教学工作计划还可以帮助学生了解自己的学习进度,并提供相应的学习指导和支持。教学工作计划的编写对教师的教学能力和教学思维要求较高,下面是一些经典的范文,供大家学习参考。
中应用设计教案(汇总20篇)篇一
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。
2.进一步提高学生的分析概括能力及解题能力。
教学重点。
找准单位“1”,巩固分数除法应用题的解答方法。
教学难点。
掌握分数连除应用题的结构及数量关系。
教学过程。
(一)复习。
(投影)。
1.找准单位“1”,并列式解答。
2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)。
提问:美术组,生物组,航模组三个数量之间有什么关系。
(4)请一名同学列式解答,然后订正。
(二)讲授新课。
老师把准备题进行改编。
指名读题,找出已知条件和未知条件。
1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)。
提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)。
老师按学生的回答,把准备题的图示进行修改。
2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。
(5)这个式子的等号两边相等吗?为什么?
人。)。
学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)。
老师板书:
解设美术组有x人。
答:美术组有30人。
看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)。
师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习。
(投影)。
先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。
2.看图,找出数量间相等的关系,并列方程解答:
(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)。
三好生4人。
学生动笔做,老师带领学生订正。
的高是多少厘米?
根据题意填空:
是()厘米。设()为x。
果树有多棵?
(四)课堂总结。
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)。
这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)。
(五)布置作业。
(略)。
课堂教学设计说明。
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
中应用设计教案(汇总20篇)篇二
教学目标:
使学生掌握分数加、减、乘混合在一起的算法。提高计算的熟练程度。
教学重点:
使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。
教学难点:
运用运算顺序和运算定规律进行灵活、准确的计算。
教学策略:
1、加强口算的基本训练。
2、例6的教学要注意引导学生观察,明确运算顺序。
3、适当增加带分数乘法和分数连乘的计算式题。掌握带分数乘法的计算方法。
例:黑板的宽是米,长是宽的2倍,黑板的长是多少米?黑板的面积是多少平方米?
让学生知道通常先把带分数化成假分数,然后再乘。
4、通过例题的教学让学生思考分析并明确:三个分数相乘,如果是带分数要先化成假分数,为了简便,可以先把所有分数的分子和分母约分,再把约简的分子、分母分别相乘。整数乘法运算定律对于分数乘法同样适用,要培养学生先认真观察算式的特点再选择算法的良好学习习惯。
5、教学中仍然注意复习运算顺序的使用前提,不要盲目简算。
中应用设计教案(汇总20篇)篇三
本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究“数”与“形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。
首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。
其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。
为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。
在整个题目的处理过程,鼓励学生画出函数图像,更好的认识整个过程自变量和应变量变化的整体情况,处理好题目中的量与自变量和应变量的关系。
作以上改进,可以很好地让学生体会到“数”与“形”之间的联系,并且会根据反比例函数求应用题。
中应用设计教案(汇总20篇)篇四
使学生初步认识什么叫做应用题的条件和问题,初步学会解答一半用图画一半用文字叙述的应用题,为正式学习解答文字叙述的应用题做准备,图文应用题。
主体图和小棒。
1.口算。
9+3=9-4=19-9=9+6=9+8=9-9=10-9=9+9=。
2.9+7,请你说一说你是怎样算的?
3.完成课本102页的第2题。
让学生独立完成,全班填在书上。
1.出示课本101页的例3的主体图。
(1)提问:图中告诉我们有什么?(乐队有5人)又告诉我们什么?(唱歌的有9人)要我们求什么?(一共有多少人?)。
教师:这道题里不论是用图画表示,还是用文字写出来,都把它叫做已知条件。题目中要我们求什么叫做问题。
提问:这道题的第一个已知条件是什么?第二个已知条件是什么?问题是什么?
