编写计划书可以帮助我们理清思路,规划未来,避免盲目行动。以下是一些常见的计划书参考样本,对于初学者来说是一个很好的学习资源。
圆锥的体积教学方案(精选17篇)篇一
圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。
=1/3sh(知道底面积和高)。
=1/3πr2h(知道半径和高)。
=1/3π(d*2)2h(知道直径和高)。
=1/3π(c*2*π)2h(知道周长和高)。
在教学中,我提供的是两组不同的学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。
由于课前把制作的u盘带回家,未带回来,所以导致课上无法通过多媒体课件的形式,把动手操作的完整过程给学生进行展示。
上课前的一点一丝疏漏都要力求避免,课前准备真的是对于教师来说至关重要,缺少哪一环都会在课堂上留下遗憾。
圆锥的体积教学方案(精选17篇)篇二
圆锥的体积是在学生直观认识圆锥的特征,会算圆的面积,以及长方体、正方体、圆柱体的体积的基础上安排教学的。因此,我有针对性地设计、制作了本节课的辅助教学课件,既突出重点、突破难点,又激发学生的学习兴趣,优化教学过程,提高课堂教学质量。
1、复习迁移,做好铺垫。
由于圆锥体的体积是在学生学过圆柱体的体积的基础上安排教学的,为了让学生回忆圆柱体的体积计算公式,以便为知识的迁移和新知识的学习做好铺垫,我制作了一张图文并茂的图文片向学生展示了一个圆柱体图形,并在图形下面用醒目的文字向学生提出问题:这是什么形体?它的体积应怎样计算?这样一张集文字、图形、声音于一体的图文片,很容易引起学生注意,营造学习气氛。
2、创设情境,引入新知。
数学来源于生活,我取材于生活以创设情境,使教学过程与生活实际密联系起来,我制作了一张图文并茂的图文片向学生展示了晒谷场上一堆圆锥形的谷子,并在显眼的位置向学生巧设问题:这堆谷成什么形体?你们能求出这堆谷的体积吗?这样,激发了学生的求知欲望,把学生引入到新课探索的活动中。
3、实验操作,推导公式。
圆锥体积的推导,是本节课的教学难点,为了让学生直观感知圆锥的体积与它等底等高的圆柱的体积的关系。首先让学生用工具做实验,初步感知,再呈现我制作的图文片向学生演示:用圆锥装满水倒入和它等底等高的圆柱里的过程。并在动画下面巧设问题:用圆锥装满水倒入和它等底等高的空圆柱里,倒几次正好倒满?每次水的高度是圆柱高度的几分之几?有层次的教学设计,丰富多彩的教学活动,充分体现以教师为主导,以学生为主体的教与学的双边活动。学生通过认真操作实验,观察思考,都明白了圆锥的体积等于和它等底等高的圆柱体积的1/3,从而推导出圆锥体积的计算公式。
4、自学尝试,解惑答疑。
为了提高学生解决实际问题的能力,我把课本上的例1制成一张图文片,配上悠闲的乐曲,让学生尝试解答。试做时,我则进行巡视,如有问题,个别辅导,接着指名回答。这样,能够把较多的时间留给学生,培养学生的自学能力,使他们从中体验到学习的成功的乐趣。
本节课《圆锥的体积》以谈话法、实验法为主,讨论法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。小学阶段学习的几何知识是直观几何。小学生学习几何知识不是靠严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识,而且在教学中我注重如何有效的引导学生探究。
例如,在上课开始,我是让学生回忆圆柱体积公式的推导过程,
让学生猜测圆锥的体积也可以借助我们已经学过的图形来验证,培养学生的迁移类推能力。到学生猜测出用圆柱的体积来帮助研究圆锥时,再进一步让学生猜测圆柱与圆锥之间的关系,激起学生的学习兴趣,然后马上让学生自己以小组为单位去验证自己的猜测是否正确,让每个学生都经历一次探究学习的过程。每个学生都经历了“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,按自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。
在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。而且在探究出圆锥体积公式的基础上,再让他们想办法计算出他们小组实验用的圆锥的体积,又一次给了学生探究的空间,使他们对不光能得出圆锥的体积公式,而且知道怎么应用它。
充分发挥了学生的个性潜能。在学习中充分发挥学生的潜能,让他们按自己的观察进行猜测估计,按自己的设想操作学习,对自己学习情况进行总结,反思,在全体学生思维火花的相互碰撞中,出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。
圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:
一、大胆猜测,培养猜测意识。
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
二、操作验证,培养科学的实验观。
数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:v=1/3sh。
教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。
《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,我先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的数学原理,而且我有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的重点和难点。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥.
