范文范本可以帮助我们更好地理解和掌握写作技巧,提升我们的写作水平。以下是小编为大家精心挑选的范文范本,希望能给大家带来一些启发和帮助。
数学解题的秘诀(实用13篇)篇一
故对正确性的要求比解答题更高、更严格.
因此,我们在复习备考时,要理解各个题型所包含的知识点,只有把各个数学知识点掌握住以后才能熟悉做题技巧。要有合理的分析和判断,要求推理、运算的每一步少算多思将是快速、准确地解答填空题的基本前提。
解答填空题的基本策略是准确、快速、整洁。这跟做选择题是差不多的,只不过选择题中我们还有选项支可以做参考,填空题更要求我们对知识的灵活运用!因此,研究填空题的解题技巧非常有必要。
整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。
高考数学填空题一般是基础题或中档题,且绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
直接法。
跟选择题一样,填空题有些题目也是可以通过套用公式定理性质直接求解的,拿到题目后,直接根据题干提供的信息通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
特殊化法。
当填空题的结论或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。
等价转化法。
通过"化复杂为简单、化陌生为熟悉",将问题等价地转化成便于解决的问题,从而得出正确的结果。
数学解题的秘诀(实用13篇)篇二
很多同学都认为考研数学的综合题比较难,有的同学甚至在卷面上只字未写,采取完全放弃的态度。实际上这种题目得分并没有大家想象的那么困难。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。
尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。
同学们在解考研数学综合题时,最关键的.一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在复习备考时要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。
另外,提醒同学们不要做比较偏门和奇怪的试题。研究生考试是很严肃的考试,不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。同学们可以充分借助老师、同学和互联网的帮助,将题目弄明白,不要耽误太多无谓的时间。
数学解题的秘诀(实用13篇)篇三
集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。
数学常用思维。
第一:高中数学答题方法函数与方程思想。
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。
高考把函数与方程思想作为七种重要思想方法重点来考查。
第二:高中数学答题方法数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面。
(2)在一维空间,实数与数轴上的点建立一一对应关系。
在二维空间,实数对与坐标平面上的点建立一一对应关系。
1.养成良好的考试习惯。
拿到试卷,首先填写好姓名和考号,快速浏览试卷,把握全卷的难易,高中英语,把容易的题的题号写在草稿纸的最顶端,再做题,遇到卡壳,马上跳过去做容易的题。这样保证最大限度发挥你的实力,也解决了由于过度紧张导致的暂时遗忘影响考试发挥的问题。注意机读卡的填涂问题,做完一道大题就填一部分,把第一卷做完后及时填涂,以避免全部做完再填时没时间。
2.把握好审题关。
很多学生练习了很多题,题与题之间有些相似,但又有区别,做题一不小心就会习惯性主观附加已知条件,导致最终出错。要求“字字看清,句句读懂,理解题意”,审两遍题,明确已知条件和隐含的已知条件。
3.深刻理解“长题不难,难题不后”。
一般高考试卷中总会出现题干很长,语句环绕的试题。乍一看很难理解,摸不清意图。但往往多读几遍,把其中关系弄清,做起来就比较简单。这种题主要是考你的审题能力与心理素质。做长题的关键是审题。“难题不后”,主要是说最后一题一般不是最难的,所以要学会总体把握全卷,先做简单的后做难的。
数学解题的秘诀(实用13篇)篇四
选择题。
有些单项选择题概念性非常强,计算技巧也比较高,求解单项选择题一般有以下几种方法:
推演法:它适用于题干中给出的条件是解析式子。
图示法:它适用于题干中给出的函数具有某种特性,,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。
逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
赋值法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。
证明题:
第一,对题目所给条件敏感。在熟悉基本定理、公式和结论的基础上,从题目条件出发初步确定证明的出发点和思路;第二,善于发掘结论与题目条件之间的关系。例如利用微分中值定理证明等式或不等式,从结论式出发即可确定构造的辅助函数,从而解决证明的关键问题。
计算题:
近年计算题考查重点不在于计算量和运算复杂度,而侧重于思路和方法,例如重积分、曲线曲面积分的计算、求级数的和函数等,除了保证运算的准确率,更重要的就是系统总结各类计算题的解题思路和技巧,以求遇到题目能选择最简便有效的解题思路,快速得出正确结果。现在距离考试还有一个多月,考前冲刺做题贵在“精”,选择命题合乎大纲要求、难度适宜的模拟题进行练习是效果最为立竿见影的。
应用题:
重点考查分析、解决问题的能力。首先,从题目条件出发,明确题目要解决的目标;第二,确立题目所给条件与需要解决的目标之间的关系,将这种关系整合到数学模型中(对于图形问题要特别注意原点及坐标系的选取),这也是解题最为重要的环节;第三,根据第二步建立的数学模型的类别,寻找相应的解题方法,则问题可迎刃而解。
将本文的word文档下载到电脑,方便收藏和打印。
数学解题的秘诀(实用13篇)篇五
对于考研数学来说,最后的综合题可能对大家来说是重要的一部分,首先是分值的诱惑,其次这部分的试题在考研数学中也占据着重要的比例。(ps:看完有收获哟,wordzhongcao音频)但对大多数学生来说,考研数学综合题比较难,有的同学就选择放弃了,也有一部分同学,在这一部分的复习中盯着一个题接很久的时间,甚至一天,其实这样都是不科学的。
也有一部分同学在卷面上只字未写,采取完全放弃的态度。实际上这种题目得分并没有大家想象的那么困难。对于那些具有很强的典型性、灵活性、启发性和综合性的`题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。
同学们在解综合题时,最关键的一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在复习备考时要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。
对于比较偏门和奇怪的试题,建议大家不要花太多的时间。研究生考试是很严肃的考试,不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。同学们可以寻求其他人的帮助,比如说老师同学等,也可以在网上寻求帮助,将题目弄明白,不要耽误太多无谓的时间。
总之考研数学的复习说简单也简单,说难也难。我们对于考研数学的复习要把握其考察的角度,在平时的复习中注意积累一些界问题方法和技巧。比较考研数学综合题考察还是建立在基础之上,我们要善于抓住和找到一类题型的答题关键点和一些固定的解题技巧,其实这些都是有章可循的。最后祝大家考研复习取得理想的效果。
数学解题的秘诀(实用13篇)篇六
填空题跟选择题有许多的共同点:小巧灵活,结构简单运算量不大等特点,考察的知识点范围比较广,根据填空时所填写的内容形式,可以将填空题分成以下几种类型:
(1)定量型:
要求考生填写数值、数集或数量关系,
如方程的解、不等式的解集、
函数的定义域、值域、值或最小值、
线段长度、角度大小等;。
(2)定性型:
要求填写的是具有某种性质的对象。
或者填写给定数学对象的某种性质,
如填写给定二次曲线的焦点坐标,离心率等.
数学解题的秘诀(实用13篇)篇七