教师:我们现在已学过的题目,一般都有两个已知条件和一个问题。请大家同桌的互相说一说题目中的两个条件和问题。
(2)要求一共有多少人,用什么方法计算?怎样列式?为什么?(因为是把唱歌的人和乐队合并起来,所以用加法计算,小学数学教案《图文应用题》。)。
列式:9+5。
教师:我们今天学的这种一半用文字表示的应用题叫图文应用题。(板书课题)。
小结:我们以后做这样的应用题时,都要首先看清楚题中告诉我们已知条件,问题是什么。然后再根据已知条件和问题,想一想用什么方法计算。并列出算式来。
(3)9+5怎样计算呢?
请同桌的同学用摆小圆片的方法,讨论9+5怎样计算。
9+5=14(人)。
教师:在14后面写有“(人)”,这“(人)”是单位名称,应用题解答完后都要在得数后面写上单位名称。
2.完成课本101页的做一做。
出示主体图。
用自己的语言叙述一下画面的内容。
要求“一共有多少个南瓜。”图中告诉我们什么条件?
(原来有9个,小朋友拿来6个南瓜。)。
请大家把这道题的两个条件和问题连起来说一说。
想一想,要求“一共有多少个南瓜。”该怎样列式。
列式:9+6=15(个)。
2.完成课本102页的第3题。独立完成后,全班讲评。
汇报:相同点:都有2个已知条件和1个问题,都是根据加法的含义列式计算的。即把两个数合并在一起,求一共是多少,用加法计算。
不同点:图画应用题的已知条件和问题都是用图画表示的,比较简单。有图有文字的应用题,是用图和文字来表示已知条件和问题,比图画应用题难一些。
中应用设计教案(汇总20篇)篇五
一、看图填算式。
(1)上图有组和()组。
可列乘加算式:()×()+()=()。
(2)上图有()组再填上()个就可。
以凑成再加上原来的()组后,
凑成()组。由于开始我们凑上了一个。
所以最后还要减去一个。
可列乘减算式:()×()-()=()。
二、改写算式。
()×()+()=()。
4+4+4+2=()。
()×()-()=()。
()×()+()=()。
5+5+5+3=()。
()×()-()=()。
三、有多少个球?你能分别列一道乘加、乘减算式吗?
()×()+()=()。
()×()-()=()。
中应用设计教案(汇总20篇)篇六
教学内容:课本第9页例4,练习三1~5题。
教学目的:使学生掌握分数加、减、乘混合在一起的算法。提高计算的熟练程度。
教学重点:
教学难点:
教学过程:
一、复习。
1.分数乘以整数的意义?
2.一个数乘以分数的意义?
3.分数乘法的计算法则及其计算方法。
5.计算。
5×6+7×315×(34-29)。
二、新授。
问:最后两题的运算顺序怎样。
(第一题先算乘法,再算加法;第二题先算括号,再算乘法)。
说明:如果我们将那两道题的整数改为分数,它们的运算顺序也是不变的。按照同样的方法算一算下面的题目。
出示例6。
问:这两道题的运算顺序是怎样的?(学生回答后独立完成。让两名学生到黑板上做。)。
板书:
三、巩固练习。
1.课本12页做一做。
2.练习三1~5题。
教学反馈:
中应用设计教案(汇总20篇)篇七
教学内容:用字母代表未知数,列出符合题中条件的等式,解方程(例3,课本第159―160页,练习二十四)。
教学目的:通过复习使学生能教熟练地用字母代表未知数,列出符合题中条件的等式;列方程解应用题。从而培养学生抽象思维的能力和分析问题、解决问题的能力。
中应用设计教案(汇总20篇)篇八
具体分析本节课,首先简单的用几分钟时间回顾一下反比例函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、工程这样的实际问题,通过在速度一定的条件下路程与时间的关系,认识到反比例函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。
创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。
中应用设计教案(汇总20篇)篇九
教学内容:本课时的教学内容是百分数及百分数的应用。
