?请举出1—2个例子。未知数通常用什么表示?
3、在课本“例1”中,你知道这些方程中等号两边各表示什么意思吗?
4、什么是方程的解?x=1和x=-1中哪一个是方程x+3=2的解?为什么?
5、什么是解方程?
三、展示归纳。
1、请有问题的同学逐个回答自学提纲中的问题,生说师写;
2、发动学生进行评价、补充、完善;
3、教师根据展示情况进行必要的讲解和强调。
四、变式练习。
1、2题口答,要求说理由;其它各题,先让学生独立完成,教师做必要的板书准备后,巡回指导,了解情况,再让学生汇报结果,并请同学评价、完善,然后教师根据需要进行重点强调。
附:变式练习。
2、请你说出一元一次方程2x=4的解是———,解是x=-2的一元一次方程:。
3、已知关于x的方程2x《3.1.1一元一次方程》教学设计(修改稿和原稿)+3=0为一元一次方程,求k的值。
4、练习本每本0.8元,小明拿了10元钱买了y本,找回4.4元,列方程是。
5、设某数为x,根据题意列出方程,不必求解:
(1)某数比它的2倍小3;
(2)某数与5的差比它的2倍少11;
(3)把某数增加它的10%后恰为80.
6、若x=1是方程kx-1=0的解,则k=.
五、课堂小结。
通过本节课的学习你学到了什么?还有没有要提醒同学们注意的?(学生进行自主小结,再由教师概括总结)。
六、布置作业。
课本83页习题3.1第1题。
实际问题与一元一次方程教学设计(优秀18篇)篇十七
本章的内容包括等式的基本性质,一元一次方程的概念、解法和应用,其中一元一次方程的解法是本章的主要内容,而建立一元一次方程模型解决实际问题是本章知识的重点和难点。
一、本章知识的学习流程图:
二、基础性目标总结:
一元一次方程是最基本的代数方程,对它的理解和掌握对于后续学习(其他的方程、不等式以及函数等)具有重要的基础作用。因此,在教学中我们要注意打好基础,对本章中的基础知识和基本技能、能力等进行及时的归纳整理,安排必要的、适量的练习,使得学生对基础知识留下较深刻的印象,对基本技能达到一定的掌握程度,发展基本能力。通过本章的学习,学生达到了以下的基础目标:
2、理解等式的基本性质;
3、了解解方程的基本目标,熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法;
4、清楚列方程解决实际问题的基本步骤,会利用一元一次方程解决一些常见的实际问题。
三、发展性目标总结:
在对本章知识的学习时,教师在教授知识的同时,也应注意知识形成的过程,让学生从中体会知识之间的相互联系,感受数学的`实际价值,从而培养学生的学习能力。同过本章的学习,学生基本上要达到以下目标:
1.经历“把实际问题抽象为一元一次方程”的过程,能够“列出一元一次方程表示问题中的等量关系”,体会方程是刻画现实世界中等量关系的一种有效的数学模型。
2.通过观察、对比和归纳,探索等式的性质,能利用它们探究一元一次方程的解法。
3.通过探究解一元一次方程的一般步骤,体会其中蕴涵的化归思想。
四、融通性目标总结:
1、突出建摸思想,实际问题作为大背景贯穿全章。
在本章中,课本安排了许多有代表性的实际问题作为知识的发生、发展的背景材料,实际问题始终贯穿于全章,对方程、一元一次方程概念的引入和对它们的解法的讨论,都是通过提出实际问题,为解决实际问题需要建立一元一次方程模型,然后求解一元一次方程这样的过程进行学习的。
2、注重知识的前后联系,强调通过比较来认识新事物。
本章在是在学习了有理数和整式的加减运算后进行学习的。整式的有关知识是方程变形的基础,同时学好一元一次方程为后续的一次方程不等式、其他方程以及函数的学习打好了坚实的基础。
3、加强探究性学习。
促进学习方式的转变,加强学习的主动性和探究性,是课程改革的目的之一。本章中有许多实际问题,丰富多彩的问题情境和解决实际问题的快乐可以激发学生对数学的兴趣。在本章的教学中,应注意引导学生从身边的问题研究起,主动收集寻找“现实的、有意义的、富有挑战性的”学习材料,并更多地进行数学活动和互相交流,在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法。通过探究学习激发学生积极思维,鼓励多种探究方法,促成活跃的探究氛围,提高课堂学习的效果。
五、教学中的几点思考。