数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,g . 波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。 第一阶段:理解问题是解题思维活动的开始。 第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。 第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。 第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。
数学解题的技巧 为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。 一切解题的策略的基本出发点在于变换,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。 基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、 熟悉化策略所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。 一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。 常用的途径有:
(一)、充分联想回忆基本知识和题型: 按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意: 对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素: 数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。 数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化策略 所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。 简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。 因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。 解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件: 在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。 因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
2、分类考察讨论: 在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、简单化已知条件: 有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
4、恰当分解结论: 有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
三、直观化策略: 所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。
(一)、图表直观: 有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以以进行到底。 对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。
(二)、图形直观: 有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。
(三)、图象直观: 不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。
四、特殊化策略 所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。
五、一般化策略 所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。
六、整体化策略 所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。
七、间接化策略 所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。
数学解题的秘诀(实用13篇)篇八
2.利用这些特殊函数的有界性,结合不等式推导出函数的值域。
方法二分离常数法。
1.观察函数类型,型如;。
2.对函数变形成形式;。
3.求出函数在定义域范围内的值域,进而求函数的值域。
方法三配方法。
1.将二次函数配方成;。
2.根据二次函数的图像和性质即可求出函数的值域。
方法四反函数法。
1.求已知函数的反函数;。
2.求反函数的定义域;。
3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域。
方法五换元法。
1.第一步观察函数解析式的形式,函数变量较多且相互关联;。
2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域。
数学解题的秘诀(实用13篇)篇九
-->
题型:这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)解题思路:
证线面平行如直线与面有两种方法:一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。
证面面平行:这类题比较简单,即证明这两个平面的两条相交线对应平行即可。
证线面垂直如直线与面:这类型的题主要是看有前提没有,即如果直线所在的平面与面在题目中已经告诉我们是垂直关系了,那么我们只需要证明直线垂直于面与面的交线即可;如果题目中没有说直线所在的平面与面是垂直的关系,那么我们需要证明直线垂直面内的两条相交线即可。
其实说实话,证明垂直的问题都是很简单的,一般都有什么勾股定理呀,还有更多的是根据一个定理(一条直线垂直于一个面,那么这条直线就垂直这个面的任何一条线)来证明垂直。
证面面垂直与证面面垂直:这类问题也比较简单,就是需要转化为证线面垂直即可。
体积和点到面的距离计算:如果是三棱锥的体积要注意等体积法公式的应用,一般情况就是考这个东西,没有什么难度的,关键是高的寻找,一定要注意,只要你找到了高你就胜利了。除了三棱锥以外的其他锥体不要用等体积法了哈,等体积法是三棱锥的专利。二面角的计算:这类型对理科生来说是一个噩梦,其难度有二,第一是首先你要找到二面角在什么地方,另一个难度就是你要知道这个二面角所在直角三角形的边长分别是多少。
二面角(面与面)的找法主要是遵循以下步骤:首先找到从一个面的顶点a出发引向另一个面的垂线,垂足为b,然后过垂足b向这两个面的交线做垂线,垂足为c,最后将a点与c点连接起来,这样即为二面角(说白了就是应用三垂线定理来找)。
二面角所在直角三角形的边长求法:一般应用勾股定理,相似三角形,等面积法,正余弦定理等。
这里我着重说一下就是在题目中可能会出现这样的情况,就是两个面的相交处是一个点,这个时候需要我们过这个点补充完整两个面的交线,不知道怎么补交线的跟我说一声。
第一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理最好能记住他们的推到过程,有时可以借助几何意义去记忆。
因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。
因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研真题中并不是很多见,更多的是要用到第二步。
第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。
一个证明题,大多时候是能用其几何意义来正确解释的`,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数f(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。
再如数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。
如第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。
考研数学的考察范围虽然比较固定,但是对于许多考研党来说,复习起来并非很容易,但只要掌握好方法,小编相信大家一定可以战胜考研数学!