总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。我为自己加油:做一个引领学生学会探究学习的好老师!
圆锥的体积教学方案(精选17篇)篇三
圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:v=1/3sh。
教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。
《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,我先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的数学原理,而且我有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的重点和难点。在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥.
总之,这节课,每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。我为自己加油:做一个引领学生学会探究学习的好老师!
“实践出真知”,我觉得这句话讲得非常的好。对于学生的学习,我觉得也是这样。让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。特别是在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。在教学圆锥的体积时,我感悟特深刻。
以前教学圆锥的体积后,学生在实际运用公式时容易出错误的地方还是和往届一样,圆锥的体积=等底等高圆柱体积的三分之一,这个三分之一,在计算的时候经常出现遗漏。
怎样让学生自己探究出圆锥的体积公式,并且时时记住那个容易被人遗忘的三分之一呢?我这次把学习的主动权交给了学生,让每个学生都经历“提出猜测--设计实验--动手操作--得出公式”的自主探究学习的过程,我让学生拿出自己的学具——等底等高的圆柱和圆锥,走出课堂,深入实践,到操场上去装沙子,到水池边去装水,看几个圆锥的体积才能把圆柱装满。在我适当的引导下,让学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。教学中我感到学生真正地成为了学习的主人,我没有牵着学生走,只是为他们创设了一个猜想圆锥体积方法的情境,让学生在猜测中找到验证的方法,并且通过动手操作验证自己的猜测。最后得出圆锥体积的计算方法,激发了他们主动探究的欲望。
推导公式时,我没有代替学生的操作,始终只以组织者、引导者与合作者的身份参与其中,使学生与学生之间,教师与学生之间互动起来,在这种形式下,学生运用独立思考、合作讨论、动手操作等多种方式进行了探索。另外,为了突出“等底、等高”这个条件的重要性,我巧置陷阱,我还特意安排了一组等底不等高,一组不等底也不等高的圆柱和圆锥,结果学生的实验结论和其他组的不一致,这时候就出现了争论,这时,我时机引导学生与上次演示比较,1比3的关系是在什么基础上建立的?学生恍然大悟,明白圆锥体和圆柱体等底、等高,圆锥体体积才是圆柱体体积的三分之一。相信今天通过同学们自己的动手体验,对圆锥的体积计算方法印象深刻,只有自己经历了才会牢牢记住!
我将班上同学分成了9个小组,在课堂开始前告诉同学们在今天的小组学习中会选出一个优秀小组,并且从合作,纪律,发现三个方面进行评价,组长安排组员活动体现小组合作性,巩固了小组合作探究的实效性,活动时间结束时从纪律方面进行评价,有效的组织了教学,使学生的兴奋点得到有效控制,尽快投入到公式的推到过程中,在推到过程中鼓励同学们表达自己的观点,从发现方面对学生进行评价提高学生的积极性。
在教学“圆锥的体积”时,我首先复习了圆柱的体积的计算过程,再用生活中的问题引入学习圆锥体积的必要性,调动了学生的积极性。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。
这一节失败的课让我反思了很多,除了总结和练习,还找到了很多不足之处均待提高。
1.课堂提问没有给学生留下足够的思考空间。
如:“你打算用什么方法测量这个圆锥的体积?”问题提出后,我仅停顿了2秒,没有学生举手我就接着说“我们解决一个未知问题通常会把它转化为已知问题,那么圆锥的体积可以转化为我们原来学过的哪个立体图形的体积呢?”说完这句话,我就意识到,这个地方应该让学生充分的思考,充分的说一说方法,如果学生说不出,我再说这些话,学生可能会给我很多惊喜。
2.实验结束后,你想说什么?