1、在本章教学时,由实际问题到具体知识,再讨论具体知识,这一顺序知识的自然形成过程一致,但刚开始教学时很多老师感觉思路比较乱,反映出对教学目标和重难点的把握不是很准确,通过教学研讨,确定整章的主线是通过建立一元一次方程模型来解决实际问题,那么由问题中产生具体的知识,再对知识的探究应该是符合学生的认知规律的。为了在一堂课中更加突出重点,在学习解法的时候,对实际问题的分析和研究应该略讲,首先要抓好基础的落实,一定要有足够的时间、适当的练习让学生掌握一元一次的解法。在学习了解法的基础上,后续的学习应该对实际问题的分析和研究进行必要的归纳总结,这样才能使学生真正掌握好本章知识。
2、由于学生在上个学段学习了简单的方程,所以学生对一元一次方程已经有了一定情况的了解。根据实际情况反映,小学教师对这一部分知识的教学要求比较高,大多数学生学习起来比较轻松,所以在解法学习时间安排上,有5个课时的时间是主要研究解法的,有2个课时的时间是主要研究和归纳如何利用一元一次方程解决一些十分熟悉的实际问题的。
3、在实际教学中,老师普遍反映学习利用一元一次方程解决实际问题时,学生的分层十分明显,学习基础好的学生能较快达到学习目标。但对学习基础不好的学生,则是一件十分困难的事情。个人认为在教学中要突出对实际问题的分析,强调列代数式,即如果把问题中的某个量用一个字母表示之后,对于问题中的其余的量,要求都能要关于这个字母的代数式表示。在分析的过程中,为了更清楚的找到问题中各个量之间的关系,可以适时地介绍利用图形和表格的方法去分析问题中的数量关系。
4、在落实一元一次方程的解法时,注意要有适当的重复练习,才能发现学生的问题并加以纠正,但是要注意避免学生陷入机械的重复训练。在教学中如果把解方程的本质和其中的算法和算理讲清楚的话,很多时候通过作业反馈,学生能够较熟练地掌握一元一次方程的解法的。
六、章末目标检测说明。
本章单元测试设计了2份检测题,测试(a)主要是对基础性目标的检测,测试(b)则适当加大了对发展性目标与融通性目标的检测的比重。
实际问题与一元一次方程教学设计(优秀18篇)篇十八
本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。
(一)知识与技能:
1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;
2、熟练掌握追及问题中的等量关系。
(二)过程与方法。
培养学生观察能力,提高他们分析问题和解决实际问题的能力。
(三)情感态度价值观:
培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。
2、难点:将实际问题转化为数学模型,并找出等量关系。
探究式。
一、创设问题情景,引入新课:
1、行程问题中有哪些基本量?它们间有什么关系?
2、行程问题有哪些基本类型?
二、知识应用,拓展创新:
行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。
三、例题讲解。
解:设x秒后乙能追上甲。
根据题意得5x—3x=100。
解得x=50。
答:50秒后乙能追上甲。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)。
中的同时不同地问题,以后遇到此类题,该如何解决。
分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。
解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。
小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)。
中的同地不同时问题。
归纳小结:列方程解应用题的一般步骤:
审—通过审题明确已知量、未知量,找出等量关系;
设—设出合理的未知数(直接或间接);
列—依据找到的等量关系,列出方程;
解—求出方程的解;
验—检验求出的值是否为方程的解,并检验是否符合实际问题;
答—注意单位名称。
解答由学生完成。
本节知识归纳:
1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;
2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。
3、用示意图辅助分析数量间的关系便于我们列方程。
四、作业布置:(见补充题)。
通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。