教学目标:
知识与技能。
进一步理解百分数的意义,巩固求百分率的方法,掌握百分数与分数、小数的互化方法。
能应用百分数的相关知识,解决简单的实际问题。
过程与方法。
通过小组合作学习,交流探究等活动,增强合作学习的意识。
经历回顾、梳理、反思所学知识的过程,加深对复习内容的理解。
情感、态度与价值观。
在学习活动中,激发探究欲望,养成善于回顾和反思的学习习惯。
体验数学与生活的密切联系,增强应用数学知识解决实际问题的意识。
难点:掌握关于“增加百分之几”和“减少百分之几“的实际问题的解题方法。
教学设计:通过复习,系统、全面的整理了本学期所学的百分数知识,帮助学生构建合理的知识体系,使学生更好地理解和掌握所学概念、意义和解题方法,进一步培养学生的数感,提高学生的解题能力。本节课对百分数及百分数的应用的相关知识做了系统的复习,只要体现在以下两点:
1、突出核心知识,围绕重点展开复习和训练。
本课时的复习紧紧围绕百分数的认识及应用百分数解决实际问题这两方面内容,引导学生通过回顾、交流,进一步巩固对百分数的认识和运用百分数解决实际问题的方法,以“抓重点,带相关”的复习方式展开训练,提高学生的解题能力。
2、注重知识间的内在联系。
加强知识间的内在联系,帮助学生构建合理的知识体系,本节课通过对比血虚,进一步明确了百分数的意义和百分数应用题的解题思路,提高了学生的审题能力,使学生能够根据不同的要求,灵活选择不同的解题方法。
3、数形结合,为以后的学习打下基础。
中应用设计教案(汇总20篇)篇十
教学设计思想:
本节知识是探究如何用一元一次方程解决实际问题。在前面我们结合实际问题,讨论了如何分析数量关系、利用相等关系列方程以及如何解方程,在此基础上我们才可以进一步探究用一元一次方程解决实际问题。在课堂中教师出示例题,启发学生思考,师生共同探讨,学生找等量关系,列出方程,教师出示巩固性练习,学生解答,达到巩固所学知识的目的。
教学目标:
1.知识与技能。
利用相等关系建立数学模型列方程;。
2.过程与方法。
会用方程解决简单的实际问题,认识到建立方程模型的重要性;。
在建立方程解决实际问题时,我们体会到设未知数的意义。
3.情感、态度与价值观。
体会数学建模与实际的相互密切联系,加强数学建模思想。
教学重点:解决相关问题时,利用相等关系列方程。
教学难点:解决相关问题时,利用相等关系列方程。
重难点突破:关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。
教学方法:采用直观分析法、引导发现法及尝试指导法充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。
课时安排:1课时。
教具准备:投影仪。
教学过程:
一、创设情境。
师:通过前几节课的学习,同学们回忆一下,列方程解应用题的第一步是什么?
生:分析题意,设未知数。
师:很好。我们以前学的应用题大多是求一个未知量,因而设一个未知数我们今天要学的内容需要求两个未知量,这又如何解决呢?通过今天的学习,这些问题将得到很好的答案。
[教法说法]:此节内容与前边内容联系不大,所以开门见山直接提出问题,同时也引起学生的注意和好奇,使学生带着问题进入今天的学习,激发了学生的求知欲。
中应用设计教案(汇总20篇)篇十一
应用题教学是培养学生分析问题和解决问题的一个非常重要的手段。但应用题阅读量大、建模难度高,学生往往无从下手。在教学中,我发现教师教的吃力,学生学的也很吃力,很多学生看见应用题就有一种说不出的恐惧感。于是在列分式方程解应用题的教学中,我试着运用表格分析法来进行应用题的教学,让学生有章可循,并取得了很好的效果。
一、教学案例展示。
分析:题中涉及工作量、工作效率、工作时间三量关系,甲、乙两种状态。根据题意,设乙每分钟能输入x名学生的成绩,则甲每分钟能输入2x名学生的成绩,用表格分析问题。
步骤一:列出表格。
步骤二:依次填写表格信息。
中应用设计教案(汇总20篇)篇十二
教学目标:
1、让学生利用路程、时间、速度三者之间的关系,借助画示意图解以现实为背景的应用题。
2、让学生利用画图直观分析、探究发现、充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。
3、在教师引导下结合实际创造有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。
4、在《小组竞赛学习法》督促下,逐步引导学生自学,使学生的被动学习变为主动学习。
教学重难点。
重点:通过学案引导学生分析例题,寻找等量关系列方程。
难点:
1、通过学案引导学生从不同角度来寻找等量关系,列方程。
2、通过小组竞赛做题的竞争,慢慢地培养学生学习的积极性,逐步加强学生的自学能力。
教学方法:《小组竞赛学习法》。
教学设计。
课前准备。
创设悬念提出问题。
(上课的提前一天或周五下午,给学生每人一份学案,让学生充分讨论准备迎接小组比赛,后面备有学案内容)。
课堂教学过程。
一、老师出示学案的答案(选做题暂不给答案,下课后,学生可用u盘烤走当参考),宣布评卷规则。要求:学案每做一题(不包括选做题),不管对错得1分,能作对的加一分,并会讲的再加一分,选做题做了并对且会讲的应加倍给分。(选做题让教师讲解后再让学生讲的不加倍给分。
小组组员之间先互帮互学对改答案,准备迎接其它组的检查。(大约用20分-30分钟,小组准备的越充分越好,若多数学生没准备好,可以再多给点时间让其准备,千万不能打无准备之仗,准备不好的话,先不小组比赛,下节课才小组比赛也行),此时老师巡回抽查每组中学生的自学情况,根据情况调整互帮互学时间,对于都不会的问题,教师可以演讲让优生先学会,再帮助差生学会。
二、小组推磨检查,一般每小组的前四名检查下组的后四名,(8人一个组)。
三、各组长统计分数并让被检组认可,教师统计各组分数,对全班小组排列顺序,分数最低的小组起立向大家敬礼表示失败,(也可以对第一名小组奖励)教师把比赛结果记录在专用本子上,准备一周的`总分评比。一周的总分数少的小组要替第一名小组打扫卫生一次。每周比赛结果也记录在专用本子上,准备一学期的总分评比。
四、布置下节自学任务而结束本节上课。
以下是备用内容。
学生自学内容(就是学案)。
先给大家讲一个当代数学家苏步青教授故事,苏步青教授在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了个题目:
苏教授一下子便回答出来了,你能回答上述问题吗?你能把解决的方法步骤写出来并给大家讲一下吗?”
请同学们先画出示意图:
再由图填空:甲乙相遇时,他们共行的路程为()。
从路程的角度分析:甲走的路程+乙走的路程为()。
从时间角度分析:甲走的时间=乙走的时间。
如果设甲、乙相遇时他们所用时间为x小时,此时相等关系:
甲走的路程+乙走的路程)=()。
即甲行走的速度×甲行走的()+乙行走的()×乙行走的时间=()。
中应用设计教案(汇总20篇)篇十三
_____________________________________。
2.桶里装有一些油,用去了60%,恰好是48千克,原来桶里装有多少千克的油?
_____________________________________。
3.一条绳子长48米,剪去全长的75%,还剩多少米?
_____________________________________。
4.一条绳子,剪去全长的.75%,还剩下12米,原来绳子长多少米?
_____________________________________。
5.生产车间上个月制造零件1280个,本月比上月超产15%,本月制造零件多少个?
_____________________________________。
6.生产车间本月制造零件1472个,比上个月超产15%,上个月制造零件多少个?
_____________________________________。
7.小丽身高126厘米,正好是父亲身高的70%,父亲身高多少厘米?