学生经历了猜想、体验、探究、验证的过程,在实验的过程中肯定会发现很多问题、矛盾。实验结束后,学生应该有很多话要说。此时问一问,你想说什么?既给了学生一个思维提升的过程,又能顺利的总结出这节课的结论。
3.如何有效的调动起学生的积极性,让高年级的学生也能积极回答问题?
通过不断的反思自己,让我发现了很多自己的问题。这一节课,可以说是我从教以来对我打击最大的一节课,却又是让我收获最大的一节课。课堂上留下了很多遗憾,有机会真想再重新上一遍这节课。
圆锥的体积教学方案(精选17篇)篇四
教学过程:
一、情境引入:
(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?
(2)学生发言:(把它放进盛水的量杯里,看水面升高多少……)。
(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。
(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)。
(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)。
设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。
二、新课探究。
(一)、探究圆锥体积的计算公式。
1、大胆猜测:
(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)。
(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆……)。
(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)。
(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的。”
(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)。
2、试验探究圆锥和圆柱体积之间的关系。
我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。
(1)课件出示试验记录单:
a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?
b、通过实验,你发现了什么?
(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。
(3)汇报交流:
你们的试验结果都一样吗?这个试验说明了什么?
(4)老师用等底等高的圆柱圆锥装红色水演示。
(教师让学生注意记录几次,使学生清楚地看到倒3次正好把圆柱装满。)。
(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半……)。
(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)。
(这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)。
3、公式推导。
(1)你能把上面的试验结果用式子表示吗?(学生尝试)。
(2)老师结合学生的回答板书:
(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)。
进一步强调等底等高的圆锥和圆柱才存在这种关系。
设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。
(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。
(2)提问:已知圆锥的底面积和高应该怎样计算?
(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。
(1)出示例题:
底面半径是3平方厘米,高12厘米的圆锥的体积。
(2)学生尝试解答。
(3)提问:已知圆锥的底面半径和高,可以直接利用公式。
(1)出示例3:
工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)。
(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)。
(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)。
(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)。
(5)提问。
:已知圆锥的底面直径和高,可以直接利用公式。
设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。
圆锥的体积教学方案(精选17篇)篇五
《圆锥的体积》设计意在让学生经历猜想、体验、探究、验证、总结的过程,经历圆锥的体积计算公式的推导过程,强调学生的经历和体验,从根本上理解并掌握圆锥体积的计算公式,从而能正确的计算圆锥体积。但最后课堂却没有达到预期的教学效果。课后结合老师们的建议,从这节课上找到了很多不足之处。
从直观的过程,逐步提炼抽象,再解决实际问题,这是一个非常重要的过程。但我却在得出结论后,急着去练习强化等底等高和,接着直接抛出了最后一个练习,漏了公式最后的结论得出,最终直接导致教学效果不好,给这节可留下了很多遗憾。
除此之外,练习的设计也存在很多问题。第一,练习设计的不够精炼,开始的判断题、填空题设计的多,最后一题偏难,在这节课里有些不合时宜还浪费了时间。第二,最后的计算练习应逐层深化圆锥的体积计算。圆锥的体积的计算是这节课最后的落脚点,对于学生也是个难点。练习的设计应以帮助学生建立解决问题的模型,针对孩子的认知规律,设计由简到难的梯度练习,逐层深化圆锥的体积计算。
基于此我又重新设计了整节课的后半部分:
验证后的总结:
通过这个实验你得出了什么结论? 。
如果是这个细长的圆锥,还是这个结果吗? 等底等高。
补充完整板书:
等底等高 。
s表示什么?h表示什么?
1/3×19×12=。
讨论:
1.如果没有直接告诉s,而是告诉我们r和h,应该怎么求v呢?
先求s. 。
2.如果知道d和h呢? 先求r。
提高练习:
工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?