数学解题的秘诀(实用13篇)篇十
每年考研数学重要题目,本身作为微积分根本的概念,在整张试卷的份量相信大家都有体会,每年直接考查的就覆盖选择题、填空题和解答题三种题型。因此,不仅要掌握求极限的各类方法,而且快速准确的写出答案,会增加得分的机会。
2.一元函数微分学。
导数与微分的概念、运算和应用依然是考查重点,如去年数学一的第1、16、18题,数学二的第3、9、10、20、21题,数学三的第17题,均是考查这部分内容。导数应用、三大中值定理是备考重点和难点,考生须先掌握常见题型的解题思路,总结归纳每类题型的关键解题步骤。
同时,对于数学三的考生来说,如果导数的经济应用是前期的复习盲区,近期须抓紧时间掌握相关内容,因为突出考查应用能力是近年考研数学试题的明显特点,尽量不要在此失分。
3.一元函数积分学。
定积分的基本思想是元素法,因此作为定积分的应用,要掌握元素法的基本思路。2015年考研数学一的第10题,数学二的第11题、第16题和第19题均是考查此部分内容,考试类型为数学二的考生应加强此部分备考。
4.多元函数微分学。
每年的考察形式为1-2个小题(选择或者填空题),和一个大题(解答题),小题一般为多元函数偏导、全微分的计算,大题一般集中在多元函数极值方面。另外,多元函数求导和微分方程结合也是一种综合题的表现形式。数学一的同学还要注意结合方向导数和多元微分的几何应用,综合题可能会考察到相关内容。
5.多元函数积分学。
备考这一部分重点掌握各类多元函数积分的计算。对于数学二、三的考生而言,每年的命题热点在二重积分的计算。对于数学一的考生而言,除重积分(包括二重及三重积分)的计算外,还需注意曲线面积分的计算,三个公式:格林公式、高斯公式及斯托克斯公式的应用。
6.级数。
无穷级数,属于数学一和数学三的备考范围。主要考察点有两个,一是常数项级数的敛散性,二是幂级数的收敛域、求和及将函数展开为幂级数。考生要掌握其常数项级数敛散性判别的一般方法,对于正项级数的判敛方法比较多,一般类型的级数通过绝对收敛的性质与正项级数相联系,交错级数用莱布尼茨判别法。对于幂级数,掌握求和的一般思路,同时注意注明和函数的收敛域,这是容易忽略的一点。
7.不等式的证明。
不等式的证明是思路较为灵活的一类题型,这也是一般考生认为的比较难的考点,建议考生掌握证明不等式的一般思路,如利用构造辅助函数,函数的单调性来构筑从已知到结论的一个桥梁。另外,不等式证明是证明题的一类,证明题在解答题中一般多考察中值定理的应用,数学中基本定理、典型定理的证明,考查考生的逻辑分析能力和分析问题、解决问题的能力。建议同学们在备考时注意总结基本思路,切忌只做一些偏、难的题目。
这部分的出题点近几年很稳定,分别就客观题和解答题进行说明。客观题一般考查行列式的性质与计算、矩阵的性质与运算,解答题一般为求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
此部分为数学一和数学三的考试范围,概率论与数理统计可以说在三科中,对基本概念的深入理解所占的比例相对最大,而其中解题的方法并不多,涉及到的技巧是很少的(甚至可以说没有技巧),因此,务必明确考察重点,随机事件概率的计算、随机变量的数字特征、随机变量的概率分布、矩估计与最大似然估计等同时掌握常见题型的解题思路和解题步骤。
虽然概率论与数理统计部分薄弱在数学考试中占比少,但考生也不要忽略,既然简单,就要拿到全分。建议多练习,务必达到熟练的状态。
数学解题的秘诀(实用13篇)篇十一
-->
2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。在进行类比时,要充分考虑已知对象性质的'推理过程,然后类比推导类比对象的性质。
二、演绎推理。
演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确,一定要注意推理过程的正确性与完备性。
三、直接证明与间接证明。
直接证明是相对于间接证明说的,综合法和分析法是两种常见的直接证明。综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(或顺推证法、由因导果法)。分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
间接证明是相对于直接证明说的,反证法是间接证明常用的方法。假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫做反证法。
四、数学归纳法。
数学上证明与自然数n有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
数学解题的秘诀(实用13篇)篇十二
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以讨论二次方程根的`符号,解对称方程组,都有非常广泛的应用。5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
数学解题的秘诀(实用13篇)篇十三
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
2、赋予特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的高考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。