_____________________________________。
_____________________________________。
_____________________________________。
_____________________________________。
中应用设计教案(汇总20篇)篇十四
[分析]出发时甲、乙二人相距30千米,以后两人的距离每小时都缩短6+4=10(千米),即两人的速度的和(简称速度和),所以30千米里有几个10千米就是几小时相遇。
解:30÷(6+4)。
=30÷10。
=3(小时)。
答:3小时后两人相遇。
〔分析〕甲的速度为乙的2倍,因此,乙走了4小时的路,甲只要2小时就可以了,这样就可以求出甲的速度。
解:甲的速度为:100÷(4-1+4÷2)。
=100÷5=20(千米/小时)。
乙的速度为:20÷2=10(千米/小时)。
答:甲的速度为20千米/小时,乙的速度为10千米/小时。
延伸阅读:
基本数量关系应用题:
【练习巩固】。
针对练习:
提高题:
中应用设计教案(汇总20篇)篇十五
姓名:赵艳霞。
单位:延津县第一职业高级中学。
2014年6月。
教学目标:
认知目标:
1、熟练掌握点、线、面在服装款式设计中的表现形式。
2、掌握服装款式中点、线、面的含义及分类。
能力目标:将点、线、面设计法则应用于服装设计绘画中,使服装款式更能突出风格特征、符合美学原则,并且能适应市场需求。
情感目标:增强学生对于服装的审美能力。
教学重点:
1、服装款式中点线面的含义及分类。
2、点、线、面在服装设计中的表现形式。
教学难点:
如何将点、线、面合理且完美地运用在服装款式设计当中。
教学过程:
新课导入:通过现场调查的形式来导入新课以此来引起学生的学习兴趣。
新课引言:今天的学习内容主要是服装款式设计中点线面的组合形式。点线面是构成服装立体形象的主要元素,根据服装款式的变化合理地运用点线面,可以使服装达到和谐生动的视觉效果。
一、点。
款式构成中的点是指较小的形态。
思考:在服装中的很多点的存在,哪位同学来说一说?
扣子、珠片、领结、胸花、小面积的图案、兜盖、拉链头等等。
1、点的特点:一是点的大小不固定二是点的形状不固定。
2、点的分类。
一类是几何形的点另一类是任意形的点。
3、通过欣赏图片总结点的主要功能。
二、线。
1、线的概念及分类。
概念:服装款式的线是与点相比,线的形态明显使人感觉到“长”。分类:线的形状分为直线、曲线、折线三种。
2、通过图片欣赏总结出线在服装款式中的分类。
从服装款式设计上来理解线,有装饰线和结构线之分。
结构线:在服装上表现出来的省道线、中分线、刀背线等。
装饰线:设计者利用想象、夸张的艺术手法,设计出来的用于服装的“线”。
3、实物展示。
三、面。
1、面的概念。
款式构成中的面是比点大比线感觉宽的大块形态。
2、服装款式中面的含义。
一是人们视觉上感受的面,点作为整体出现时是个“面”,线的加宽也构成了面,各种色块的拼面也可以组成面。
二是从服装造型的整体上来看,也存在着面,即面料。也可以说,服装上被结构线或装饰线包围的不同色彩、不同肌理、不同材料、不同形状的衣片及大贴袋、大面积的图案等均可看做是面。
3、欣赏图片。
四、知识拓展。
1、单一要素的使用。
2、多种要素的结合五、学以致用。
1、理论联系实际。
六、小结。
点线面是互为转变的,如点变大可成面,点的有秩序排列又可成为线,线变大可成为面,线排列又可变成线化的面。熟练掌握点线面这三种元素并恰当的运用,使之赋予服装设计作品以完美的视觉审美和永恒的生命力。
七、作业。
1、完成点、线、面的款式设计各两款。
2、点与线搭配,线与面搭配,点与面的搭配,三者搭配各一款。
中应用设计教案(汇总20篇)篇十六
基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想。
方法:通过将实际问题转化成数学问题,培养学生的建模思想;。
基本活动经验体会解决实际问题的一般步骤及盈亏中的关系。
教学重点。
教学难点。
找出已知量与未知量之间的关系及相等关系。
教具资料准备。
教师准备:课件。
学生准备:书、本。
教学过程。
一、创设情景引入新课。
观察图片引课(见大屏幕)。
二、探究。
探究销售中的盈亏问题:。
1、商品原价200元,九折出售,卖价是元.