1/3×3.14×1×1.2=。
第二天的课,我用这个程序在班里重新上了一遍,下课前进行了小测: 求圆锥的体积。
全班51人,44人过关(其中37人全部对,7人最后计算有误)。
7人不过关,其中2人忘了乘,3人忘了给半径平方,一人半径和高弄反了,一人写不会。
最后7人中,有3人自己订正正确,剩余4人通过教师再次讲解后自己订正正确。
这一节失败的课让我反思了很多,除了总结和练习,还找到了很多不足之处均待提高。
1.课堂提问没有给学生留下足够的思考空间。
如:“你打算用什么方法测量这个圆锥的体积?”问题提出后,我仅停顿了2秒,没有学生举手我就接着说“我们解决一个未知问题通常会把它转化为已知问题,那么圆锥的体积可以转化为我们原来学过的哪个立体图形的体积呢?”说完这句话,我就意识到,这个地方应该让学生充分的思考,充分的说一说方法,如果学生说不出,我再说这些话,学生可能会给我很多惊喜。
2实验结束后,你想说什么?
学生经历了猜想、体验、探究、验证的过程,在实验的过程中肯定会发现很多问题、矛盾。实验结束后,学生应该有很多话要说。此时问一问,你想说什么?既给了学生一个思维提升的过程,又能顺利的总结出这节课的结论。
3.如何有效的调动起学生的积极性,让高年级的学生也能积极回答问题?
这个问题,我曾经百思不得其解,总以为就是高年级学生的公开课比低年级的公开课难上,这节课后也豁然找到了原因:一是出在我平时的课堂上。由于平时上课总要照顾后进生,所以在回答问题时,往往不去叫举手的好学生,总去点不举手的后进生,公开课时也不由自主地这样做。但是这样做的后果就是导致,举手的同学本来就有些害怕,我还总不去叫他。不但打击了举手同学的积极性,还打消了其他同学举手的念头。另一个很重要的原因是缘于教师上课的心态。对着低年级学生上课,我们很容易放下姿态,去“哄”他们,有一点做的好、说的好了,教师就会给很高的评价。而且态度还“和蔼可亲”
通过不断的反思自己,让我发现了很多自己的问题。这一节课,
可以说是我从教以来对我打击最大的一节课,却又是让我收获最大的一节课。课堂上留下了很多遗憾,有机会真想再重新上一遍这节课。
圆锥的体积教学方案(精选17篇)篇六
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。
新课一开始,我用课件出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后课件演示实验过程,让孩子从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,这样学生对知识的掌握就水到渠成了。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。
当然,教学是一门缺陷艺术,在教学之后我感到遗憾。
的是,没让学生动手实际操作,我想如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。1、探究圆锥体积计算方法的学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
通过本节课的教学,让我真正体会到了让学生通过动手实践去发现新知识的好处,学生自己去发现的新知识,是一种真正的理解,不是老师硬灌输给他的,他们能灵活用知识解决问题,这使我熟悉到新课改提倡的:“动手实践、自主探索、合作交流是学生学习数学的重要方式。“在今后的教学中我将用新课程的理念指导我的教学,提高课堂教学效率。
圆锥的体积教学方案(精选17篇)篇七
《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。
1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。
1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。
2、教学软件。
一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”
(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)
2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。
3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉
方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。
方法二:利用手中的一立方厘米的小木块进行估算。
方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。
〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉
(2)学生再次在小组内操作探究。
(3)汇报结论。
(4)微机演示。
当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。
4、评价以上各种办法
同学们的结论是用公式计算比较方便。
三、解决实际问题
(问题一)
1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)
2、汇报结果。
先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)
(问题二)
2、汇报结果。
用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克
3、验证计算结果
用称称一称,比较一下结果。
4、讨论两次结果为什么不同。
由于测量时厚度不计,计算时是近似值。都存在误差。
〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉
(问题三)
利用圆锥体积公式计算。
(1)r=2cm h=6cm v=?(2)d=6m h=5mv=?
(问题四)
计算不规则物体体积或容积。(直说出计算的方法即可)
1、用什么方法计算出葫芦能装多少水?
2、胡萝卜的体积怎样计算?
3、不规则的零件体积计算?
四、总结全课
说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。
圆锥的体积教学方案(精选17篇)篇八
一、复习导入。
1、怎样计算圆柱的体积?(板书公式)
2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?
3、出示一个圆锥,请学生说说圆锥的特征。
4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)
二、动手测量,大胆猜想。
1、动手测量,找圆锥和圆柱的底和高的关系。
2、学生动手测量,教师巡视。给予指导。
3、交流得出结论:圆柱和圆锥等底等高。
4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?