2、商品进价是30元,售价是50元,则利润。
是元.
2、某商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元.
3、某种品牌的`彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元.
4、某商品按定价的八折出售,售价是14.8元,则原定售价是.
(学生总结公式)。
熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系。
三、探究一。
分析:售价=进价+利润。
售价=(1+利润率)进价。
亏?
(2)某文具店有两个进价不同的计算器都卖64元,
其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?
(3)某商场把进价为1980元的商品按标价的八折出售,仍。
获利10%,则该商品的标价为元.
注:标价n/10=进(1+率)。
(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的。
价格,某种药品在涨价30%后,降价70%至a元,
则这种药品在20涨价前价格为元.
四、小结。
通过本节课的学习你有哪些收获?你还有哪些疑惑?
亏损还是盈利对比售价与进价的关系才能加以判断。
小组研究解决提出质疑。
优生展示讲解质疑。
五、作业布置:
板书设计。
相关的关系式:例题。
课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
中应用设计教案(汇总20篇)篇十七
学习目标:
1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:
1、如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性。
2、解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:
如何从实际问题中寻找等量关系建立方程。
学习指导:
一、知识准备。
1、通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。
2、谈一谈:
请举例说明打折、利润、利润率、提价及削价的含义分别是什么?
3、算一算:
(1)原价100元的商品,打8折后价格为元;
(2)原价100元的商品,提价40%后的价格为元;
(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课。
一)思考:
1、把下面的“折扣”数改写成百分数。九折八八折七五折。
2、你是怎样理解某种商品打“八折”出售的?
二)问题:
1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?
3、你是怎样理解商品的利润?
三)新知探讨。
1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?
2、结合实际,说说你从打折销售中可以获得哪些数学问题?
(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?
(2)一种画册原价每本16元,现在按每本11。2元出售。这种画册按原价打了几折?
如果设每件服装的成本价为x元,根据题意,
(1)每件服装的标价为:()。
(2)每件服装的实际售价为:()。
(3)每件服装的利润为:()。
(4)列出方程,并解答:
四)回顾与反思。
中应用设计教案(汇总20篇)篇十八
我们这堂课主要有五个特色:
1、学而时习之。
2、新课当旧课上。
3、重视引导学生再创造,再发现。
4、突出学习和强度,角度和反思。
5、创设情景,让学生主动积极参与。
一、学而时习之。
二、新课当旧课上。
三、重视引导学生再创造、再发现。
b组训练题较a组灵活,适用于学有余力的学生。
第(4)题,学生要考虑两种情况;目的是通过分类讨论的思想,培养学生思维的严密性。
四、突出学习的速度、角度、强度和反思。
例如:课前训练一和作业中对新旧知识的系统复习,通过多次巩固达到强化训练的目的。
另外,我们设计了强化a组题,在学生完成a组训练题后,可以自由选择是进入强化a组题还是进入b组训练题中这部分的设计主要是让学生养成客观的自我评价,和为在a组训练中未能形成基本技能的学生再次创造一个条件和空间,务求使学生掌握基础知识,再次有机会形成基本技能,充分体现学习强度和分层教学。
五、创设情境,让学生主动积极参与。
中应用设计教案(汇总20篇)篇十九
3.使学生初步养成正确思考问题的良好习惯.
教学重点和难点。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
为了回答上述这几个问题,我们来看下面这个例题.
例1某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)。
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)。
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)。
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得。
x-15%x=42500,
所以x=50000.
答:原来有50000千克面粉.