三、实验操作,推导出圆锥体积计算公式。
1、实验操作。
师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。
2、学生分组实验,教师巡视。
3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?
4、强调等底等高。
5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)
6、练习(出示)
(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。
7、得出圆锥的体积计算公式。
8、用字母表示圆锥的体积计算公式。
三、巩固练习。
1、计算下面圆锥的体积。(只列式不计算)
底面积是6.28平方分米,高是9分米。
底面半径是6厘米,高是4.5厘米。
底面直径是4厘米,高是4.8厘米。
底面周长是12.56厘米,高是6厘米。
2、填空。
a圆锥的体积=(),用字母表示是()。
b圆柱体积的与和它()的圆锥的体积相等。
c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
3、判断。(用手势表示)
a圆柱体的体积一定比圆锥体的体积大()
b圆锥的体积等于和它等底等高的圆柱体的()
c正方体、长方体、圆锥体的体积都等于底面积×高。()
d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
四、全课小结。
师:今天这结课学习了什么?通过今天的学习研究你有什么收获?
五、解决实际问题。
在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
圆锥的体积教学方案(精选17篇)篇九
多媒体演示1:。
(一个长方形,上面的一边渐渐变短,直到变成三角形)。
师:刚才你看到多媒体屏幕上出现了什么样的动画?
生:我看到了一个长方形逐渐变成了三角形.
师:你看到的三角形和原来的长方形有什么关系?
生1:它们是等底等高的关系.
生2:它们面积的关系是倍数关系,正好两倍.
生3:长方形的面积是三角形面积的两倍,三角形面积是长方形面积的.
生4,等底等高的长方形的面积是三角形面积的两倍,等底等高的三角形面积是长方形面积的.
师:很好,你们真会动脑筋,我们来在看一个动画.
多媒体演示2:。
(圆柱体的上底面越来越小,直到缩成一点变成一个圆锥)。
师:这回你看到了什么?你猜想一下其中有什么知识和规律在里面?
生1:我看到一个圆柱体的上底面越来越小,直到缩成一点.
生2:圆柱体变成了圆锥体.
生3:我想圆锥体积和圆柱的体积一定有某种关系.
生4:圆柱体的体积是锥体的体积的两倍,就和等底等高的长方形的面积是三角形面积的两倍一样.
生5:它们是等底等高的关系.
生6:圆柱体的体积不是锥体的体积的两倍,而是三倍.
生7:圆柱体的体积和锥体的体积既不是两倍关系,也不是三倍关系.而是其它的关系.
师:同学们真会动脑筋,那么刚才同学们的想法哪些是对的,哪些是错的呢?同学们讨论一下.注意:把肯定正确的想法和有争论的想法分开讨论.
(生汇报:。
正确的有:“我想圆锥体积和圆柱的体积一定有某种关系.”“它们是等底等高的关系.”有争论的有:“圆柱体的体积是锥体的体积的两倍,”“圆柱体的体积不是锥体的体积的两倍,而是三倍.”)。
(学生进行讨论)。
生1:可以找一些泥巴来试一试,先把一块泥巴做成圆柱的形状,量出底和高,然后再做成等底等高的圆锥,看能作几个,能做几个就说明是几倍.
生2:我的方法也是用泥巴,但和他的方法不同的是,我先用泥巴做两个等底等高的圆柱和圆锥,然后把他们称一称,根据他们的重量来判断它们的体积是什么关系.
师:太好了还有什么更妙的主意没有?
生3:我的想法是,做两个等底等高的圆柱和圆锥容器,先把圆锥容器装满水,倒到圆柱容器里,看能倒几下,能倒几下就是几倍关系.
生5:我的方法更简单,也是先做等底等高的圆柱和圆锥,只是要做小一点,直接放到装有水的量筒里,量出它们的体积来.
圆锥的体积教学方案(精选17篇)篇十
人教版九年义务教育小学数学教科书第十二册。
这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。
1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。
2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。
3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。
[点评:知识与技能目标的设计全面、具体、有针对性。不但使学生掌握圆锥体积的计算公式,而且培养了学生运用圆锥体积公式解决生活中的实际问题的能力,使学生体会到数学与生活的密切联系注。并注重对学生“猜想——————验证”、“合作——————探究”等学习方式的培养及“转化”数学思想方法的渗透;同时关注学生空间观念的培养及唯物辩证思想的渗透。
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
理解圆锥体积公式的推导过程及解决生活中的实际问题。
一、 创设情境导入新课。
2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)
3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。
二、经历体验,探究新知
(一)渗透转化,帮助猜想
1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。
2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。
(二)小组合作,实验验证。
1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。
2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。
3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:
概括板书:
等底到高
v圆柱=sh v圆锥= 1/3sh
4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:
v =1/3πr2h v =1/3(c/2π)2h v =1/3(d/2)2h
5、教师组织学生独立完成书中例题后集体订正。
(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。
三、巩固新知,拓展应用。
1、判断并说明理由
(1)圆柱体积是圆锥体积的3倍( )
(2)一个圆锥的高不变,底面积越大,体积越大。( )
(3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。( )
组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。
2、求下列圆锥的体积(口答,只列式,不计算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
组织学生根据圆锥体积公式解答。
3、实践与应用:
学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?
组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。
四、课后总结,感情升华。
这节课你有什么收获?你是怎样获得的?
[总评:
1、钻研教材,创造性地使用教材。
教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的联系;再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。
2、注重数学思想方法的渗透。
数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。
3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。
圆锥的体积教学方案(精选17篇)篇十一
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用。
学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件。
教学时间:一课时。
教学过程:。
一、复习。
1、圆锥有什么特征?(课件出示)。
使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?
指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。
二、导人新课。
出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
三、新课。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?
指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的.图形来求呢?
先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”
然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”
学生分组实验。
汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。
多指名说。
问:把圆柱装满一共倒了几次?
生:3次。
师:这说明了什么?
生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
师:圆柱的体积等于什么?
生:等于“底面积×高”。
引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高。
师:用字母应该怎样表示?
然后板书字母公式:v=1/3sh。
师:在这个公式里你觉得哪里最应该注意?
1/3×19×12=76((立方厘米))。