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)。
教师应指出:
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);。
(4)求出所列方程的解;。
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
中应用设计教案(汇总20篇)篇二十
应用设计题5.为了节省电能,居民楼的楼道灯通常由两个开关共同控制。一个是利用光敏器件制成的“光控开关”,它的作用是光线暗时自动闭合,光线亮时自动断开;一个是利用声敏器件制成的“声控开关”,它的作用是有声音时自动闭合电路,两分钟后,若再无声音则自动断开。
(1)请将图11甲中的器材连成符合上述楼道灯要求的电路。
(2)小明受楼道灯电路的启发,在爷爷的卧室里也安装了这样一个“聪明”的电路。晚上只要拍拍手,灯就亮了,过一会自动熄灭,给爷爷带来了方便。不过遇到晚上有雷雨,就麻烦了,雷声使灯不断被点亮,影响爷爷休息。还有爷爷睡觉前需要这盏灯一直被点亮。现在再给你两个开关sl、s2,在图11乙中完成对这个“聪明”电路的改装。并分别说明在灯自动工作、晚上打雷需取消自动功能和需要灯一直被点亮时开关sl、s2的断开与闭合情况。
二、简答下列各题(每题55分,共030分)1.小军的爸爸想拆除厨房一盏灯,并将控制该灯的开关玫成插座。但是他家所有的线路都是暗线(除了电灯和开关的接线盒处,其余部分的导线都在墙内),若将改动后的线路重新铺设成暗线则因工程量太太而不切实际,铺设明线又不美观。小军得知后,又经过认真思考,他根据物理课上所学的知识,首先画出了他家现有接线的电路图(如图6所示),并认为只需在原线路上稍作改装,就能达到目的。请你用文字说明小军的改装方法,并在右侧虚线框中画出改装后的电路图。
图6。
6.小明搬进刚装修完的新家,妈妈给他买了一个床头灯,他将这个床头灯插在床边墙壁的插座上。晚上,小明在床上看书时,突然床头灯熄灭了,过了一会儿,灯又亮了,这时他发现爸爸刚刚洗完澡从卫生间走了出来。小明很好奇,亲自去卫生问打开“浴霸”的灯,发现他床头的灯又熄灭了。关闭“浴霸”的灯,床头的灯又亮了。小明很想知道为什么他的床头灯会出现这种“奇怪现象”,线路究竟出了什么问题?(1)请你画出小明家装修时连接浴霸灯与床头插座(床头灯)的电路图,并应用所学知识分析产生这一“奇怪现象”的原因。
(2)如果不想让上述“奇怪现象”出现,床头灯的开关能正常控制床头灯的亮灭,请画出正确的电路图。
20.声控开关在静音时处于断开状态,在接收到一定响度的声音时会自动闭合一段时间。某地下通道两端的入口处各装有一个声控开关来控制同一盏螺纹灯泡,为确保行人不管从哪端进入,灯泡都能接通电源发光。请按题意将图l5的电路连接完整。
20.答案:如图所示。
解析:为确保行人不管从哪端进入,灯泡都能接通电源发光,应该将两个声控开关并联与灯泡连接进入电路。如图所示。
16.图11是某电热器内部的电路结构图,r1、r2为加热电阻丝(r1r2)。下列是电阻丝的四种连接方式,可使电热器提供不同的发热功率,其中说法正确的()a.甲的连接方式发热功率最小b.乙的连接方式发热功率最大c.丙的连接方式发热功率最小d.丁的连接方式发热功率最大答案:d解析:甲的连接方式只有r2接入电路;乙的连接方式r1、r2串联接入电路;丙的连接方式只有r1接入电路;丁的连接方式r1、r2并联接入电路;所以乙的连接方式发热功率最小,丁的连接方式发热功率最大,选项d正确。
四.(8分)小明家新买了一条100w的电热毯,他想用电流表和电压表测量电热毯的电阻值,于是连接了如图9所示的实验电路。其中电源两端的电压为6v,r。为电热毯的电阻值,滑动变阻器的最大阻值为20q。但实验过程中,小明发现,不论怎样调整滑动变阻器触头p的位置,电压表的示数几乎不发生变化,且查得电路各图9处均连接无误。请你分析一下产生这一现象的原因是什么?若不更换实验器材,应怎样连接电路,才能在触头p滑动过程中,有效地改变电热毯两端的电压值。
‘