答:这个零件体积是76立方厘米。
做一做:课件出示,学生回答后,教师订正。
1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?
2、已知圆锥的底面半径r和高h,如何求体积v?
3、已知圆锥的底面直径d和高h,如何求体积v?
4、已知圆锥的底面周长c和高h,如何求体积v?
5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?
例2课件出示)在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)。
判断:课件出示,学生回答后,教师订正。
1、圆柱体的体积一定比圆锥体的体积大()。
2、圆锥的体积等于和它等底等高的圆柱体积的()。
3、正方体、长方体、圆锥体的体积都等于底面积×高。()。
4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()。
四、教师小结。
这节课我们学习了哪些知识?你还有什么问题吗?
五、作业。课本练习。
圆锥的体积教学方案(精选17篇)篇十二
圆锥的体积是在学习了圆锥的认识的基础上进行教学的。
这节课我是这样设计的:第一部分,复习圆锥的特征和圆柱的体积=底面积×高。反思:复习旧知识之间的联系,便于运用已学知识推动新知识的学习,为学习新知识做准备。
第二部分,便于圆柱体积的计算公式,先让学生用转化的思想大胆猜测,能否把体积计算方法转化成已学过的立体图形来推导圆锥体积公式呢?学生猜测之后,让学生拿出手中等底等高的圆柱体,然后同桌讨论得出结论,全班交流。再进行第二次实验,同桌交换圆柱或圆锥倒进沙子之后,同桌讨论,全班交流,老师引导学生两次实验的结论有什么不同,经过学生的讨论,师生归纳出:圆锥的体积等于等底等高的圆柱体积的三分之一。并强调v=3sh的前提条件是等底等高。
反思:这一环节让学生用转化的思想猜测,激发学生的学习兴趣,调动学生的探究欲望。紧接着让学生两次动手实验,亲自体验知识的探究过程。符合小学生的认知规律,便于学生主动地获取知识,掌握正确的学习方法。通过实验,学生参与了知识的形成过程,得出了只有在等底等高的情况下圆锥的体积是圆柱的三分之一,否则这个结论不成立。
圆锥的体积教学方案(精选17篇)篇十三
圆锥的体积是在学生掌握了圆柱的特征及圆柱的体积等有关知识的基础上进行教学的。
1。让学生经历圆锥体积计算公式的推导过程,弄清来龙去脉。在教学中,我让学生在课前自己先制作出等底等高的圆柱和圆锥型容器教具,让学生通过倒水,发现在等底等高的圆柱和圆锥中,用圆锥容器装水倒入等底等高的圆柱容器中,刚好倒三次,即圆锥的体积是与它等底等高圆柱体积的三分之一,由此通过公式可以得出:
v圆锥=1/3圆柱=1/3sh(知道底面积和高)。
=1/3πr2h(知道半径和高)。
=1/3π(d*2)2h(知道直径和高)。
=1/3π(c*2*π)2h(知道周长和高)。
2。加强学生的实践,培养学生的动手操作能力与自主解决问题的能力。在教学中,我让学生自己制作学具,目的是让学生通过自己的亲身实践,亲自动手,亲身体会圆柱与圆锥体积之间的关系,这样利于培养学生自主探索,与同学之间合作学习,共同解决问题的能力。学生在此项活动中,不仅收获了知识的来龙去脉,还体会到了与同学合作,共享成果的幸福喜悦。
没有在制作学具时候,制作出等底不等高的圆柱和圆锥型容器教具,然后挑一组学生实验,得不出圆锥的体积是与它等底等高圆柱体积的三分之一的结论。所以,缺乏对比性,如果加入这个教具的话,更能让学生深知等底等高的重要性。
圆锥的体积教学方案(精选17篇)篇十四
以前教学圆锥的体积时,由于教具的制作非常麻烦,多是先由教师演示等底等高情况下的圆柱体积的三分之一正好是圆锥的体积,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但收到的效果不佳,计算圆锥的体积时容易忘掉乘。学生对等底等高这一重要条件掌握并不牢固,理解很模糊。在本次课中,新课一开始,我就让学生观察,根据学习体积的经验,先判断四个圆锥的体积大小,引导学生猜测圆锥的体积和它的什么有关,学生联系到了圆柱的体积,都能说出圆锥的体积跟它的底面积和高有关系,在猜想中激发学生的学习兴趣,使学生明白学习目标。
为了让学生理解等底等高是判断圆锥的体积是圆柱体积的三分之一的前提条件,同时为了节约教学时间,我设计了这样的教学片断:让学生思考,圆锥与学过哪个立体图形的关系最近?为什么?学生很容易找到圆柱,接着我又拿出几个不同的圆柱,问:考考你们的眼力,选择哪个来研究这个圆锥的体积比较好?将学生选的圆柱进行验证,发现与圆锥是等底等高,告诉学生在选择实验材料时要尽量选择有些相同条件的,这样实验时可以少走弯路,实验的结果准确些,在这个过程中加深了对等底等高这个条件的理解。这时,让学生进行小组合做,实验探究,经历一番观察、发现、合作、创新的过程,得出圆锥体积等于和它等底等高圆柱体积的三分之一。这样让学生置身于有目的的实践中,增加对实验条件的选择及信息的归纳。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是优化实验过程所产生的效果。
在小组合作学习中,为了增强实效性,避免走形式,在课前,我引导学生制作等底等高的一组圆柱和圆锥,使每个学生都能真切的参与实验、参与到探究中去,让他们以这样每个学生都能怀着喜悦的心情进行学习,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会了知识,更重要的是培养了学生的能力。
通过本节课的教学,我意识到在平时的课堂教学中,我们要善于利以学生认识发展规律为依托:发现问题,提出问题探究解决问题,探究解决问题得出结论,实际应用使学生在认识实践再认识、再实践中理解运用知识。在教学环节中以学生探究为基础引导学生在探究中总结规律,并运用规律解决实际问题,激发学生探究的兴趣感受到数学的应用性,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。
本节课的教学中比较遗憾的时,在制作课件时考虑不周全,几个圆锥的相关数据不准确,比例不合适,对学生的学习造成了不必要的麻烦,影响了学生的判断结果,这些看似细节的环节,却反映了在备课时的粗心大意,对学生也会产生不良的影响,今后要注意,时刻记住:细节决定成功!
圆锥的体积教学方案(精选17篇)篇十五
这一节失败的课让我反思了很多,除了总结和练习,还找到了很多不足之处均待提高。
如:你打算用什么方法测量这个圆锥的体积?问题提出后,我仅停顿了2秒,没有学生举手我就接着说我们解决一个未知问题通常会把它转化为已知问题,那么圆锥的体积可以转化为我们原来学过的哪个立体图形的体积呢?说完这句话,我就意识到,这个地方应该让学生充分的思考,充分的说一说方法,如果学生说不出,我再说这些话,学生可能会给我很多惊喜。
学生经历了猜想、体验、探究、验证的过程,在实验的过程中肯定会发现很多问题、矛盾。实验结束后,学生应该有很多话要说。此时问一问,你想说什么?既给了学生一个思维提升的过程,又能顺利的总结出这节课的结论。
通过不断的反思自己,让我发现了很多自己的问题。这一节课,可以说是我从教以来对我打击最大的一节课,却又是让我收获最大的一节课。课堂上留下了很多遗憾,有机会真想再重新上一遍这节课。
圆锥的体积教学方案(精选17篇)篇十六
本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。
(一)教学内容分析:
1、教材内容:
本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
2、研读完教材后,自己的几个问题:
(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。
(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?
3、自己的创新认识:
首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。
其次,是要提供给同学们一个可操作的空间。
(二)学情分析:
1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。
2、自己的认识:(结合自己在讲课时发现的问题而谈)
学生能够根据以前的学习经验圆柱和圆锥的底面都是圆形认识到二者之间存在一定联系,而且又是刚学完圆柱学生认识到这一点看来并不难,难的是等底等高。因此,在教学设计过程中要注意柱、锥间联系的设计,突破学生对“圆锥的体积是与它等底等高的圆柱体积的三分之一”中的“等底等高”。
(三)教学方式与教学手段分析:
根据本节课的教学内容及特点,在教学设计过程中我选择了 “操作——实验”的学习方式。学习任何知识的最佳途径是由自已去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”我认为这也正是我在设计这节课中所要体现的核心内容。第一次学习方式的指导:体现在出示生活情境后,先让学生进行大胆猜测“买哪个蛋糕更划算”。本次学习方式的指导是通过学生对生活问题进行猜想,使学生认识到其中所包含的数学问题,并由此引导学生再想一想你有什么解决方法。
(四)技术准备与教学媒体:
在创设情境中利用多媒体出示主题图,然后要从图中剥离出图形来,并演示整个实验过程。
(一)教学目标:
1、使学生掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。
2、通过操作——实验的学习方式,使学生体验圆锥体积公式的推导过程,对实验过程进行正确归纳得到圆锥的体积公式,能利用公式正确计算,并会解决简单的实际问题。
3、培养学生的观察、分析的综合能力。
(二)教学重点:理解圆锥体积的计算公式并能运用圆锥体积公式正确地计算圆锥的体积
(三)教学难点:通过实验的方法,得到计算圆锥体积的公式。
圆锥的体积教学方案(精选17篇)篇十七
《圆锥的体积练习课》教学反思正如探究圆柱体积计算方法的教学过程一样,学生不再是实验演示的被动观看者,而是参与操作的主动探者,是学习的主人。
在整个教学过程中,学生获得的不仅是鲜活的数学知识,同时也获得了更多探究学习的科学方法,探究成功的喜悦以及探究失败后的深刻反思。在这样的学习中,学生会逐步变得会思考,逐渐发现自身的价值。同时,在操作与实践的`过程中,我让一些学习有困难的学生参与其中,使他们感受到学习数学的快乐,并使他们懂得可以通过玩学习到数学知识。
这是本节课在教学组织上的优点所在。对于教学内容的设计,我通过提问引入圆锥的体积,生动而形象地揭示了本节课的课题。对于学生易混淆的知识点,我通过实物展示、语言强调、练习等方式,让学生掌握只有当圆柱和圆锥等底、等高时,圆柱的体积才是圆锥的3倍这一知识点。
对于圆锥的形成过程,我也设计了一个习题让学生自行思考和感受,并通过比较计算结果发现沿一个直角三角形不同直角边快速转动后所得到的圆锥的区别与联系,使学生在对比中进一步理解并掌握知识。